Recent advances in top-down estimates of emissions from human activities, soils, and fires

Jun Wang

Lab for Atmospheric and Environmental Research (AER)

http://arroma.uiowa.edu

College of Engineering

University of Iowa

13 October 2021

Colloquium

Department of Meteorology and Atmospheric Science The Pennsylvania State University

IPCC AR6: "Observed warming is driven by emissions from human activities, with greenhouse gas warming partly masked by aerosol cooling"

- Prior to AR6, IPCC's summary for policy makers has centered around the climate forcing by forcing agent.
- In AR6, a new paradigm has emerged, in which the climate forcing must be attributed to the sources of these agents, i.e., the emissions.

AR6

Total mortality

Source: WMO, Air Quality and Climate Bulletin

Air pollution affected by emissions is a leading risk

Importance of emissions: a modeling perspective

- CTM and climate model simulations can only be as good as the emissions.
- Data assimilation (without constraints of emissions) for CTM and ESM:
 - suffers from emission errors that are persistent.
 - may improve forecast when observations of state parameters are available, but such improvement decay quickly with time once obs. are not available.
- For both climate studies and air quality forecast, there is a need to have a holistic interpretation from emissions to observations, and vice versa.

Top-Down vs. Bottom-Up estimates of emissions

- -Usually has a 2~3 yr lag
- -Seasonal/ monthly
- -Point or area average
- -Chemically speciated

-Lack of constraint on emission above the surface

Top-down emission estimate

- Has the potential for near real time
- Daily (polar-orbiting) or higher (geo..)
- Globally with high spatial resolution
- Trace gases & optical thickness
- Reflecting the columnar mass, and thus 1st order of emission

Emission Sources

Primary sources for aerosols: directly from surface

NO

Secondary sources: Atmospheric chemistry

Emission sources have large spatial and temporal variations (minutes-hours, meters to kilometers).

Outline

- Satellite constraints of SO₂ & NO₂
- Efficacy of top-down emissions
- Satellite constraints of emission processes
 - Soil NOx
 - Fire emissions
- Summary and outlook

View NO₂ from space

NO_x is mainly from fossil fuel combustion; limiting precursor for ozone formation

Average OMI SO₂ burdens over eastern USA

Image courtesy: Nickolay Krotkov, NASA

Questions to be addressed:

- Separate vs. joint DA of SO₂ and NO₂ from satellite observations
- Implication for AQ forecast at urban scale

GEOS-Chem adjoint modeling

Optimize the emissions by iteratively minimizing the cost function that depends on the model error, observation error, and the difference between model and observation.

$$J(\boldsymbol{\sigma}) = \frac{1}{2} \sum_{\Omega} \left[H(\boldsymbol{M}(\boldsymbol{\sigma})) - \mathbf{c}_{obs} \right]^T \mathbf{S}_{obs}^{-1} \left[H(\boldsymbol{M}(\boldsymbol{\sigma})) - \mathbf{c}_{obs} \right] + \gamma \frac{1}{2} \left[\boldsymbol{\sigma} - \boldsymbol{\sigma}_a \right]^T \mathbf{S}_a^{-1} \left[\boldsymbol{\sigma} - \boldsymbol{\sigma}_a \right]$$

Using OMI SO₂ to constrain SO₂ emissions

Implication for air quality forecast: applying posterior emission from last month to forecast AQ in this month

A new approach for monthly updates of anthropogenic sulfur dioxide emissions from space: Application to China and implications for air quality forecasts,

Wang, Y.

Wang, Y., et al., Geophys. Res. Lett., 2016

Joint inversion of anthropogenic SO₂ and NO_x emissions

Results using GEOS-chem adjoint (V.8) at 2° x 2.5° resolution, Oct. 2013 Y. Wang et al., ACP, 2020a.

The relationship between TROPOMI NO₂ and VIIRS nighttime light

There is good correlation between TROPOMI NO₂ vertical column density and VIIRS nighttime light, thus VIIRS nighttime light intensity should be good proxy for downscaling NO_x emissions.

Apply top-down constraints in present month to improve forecasts in next month

All results are for Nov. 2013 at 0.25x0.3125 degree resolution by using GEOS-chem nested model.

Efficacy of the top-down emissions

Two methods to test it:

- 1) Compare with the emissions inverted from satellite-based aerosol observations.
- 2) Use these emissions for the models that are different from the host model that is used in the top-down estimates.

Use MODIS AOD/Radiance to constrain aerosol primary & secondary emissions Xu et al., JGR, 2013

The top-down approach using OMI SO₂ and global GEOS-Chem adjoint modeling can timely update anthropogenic SO₂ emission for **regional AQ modeling**.

Efficacy is shown to be robust for four different AQ models (chemistry schemes)

Here in U.S.

Has the NOx emission reduction been slow down since 2009?

Soil NOx emissions

- ~1/4 of global NOx production is derived from soils, mostly from fertilized agriculture; however, estimates of global soil NOx emissions vary widely (9–27Tg per year).
- Fertilization and N deposition are known to increase soil NOx emissions; however, the majority of studies are conducted at temperatures below 35C.
- Strong pulse NOx emission responses to rewetting of soils in high-temperature regions are important, yet understudied in managed systems.

Observation-based insights of emission process dependence of soil NOx emission on temperature

Pulse of NOx emission after re-wetting

Tong et al., 2021, Environ. Sci. & Tech.

Improved simulation of soil NOx emission

- Soil and lightning NOx combined emissions trends change from -3.95% a⁻¹ during 2005-2009 to 0.60% a⁻¹ from 2009 to 2019, thereby rendering the abrupt slowdown of total NOx emissions reduction.
- Non-linear inter-annual variations explain 6.6% of the variance of total NOx emissions.
- Inter-annual variations of either soil or lightning are comparable (slightly larger than anthropogenic sources.

At regional scale

- SNO_x exceed anthropogenic sources over croplands which accounts for 50.7% of NO_x emissions
- Such considerable SNO_x enhance the monthly mean NO_2 columns by 34.7% (53.3%) and surface NO_2 concentrations by 176.5% (114.0%), leading to an additional 23.0% (23.2%) of surface O_3 concentration in California (cropland).

Tong et al., 2021. EST

Next frontier in remote sensing of fires

Fire Phase often described as Modified Combustion Efficiency, $CO_2 / (CO+CO_2) \rightarrow Emission Factor$

Liu et al., [2017]

Pokhrel et al., [2016]

How emission factor is treated in fire emission estimates?

- Static for the same type; no consideration of wind speed, relative humidity, ...
- Schemes for surface/biome types are oversimplified and vary in different emission algorithms

Specie	Savanna	Boreal	Temperate	Tropical	Peat	Agriculture	Reid et al., 2010
		forest	forest	forest		•	
CO ₂	1686	1489	1647	1643	1703	1585	Light Grasses/tundra
CO	63	127	88	93	210	102	Grasslands/Savannah
CH ₄	1.94	5.96	3.36	5.07	20.8	5.82	Correcte/Weedy Shrub
NMHC	3.4	8.4	8.4	1.7	1.7	9.9	Cerrado/woody Shrub
H ₂	1.7	2.03	2.03	3.36	3.36	2.59	Crops
NO_x (as NO)	3.90	0.90	1.92	2.55	1.00	3.11	Temperate/Boreal-Low
N ₂ O	0.20	0.41	0.16	0.20	0.20	0.10	
PM2.5	7.2	15.3	12.9	9.1	9.1	6.3	Temperate-High
6 biome types							Tropical Forest
van der Werf et al., 2017.							Wetland
		.,	-				Developmenter

CED10

Boundary regions 9 biome types

FLAMBE

Reid et al., 2010

Smoldering, Flaming, and Light

Flaming, visible Smoldering, no visible radiation

- If the combustion happens heterogeneously at the surface of solid fuels (vegetation and wood), the combustion is smoldering producing incomplete-oxidized products
- If oxidation happens homogeneously between oxygen in the air and the gas pyrolysate, combustion products are soot and complete-oxidized gases. These products absorb enough energy during the combustion process leading them to emit visible radiation as a flame (Rein 2009; Sato et al. 1969).
- While fire emits radiation at all wavelengths, it is the visible intensity that indicates the strength of flaming.

Fire Light seen by VIIRS

12 June 2012

Insights for Fire MCE Climatology as revealed by Visible Energy Fraction (VEF) $VEF = \frac{VLP \times \Delta t}{FRP \times \Delta t} = \frac{VLP}{FRP}$

Our research algorithm: Firelight Detection Algorithm (FILDA)

Wang et al., 2020 *Rem.. Sen. Environ*.

VEF is indicative of MCE

- VEF spatial distribution clearly shows the impact of biome types on fire MCE
- FRP has difficulty to describe MCE variation, such as shrubland vs. evergreen forests

VEF & MCE variations show meteorological impact on combustion

Synoptic map at 700 mb.

10 am local each day

Diablo Winds

VEF has a potential to better predict fire growth High VEF -> flaming → predicting movement of fire lines

GEO constellation mapping AQ in the coming decade

All the three future GEO satellite will provide hourly retrievals of SO₂ and NO₂.

Geostationary and Extended Orbits (GEO-XO)

https://www.nesdis.noaa.gov/GEO-XO

Now in formulation

- Satellite data can provide timely insights on the change of emissions from different sources and in some cases, reveal process-level of understanding of emissions.
- Top-down method offers unique opportunity to improve the regional AQ forecast via data assimilation (with timely update of emissions, e.g., 4D-VAR).
- In U.S., as anthropogenic emissions decrease, the background emissions (including those from agricultural activities, soils, and fires) are increasingly important for the air quality prediction.
- Climate predictions and mitigation of climate change requires accurate knowledge of the emissions from different sectors. Future use of TEMPO, GEMS, and others multi-sensor data toward rapid update of emissions for improving urban scale air quality forecast and mitigation of climate change all look promising!

Thank you!

United States Department of Agriculture National Institute of Food and Agriculture

Tom Polivka

David Peterson

Yi Wang

Xiaoguang Xu

Meng Zhou