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IPCC AR6: “Observed warming is driven by emissions from human 
activities, with greenhouse gas warming partly masked by aerosol cooling”
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• Prior to AR6, IPCC’s summary for policy makers has centered around the climate forcing 

by forcing agent. 
• In AR6, a new paradigm has emerged, in which the climate forcing must be attributed to 

the sources of these agents, i.e., the emissions. 



AR6



Air pollution affected by emissions is a leading risk 
factor that contributes to millions of deaths each year

Source: WHO & Health Effect Institute & State of Global Air 
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Importance of emissions: a modeling perspective

• CTM and climate model simulations can only be as good as the emissions. 
• Data assimilation (without constraints of emissions) for CTM and ESM: 

– suffers from emission errors that are persistent. 
– may improve forecast when observations of state parameters are available, but such 

improvement decay quickly with time once obs. are not available.
• For both climate studies and air quality forecast, there is a need to have a holistic 

interpretation from emissions to observations, and vice versa. 
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Top-Down vs. Bottom-Up estimates of emissions

-Usually has a 2~3 yr lag

-Seasonal/ monthly 

-Point or area average

-Chemically speciated

-Lack of constraint on emission 
above the surface

- Has the potential for near real time

- Daily (polar-orbiting) or higher (geo..)

- Globally with high spatial resolution

- Trace gases & optical thickness 

- Reflecting the columnar mass, and thus 
1st order of emission

Bottom-up emission estimate Top-down emission estimate

Ground-based network/data 



Emission Sources

Secondary sources:
Atmospheric chemistry 

Primary sources for aerosols:
directly from surface

SO2→ sulfate

Emission sources have large spatial and temporal variations
(minutes-hours, meters to kilometers).

dust
smoke

volcano ashes

NOx→ nitrate
VOC → organic aerosol

VOC → organic aerosol

NO → NOx

NH3 → NH4

NOx



Outline

• Satellite constraints of SO2 & NO2

• Efficacy of top-down emissions

• Satellite constraints of emission processes
– Soil NOx
– Fire emissions

• Summary and outlook



NO

420 nm

NO2

NOx is mainly from fossil fuel combustion; limiting precursor for ozone formation

View NO2 from space



Average OMI SO2 burdens over eastern USA

à - major power plants 

Image courtesy: Nickolay Krotkov, NASA

l1

SO2
absorption
spectrum

l 2

305-330nm



Questions to be addressed:

• Separate vs. joint DA of SO2 and NO2 from satellite observations
• Implication for AQ forecast at urban scale

(Georgoulias et al., 2019)
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GEOS-Chem adjoint modeling
Forward modeling (source-oriented + satellite simulator)
Transport Chemistry Convection, etc.

Transport 
adjoint (reverse 

winds)

Chemistry 
adjoint (self-

adjoint)

Adjoint for 
convection, etc.

Source
Optimization
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Optimize the emissions by iteratively minimizing the cost function that depends on the 
model error, observation error, and the difference between model and observation.



Using OMI SO2 to constrain SO2 emissions

prior
(bottom-up, 2006)

Simulated SO2 OMI SO2 Simulation – OMI

posterior
(top-down)

April 2008. SO2 emission

Inverse modeling

𝐸 = 𝐸! +
𝜕𝐸
𝜕𝐶

Δ𝐶 + 𝜀

Adjoint techniques
model & instrument 

& retrieval & 
representation errors 

Observational 
constraints



Implication for air quality forecast:
applying posterior emission from last month to forecast AQ in this month

A new approach for monthly updates of anthropogenic sulfur dioxide 
emissions from space: Application to China and implications for air 
quality forecasts, 

Wang, Y., et al., Geophys. Res. Lett., 2016 
Wang, Y. 



Joint inversion of anthropogenic SO2 and NOx emissions

Prior (MIX, 2010) Posterior
(Posterior – Prior) / 

Prior

SO2

NOx
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OMPS-constrained

Results using GEOS-chem adjoint (V.8) at 2o x 2.5o resolution, Oct. 2013
Y. Wang et al., ACP, 2020a.



The relationship between TROPOMI NO2 and VIIRS nighttime light 

16

TROPOMI NO2 VIIRS nighttime light NO2 VS nighttime light
#

There is good correlation between TROPOMI NO2 vertical column density and VIIRS 
nighttime light, thus VIIRS nighttime light intensity should be good proxy for downscaling 
NOx emissions.

Y. Wang et al., ACP, 2020b



Apply top-down constraints in present month to improve forecasts in next month

SO2

Bias: 44 μg/m3

RMSE: 78 μg/m3

Bias: -7 μg/m3

RMSE: 37 μg/m3

PosteriorPrior NO2 PosteriorPrior

17

Bias: 45%
R: 0.61

Bias: 25%
R:      0.75

All results are for Nov. 2013 at 0.25x0.3125 degree resolution by using GEOS-chem nested model.



Efficacy of the top-down emissions

Two methods to test it:

1) Compare with the emissions inverted from satellite-based aerosol 
observations. 

2) Use these emissions for the models that are different from the host 
model that is used in the top-down estimates.



Use MODIS AOD/Radiance to constrain aerosol 
primary & secondary  emissions

Posterior SO2 emissionPrior SO2
emission

OMI SO2 loading

OMI SO2 loading moles cm-2
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Xu et al., JGR, 2013
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Top-down (OMI) vs. bottom-up

Top-Down from MODIS 
vs. Top-down from OMI

Two different sensors (one for 
gas and one for aerosols) telling 
nearly the same results about 
SO2 emissions!

Top-down (MODIS) vs. bottom-up



The top-down approach using OMI SO2 and global GEOS-Chem adjoint modeling 
can timely update anthropogenic SO2 emission for regional AQ modeling.

Li et al., 2021. ERL
Efficacy is shown to be robust for four 
different AQ models (chemistry schemes)



Here in U.S.

(a) (b)

Does NOx emission reduction slow down?

Has the NOx emission reduction been slow down since 2009?

emissions concentration

Jiang et al., 2016



Soil NOx emissions
• ~1/4 of global NOx production is derived from soils, mostly from fertilized agriculture; 

however, estimates of global soil NOx emissions vary widely (9–27Tg per year). 
• Fertilization and N deposition are known to increase soil NOx emissions; however, the 

majority of studies are conducted at temperatures below 35C.
• Strong pulse NOx emission responses to rewetting of soils in high-temperature regions 

are important, yet understudied in managed systems. 

Days after fertilization Soil moisture  v/v Soil temperature  v/v
Oikawa et al., 2015, Nature Comm.



Observation-based insights of emission process
dependence of soil NOx emission on temperature

new scheme

old scheme

OMI 
NO2

Wang et al., 2021
Environ. Res. Lett.



Pulse of NOx emission after re-wetting

GPM

SMAP

MODIS

TROPMI

Tong et al., 2021, 
Environ. Sci. & Tech.



Improved simulation of soil NOx emission

Based on data in 2005–2019 data 

• Soil and lightning NOx combined emissions trends 
change from −3.95% a−1 during 2005–2009 to 0.60% a−1 

from 2009 to 2019, thereby rendering the abrupt 
slowdown of total NOx emissions reduction. 

• Non-linear inter-annual variations explain 6.6% of the 
variance of total NOx emissions. 

• Inter-annual variations of either soil or lightning are 
comparable (slightly larger than anthropogenic sources.

Wang et al., 2021, ERL



At regional scale

• SNOx exceed anthropogenic 
sources over croplands which 
accounts for 50.7% of NOx
emissions

• Such considerable SNOx
enhance the monthly mean 
NO2 columns by 34.7% 
(53.3%) and surface NO2
concentrations by 176.5% 
(114.0%), leading to an 
additional 23.0% (23.2%) of 
surface O3 concentration in 
California (cropland).

Tong et al., 2021. EST



Next frontier in remote sensing of fires

FRP
T, fire areaFire 

combustion 
efficiency?



Fire Phase often described as Modified Combustion Efficiency, 
CO2  / (CO+CO2 ) à Emission Factor 

Liu et al., [2017] 

Pokhrel et al., [2016] 
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How emission factor is treated in fire emission estimates?

van der Werf et al., 2017. 

• Static for the same type; no consideration of wind speed, relative humidity, ..
• Schemes for surface/biome types are oversimplified and vary in different emission 

algorithms
FLAMBE

Reid et al., 2010
GFED4s

9 biome types

6 biome types



Flaming, visible Smoldering, no visible radiation
• If the combustion happens heterogeneously at the surface of solid fuels (vegetation and 

wood), the combustion is smoldering producing incomplete-oxidized products
• If oxidation happens homogeneously between oxygen in the air and the gas pyrolysate, 

combustion products are soot and complete-oxidized gases. These products absorb enough 
energy during the combustion process leading them to emit visible radiation as a flame (Rein 
2009; Sato et al. 1969). 

• While fire emits radiation at all wavelengths, it is the visible intensity that indicates the strength 
of flaming. 

Smoldering, Flaming, and Light



Fort Collins

Denver

Greeley

Loveland

Boulder

~20 km

High Park Fire

Fire Light seen by VIIRS

Source: Google Maps

12 June 
2012 



Insights for Fire MCE Climatology
as revealed by Visible Energy Fraction (VEF)

MODIS 
Land Cover
Types

Annual mean 2017

Our research algorithm: Firelight Detection Algorithm (FILDA) 

𝑽𝑬𝑭= 𝑽𝑳𝑷×∆𝒕
𝑭𝑹𝑷×∆𝒕

= 𝑽𝑳𝑷
𝑭𝑹𝑷

Wang et al., 2020
Rem.. Sen. Environ.



VEF is indicative of MCE

ln(VEF)

• VEF spatial distribution clearly shows the impact of biome types on fire MCE
• FRP has difficulty to describe MCE variation, such as shrubland vs. evergreen forests

Wang et al., 2020, RSE.

VEF

FRP y = 0.017x + 1.072

MCE vs. VEF for different surface types



VEF & MCE variations show meteorological impact on combustion

11/09    11/11   11/13   11/15    11/17   11/19 11/09    11/11   11/13   11/15    11/17   11/19

MCE

FRP

VEF

RH

wind 
speed

11/10/2018 11/11/2018

High & dry winds lead to increase of flaming on 11 Nov. 2018. Camp Fire



Diablo Winds 

10 am local 
each day

Synoptic map at 
700 mb. 



2020-08-19 2020-08-20 2020-08-21

2020-08-19 2020-08-20 2020-08-21

VEF

FRP

VEF has a potential to better predict fire growth
High VEF -> flaming à predicting movement of fire lines

Highest 
VEF



GEO constellation mapping AQ in the coming decade

2022
2023

2020

All the three future GEO satellite will provide hourly retrievals of SO2 and NO2.



Geostationary and Extended Orbits (GEO-XO)

https://www.nesdis.noaa.gov/GEO-XO Now in formulation



Summary

• Satellite data can provide timely insights on the change of emissions from different 
sources and in some cases, reveal process-level of understanding of emissions.
• Top-down method offers unique opportunity to improve the regional AQ forecast via 

data assimilation (with timely update of emissions, e.g., 4D-VAR). 
• In U.S., as anthropogenic emissions decrease, the background emissions 

(including those from agricultural activities, soils, and fires) are increasingly 
important for the air quality prediction. 
• Climate predictions and mitigation of climate change requires accurate knowledge 

of the emissions from different sectors. Future use of TEMPO, GEMS, and others 
multi-sensor data toward rapid update of emissions for improving urban scale air 
quality forecast and mitigation of climate change all look promising!

40



Thank you! 

David Peterson

Tom Polivka Yi Wang

Xiaoguang Xu

Tong Sha Meng Zhou




