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[1] As is typical in the Northern Hemisphere spring, during 20 April to 21 May 2003,
significant biomass burning smoke from Central America was transported to the
southeastern United States (SEUS). A coupled aerosol, radiation, and meteorology model
that is built upon the heritage of the Regional Atmospheric Modeling System (RAMS),
having newly developed capabilities of Assimilation and Radiation Online Modeling of
Aerosols (AROMA) algorithm, was used to simulate the smoke transport and quantify the
smoke radiative impacts on surface energetics, boundary layer, and other atmospheric
processes. This paper, the first of a two-part series, describes the model and examines the
ability of RAMS-AROMA to simulate the smoke transport. Because biomass-burning
fire activities have distinct diurnal variations, the FLAMBE hourly smoke emission
inventory that is derived from the geostationary satellite (GOES) fire products was
assimilated into the model. In the ‘‘top-down’’ analysis, ground-based observations were
used to evaluate the model performance, and the comparisons with model-simulated results
were used to estimate emission uncertainties. Qualitatively, a 30-day simulation of
smoke spatial distribution as well as the timing and location of the smoke fronts
are consistent with those identified from the PM2.5 observation network, local air quality
reports, and the measurements of aerosol optical thickness (AOT) and aerosol vertical
profiles from the Southern Great Plains (SGP) Atmospheric Radiation Measurements
(ARM) site in Oklahoma. Quantitatively, the model-simulated daily mean near-surface dry
smoke mass correlates well with PM2.5 mass at 34 locations in Texas and with the total
carbon mass and nonsoil potassium mass (KNON) at three IMPROVE sites along the
smoke pathway (with linear correlation coefficients R = 0.77, 0.74, and 0.69 at the
significance level larger than 0.99, respectively). The top-down sensitivity analysis
indicates that the total smoke particle emission during the study period is about 1.3 ± 0.2 Tg.
The results further indicate that the simulation with a daily smoke emission inventory
provides a slightly better correlation with measurements in the downwind region on daily
scales but gives an unrealistic diurnal variation of AOT in the smoke source region.
This study suggests that the assimilation of emission inventories from geostationary
satellites is superior to that of polar orbiting satellites and has important implications for the
modeling of air quality in areas influenced by fire-related pollutants from distant sources.
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1. Introduction

[2] Central American Biomass Burning (CABB) in the
Yucatan Peninsula and Southern Mexico is an important

source of anthropogenic aerosol particles in the troposphere
[Crutzen and Andreae, 1990]. Burning typically occurs
during March–May in the tropical dry season, and ends
by early June when the rainy season begins [Crutzen et al.,
1979]. During 20 April to 21 May 2003, the Central
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American region was unusually dry, causing many fires to
burn out of control [Levinson and Waple, 2004]. Under the
influence of southerly winds, the emitted smoke pollutants
crossed over the Gulf of Mexico and intruded deep into the
southeastern United States (SEUS), thousands of kilometers
from the source region. According to the Texas Commission
on Environmental Quality (TECQ, http://www.tecq.state.
tx.us), the transported smoke plumes severely degraded
the visibility and air quality in the coastal regions along
the Gulf of Mexico, and resulted in the highest mass
concentrations of PM2.5 (particulate matter with diameter
less than 2.5 mm) measured in this area of Texas since the
big fire event in May 1998 [Peppler et al., 2000; Rogers
and Bowman, 2001]. Simulations of smoke transport driven
by accurate estimation of CABB smoke emission have
important implications for the air quality forecasts and
assessments in this region.
[3] In addition to degrading air quality, the long-range

transported smoke aerosols also play an important role in
the Earth’s climate system. Smoke particles, composed of
mostly submicron sized organic compounds are efficient at
scattering sunlight as well as acting as cloud condensation
nuclei [Reid et al., 1998], impacting the atmospheric radi-
ative transfer both directly and indirectly [Twomey, 1977;
Penner et al., 1992]. In addition, the black carbon in smoke
particles strongly absorbs solar radiation [Jacobson, 2001],
thereby enhancing atmospheric radiative heating rates,
causing temperature inversions [Robock, 1988] and ‘‘evap-
orating’’ clouds [Ackerman et al., 2000; Koren et al., 2004].
The radiative impacts of aerosol particles are believed
to be one of the largest uncertainties in the global climate
models (GCM) [Intergovernmental Panel on Climate
Change, 2001], and are not well represented in the
standard version of current mesoscale models such as the
Fifth-Generation Penn State/NCAR Mesoscale Model
(MM5) [Grell et al., 1995] or the Regional Atmospheric
Modeling Systems version 4.3 (RAMS4.3) [Harrington
and Olsson, 2001].
[4] To simulate the smoke transport and to accurately

represent smoke radiative impacts in numerical models,
the smoke emission inventory must first be defined.
Satellite instruments, with reliable repeat cycle and large
spatial coverage, have been used widely in the last two
decades to detect fires and map the columnar aerosol
optical thickness (AOT) of smoke [see Ahern et al., 2001,
and references therein]. While these satellite AOT and fire
products provide critical references for air quality moni-
toring and estimation of smoke emission, they are limited
in describing the aerosol vertical distribution [Kaufman et
al., 2002]. Assimilating satellite-based smoke emission
inventories into the aerosol transport models is therefore
a preferred method in deriving aerosol three-dimensional
(3-D) distributions [Liousse et al., 1996; Tegen et al.,
1997; Chin et al., 2002; Park et al., 2003; Uno et al.,
2003].
[5] The choice of aerosol transport models as well as the

treatment of smoke emission in the model primarily
depends on the spatiotemporal scales and physical processes
of the study of interest. For climate studies, smoke emission
inventories are usually estimated on a monthly or seasonal
basis from polar-orbiting satellite fire products [Ito and
Penner, 2004], and used in conjunction with global aerosol

transport models [Liousse et al., 1996; Chin et al., 2002;
Park et al., 2003]. However, mesoscale modeling and
smoke inventories with finer temporal resolution are appro-
priate for studying air quality and radiative impacts of
smoke aerosols on regional scales [Westphal and Toon,
1991; Jacobson, 1997; Byun and Ching, 1999; Trentmann
et al., 2002; Uno et al., 2003; Carmichael et al., 2003;
Colarco et al., 2004]. This study is the first in a two-part
series and focuses on the mesoscale simulation of CABB
smoke transport in the year 2003. The mesoscale model we
use is a modified version of RAMS4.3 with the added
capability of Assimilation and Radiation Online Modeling
of Aerosols (AROMA) [Wang et al., 2004]. The impact of
smoke on radiative processes, surface energetics and other
atmospheric processes will be presented in part 2 of this
series.
[6] Since air quality and radiative impacts of smoke

aerosols are highly dependent on the total amount of emitted
smoke, the accuracy and availability of the smoke emission
inventory are both important for realistically specifying the
temporally varying smoke emissions in the numerical
model. The accuracy of satellite-derived smoke emission
inventory is affected by many highly uncertain variables
(i.e., inaccurate emission factors and unknown fire numbers
in the absence of satellite observation), and is usually
evaluated indirectly by comparing the model-simulated
smoke (or carbon) concentration with ground-based obser-
vations (so called ‘‘top-down’’ method). For example, Park
et al. [2003] adjusted the satellite-based smoke emission in
their model until the best agreement was achieved between
modeled and measured carbon at various observation sites
operated by the Interagency Monitoring of Protected Visual
Environments (IMPROVE) program [Malm et al., 1994].
However, because their studies used a monthly smoke
emission database, the impact of day-to-day variations in
smoke emission on the model simulation and emission
uncertainty analysis is not clear. In trying to resolve the
impact of day-to-day variability of fires on the modeling
of carbon monoxide (CO) from the Asian outflow, Heald
et al. [2003] used CO emission inventories with daily
resolution, and showed limited improvement when com-
pared to the modeling results using monthly averaged
emission inventories. They attributed this predicament to
the dynamical averaging effect during the long-range
transport of CO.
[7] Traditional methods of using constant smoke emis-

sion rates derived from daily or monthly smoke emission
inventories may not be suitable for the simulation of CABB
smoke episodes, since biomass burnings in the tropics
usually exhibit a pronounced diurnal cycle with peak
emissions during early afternoon and minimum emissions
at night [Prins et al., 1998]. If meteorological conditions are
favorable, the burning will usually start around 1000 local
time (LT), and reach its peak around 1200–1400 LT
[Kauffman et al., 2003]. As a result, large values of smoke
AOT are usually observed during late afternoon and
evening [Reid et al., 1999; Eck et al., 2003]. To date, a
realistic modeling of such diurnal variation of smoke AOT
has not been reported in any numerical simulations that
use daily or monthly smoke inventories [Liousse et al.,
1996; Tegen et al., 1997; Chin et al., 2002; Park et al.,
2003; Myhre et al., 2003].
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[8] This study examines the impact of including diurnal
variations of fire behavior on smoke transport simulated by
RAMS-AROMA. The diurnal fire behavior is specified in
the model by using an hourly smoke emission inventory
from the Fire Locating and Modeling of Burning Emissions
(FLAMBE) geostationary satellite database [Reid et al.,
2004] (http://www.nrlmry.navy.mil/flambe/) that in turn
utilizes the Geostationary Operational Environmental Sat-
ellite (GOES) Wild Fire Automated Biomass Burning
Algorithm (WF-ABBA) fire product [Prins et al., 1998].
Compared to a polar-orbiting satellite with a twice-daily
revisit time near the equator, GOES WF-ABBA fire obser-
vations with a temporal frequency of 30 minutes have the
capability to capture diurnal variations of biomass-burning
fires [Prins et al., 1998]. We use the top-down approach to
evaluate the FLAMBE emission uncertainties by comparing
the atmospheric smoke mass concentration simulated by
RAMS-AROMA to the ground-based observations. A brief
description of these observation data sets and the FLAMBE
smoke emission data is presented in section 2. Section 3
describes the RAMS-AROMA configuration and the exper-
imental design of this study. An overview of the smoke
events and the model simulation using the FLAMBE smoke
emission values (hereinafter referred to as the baseline
simulation) are presented in the section 4. Top-down sen-
sitivity analyses of smoke emissions (including their
strength and diurnal variation impact) are presented in

section 5. Finally, sections 6 and 7 provide the discussion
and conclusion, respectively.

2. Data and Area of Study

[9] The area of interest in this study includes the SEUS,
Mexico and the Central American region extending to the
northern borders of Costa Rica (Figure 1). The data sets
used in this study include (1) hourly smoke emissions from
FLAMBE, (2) hourly PM2.5 mass from the U.S. EPA
Aerometric Information Retrieval System Monitoring
(AIRS) network, (3) aerosol chemical composition data
collected by IMPROVE [Malm et al., 1994], and (4) the
AOT data and lidar aerosol extinction profile measured at
the Atmospheric Radiation Measurement (ARM) Central
Facility (36.6�N, 97.5�W) in the Southern Great Plains
(SGP) during the intensive observation period (IOP) in
May 2003 [Schmid et al., 2006].

2.1. Hourly Smoke Emission Data

[10] Thirty-minute smoke emission data from the
FLAMBE database is used in a one-hour product to specify
temporally varying smoke sources in RAMS-AROMA.
FLAMBE estimates smoke particle emission inventory
using the emission factors outlined by Ferek et al. [1998]
and the fire products from WF-ABBA, a dynamical con-
textual multispectral threshold algorithm that identifies fire

Figure 1. Model domain where the rectangle with dotted lines shows the domain of fine grid. Also
overlaid is the map of gray-coded total smoke emission (1 Gg = 109 g) from FLAMBE database during
20 April to 21 May 2003. The solid square denotes location of ARM Southern Great Plains (SGP) site,
and open circles with different numbers represent the locations of the nine IMPROVE sites (see Table 1
for details).
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pixels and estimates instantaneous subpixel fire size and
temperature from GOES multispectral data [Prins et al.,
1998]. A detailed description of the FLAMBE algorithm is
given by Reid et al. [2004, 2005a] and can also be found in
online documentation at http://www.nrlmry.navy.mil/
flambe/. Currently both the WF-ABBA and FLAMBE
system are quasi-operational, with fire location, instanta-
neous estimates of fire size, and smoke emission flux
(kg m�2) generated in near real time for the Western
Hemisphere [Reid et al., 2004] (http://www.nrlmry.navy.
mil/flambe/).
[11] The distribution of total smoke emitted during the

time period of 20 April to 21 May 2003 shows the major
emission sources located in the Yucatan Peninsula and the
Manzanillo region (18�N, 103�W) in southern Mexico
(Figure 1). In the FLAMBE database, the total smoke
emission in April and May of 2003 in Central America
and Southern Mexico (9–25�N; 120–75�W) were 0.51 Tg
(1 Tg = 1012 g) and 0.53 Tg, respectively, and the emission
during 20 April to 21 May 2003 was 0.75 Tg (as shown in
Figure 1). This is the best a priori estimate of the smoke
emission in the study region during this time period, and
therefore is considered as a baseline emission in the model
simulation. In the top-down analysis, the baseline emission
is then adjusted by various factors until a best agreement
can be found between the simulation and the observation
(section 5.1). In order to derive a reasonable range for such
adjustment, we first compare the baseline emission data
against previous estimates in the same region but in differ-
ent years.
[12] Park et al. [2003] showed that the best estimates of

carbon emission in the same region in April and May 1998,
were 0.85 Tg and 1.7 Tg, respectively. These estimates are
equivalent to 1.2–1.7 Tg and 2.4–3.4 Tg smoke particle
emission, assuming carbon mass is about 50–70% of the
total smoke particle mass [Reid et al., 2005a, and references
therein]. Hao and Liu [1994, hereinafter referred to as
HL94] estimated that the amount of the dry biomass burned
by fires in this region was 39.2 Tg in each April of the late
1970s. Assuming the same emission factor (16 g of carbon
per kg dry mass burned) as Park et al. [2003], the estimate
by HL94 is equivalent to a total of 0.63 Tg carbon. The rate
of deforestation in this region is estimated to have increased
0.5% per year in the 1980s and 1.2% per year from 1990 to
1995 [Food and Agricultural Organization, 1997]. Using
these deforestation rates and the same carbon/particle mass
ratio to extrapolate HL94’s values, it is expected that CABB
smoke particle emission should be at least 1.1–1.5 Tg in a
normal April for years after 1995. The extrapolated values
and the estimates by Park et al [2003] are reasonable,
because CABB fire events in 1998 are among the largest
reported in the literature [Peppler et al., 2000]. The above
analysis suggests that the current FLAMBE emission data-
base most likely underestimates the total smoke emission,
since the CABB fire events in 2003 caused the largest PM2.5

concentration measured in southern Texas since 1998
(TECQ, http://www.tecq.state.tx.us). In the analysis of
South American smoke emission, Reid et al. [2004] also
showed that a 40% underestimate of real smoke emission
may exist in the FLAMBE database, because of various
nonidealities in the fire products and emission algorithms.
To infer the amount of underestimation in the baseline

emission, we increase the baseline emission by several
factors ranging from 0 up to 100% in the top-down
sensitivity analysis (section 5).

2.2. EPA AIRS PM2.5 Data and
Smoke Coverage Report

[13] The EPA AIRS observation network [Watson et al.,
1998] routinely measures the hourly PM2.5 mass concen-
tration at more than 1500 stations across the United
States. At the majority of stations, mass concentrations
are measured near the surface using the Tapered-Element
Oscillating Microbalance (TEOM) instruments [Watson et
al., 1998]. Particle-bound water included in the sampled
air is removed by heating at a constant temperature
(usually at 50�C) inside the instrument [Watson et al.,
1998]. Such heating procedures, although necessary for
the removal of water in the sampled PM2.5, can also result
in evaporation of semivolatile particulate matter such as
volatile organic carbon and ammonium nitrate [Allen et
al., 1997]. For this reason, the TEOM may underestimate
the PM2.5 mass by 1–2 mg m�3 for 24 hour averages and
may have a larger uncertainty in the hourly PM2.5 mass
concentration [Charron et al., 2004; Hitzenberger et al.,
2004]. Allen et al. [1997] have shown that sometimes
significant, unrealistic fluctuations in the TEOM PM2.5

mass concentration can occur over several hours, because
of the change of equilibrium state of particles on the
TEOM filter when ambient pollutants or moisture is
changing rapidly. Nevertheless, the hourly PM2.5 data from
the TEOM instrument are sufficient to qualitatively capture
the diurnal variations of PM2.5 mass and to quantitatively
assess the 24 hour-average PM2.5 mass.
[14] In addition to the PM2.5 mass data sets from the

EPA AIRS network, for comparison purposes, the daily
reports of smoke coverage area estimated by the TECQ
air quality monitoring personnel are also used as a
reference. These reports documented the transported
CAAB smoke in Texas in April–May 2003, and an
estimation of the smoke coverage area was made at
1300 LT every day by using a combination of the ground
observations as well as satellite images (http://www.tceq-
uation state.tx.us/assets/public/).

2.3. IMPROVE Data

[15] The IMPROVE network was initiated in spring of
1988, and consists of about 165 monitoring sites across the
United States [Malm et al., 1994, 2004], of which 9 stations
are located in the area of interest for the current study (see
Figure 1 and Table 1 for a list of data sets used). At
each site, sampling modules are used to collect the
PM2.5 mass on every third day, with a sampling duration
time of 24 hours. The collected samples are then ana-
lyzed to infer the concentration of PM2.5 mass and other
trace elements such as potassium (K) and iron (Fe), as
well as the major visibility-reducing aerosol species such
as sulfates, nitrates, organic compounds, black (light-
absorbing) carbon, and wind-blown dust [Malm et al.,
1994]. In this study, we use the 24 hour IMPROVE data
collected in April–May 2003 for model validation, and
monthly averaged IMPROVE data during 2000–2002 to
derive the background concentration of carbonaceous
aerosols (section 5.1).
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[16] Of particular interest is the organic carbon (OC)
and black carbon (BC) concentrations as well as nonsoil
particulate potassium (K) from smoke measured at the
various IMPROVE sites in SEUS, because these species
are tracers of the smoke particles originating from bio-
mass burning [Kreidenweis et al., 2001]. IMPROVE uses
the thermal optical reflectance (TOR) method to analyze
the concentration of OC and BC [Chow et al., 1993;
Malm et al., 1994]. Similar to other methods of measur-
ing OC and BC, the TOR method has uncertainties from
both analytical sources and artifacts [Chow et al., 1993].
The uncertainty is estimated to be 15% for OC and 18%
for BC, and sometimes can be up to 50% [Chow et al.,
1993]. Although accurate separation of BC and OC is
difficult, less uncertainty (7�9%) is associated with the
derived total carbon (OC + BC) concentration [Schmid et
al., 2001], and so only the total carbon mass (OC + BC)
is used in this study.
[17] Nonsoil potassium in smoke particles is another

indicator of biomass burning aerosols [Kreidenweis et al.,
2001]. Tanner et al. [2001] showed that during Central
American fire events in May 1998, the K concentration in
the SEUS exceeded 300% of normal mean value. However,
the sources of K in the atmosphere include not only smoke
but also soil. In this study, the technique of Kreidenweis et
al. [2001] is used to estimate the mass of smoke K from
nonsoil sources (referred to as KNON, and is equal to total
mass of K minus 60% mass of Fe). The derived KNON data
from the IMPROVE measurements are used to validate the
smoke simulation from the model.

2.4. AOT and Lidar Data at the ARM SGP Site

[18] AOT data inferred from the normal incidence multi-
filter radiometer (NIMFR) in the ARM SGP site (solid
square in Figure 1) during May 2003 are used to inter-
compare with model simulations. The NIMFR measures
the direct solar radiation at 5 wavelengths centered at 415,
500, 615, 673, and 870 nm. AOTs are calculated on the
basis of the Beer-Lambert-Bouguer law. The calculation
also includes a correction for Rayleigh scattering and
ozone optical thickness. The AOT data available from
the ARM data archive (http://www.archive.arm.gov/) are
quality controlled with an uncertainty between 0.01 and
0.02.
[19] The aerosol profiles retrieved from a Raman lidar

operating at the ARM SGP site [Ferrare et al., 2006] are
used to compare against the modeled smoke profiles. The
Raman lidar measures backscattered light at the laser
wavelength of 355 nm as well as the water vapor and
nitrogen Raman shifted returns at 408 nm and 387 nm,

respectively. The Raman technique uses the Raman nitro-
gen signals, and therefore has advantages in deriving the
aerosol extinction (km�1) profiles without making an
assumption about the lidar backscatter ratio and without
using AOT as a constraint [Ferrare et al., 2001]. Unfor-
tunately, it was recently found that the sensitivity of
Raman lidar at the ARM site has experienced a gradual
loss since 2001 [Ferrare et al., 2006]. Hence the Raman
lidar derived aerosol extinction profile is only used qual-
itatively in this study to identify the location of smoke
layers.

3. Model Description

[20] The RAMS-AROMA model [Wang et al., 2004]
is a modified version of the standard RAMS4.3 model
[Pielke et al., 1992] with added capabilities of modeling
aerosol transport and a new radiative transfer scheme
that explicitly accounts for the aerosol radiative impacts.
Since the aerosol transport model in RAMS-AROMA
directly utilizes the tracer advection scheme in RAMS, it
can produce with higher temporal resolution the 3-D
distribution of aerosols than the offline aerosol transport
models. In addition, the online transport simulation also
avoids possible time lag, mismatch, and repeated com-
putations that could occur between the offline aerosol
transport and its external meteorological data sources.
Since the standard version of RAMS4.3 only considers
the cloud radiative effects, we replaced the original RTM
[Harrington and Olsson, 2001] in RAMS4.3 with an
updated version of a d-4 stream plane-parallel broadband
radiative transfer model (RTM) originally developed by
Fu and Liou [1993] to take into account the radiative
impacts of both aerosol and clouds during the model
simulation [Wang et al., 2004]. With this design, the
aerosol radiative impacts are directly tied into the
simulated physical processes in the atmosphere, allowing
the dynamical processes in the model to impact aerosol
transport and vice versa.
[21] The RAMS-AROMA model, initially developed

by Wang et al. [2004] to assimilate the GOES-derived
AOT for the dust simulation in the Puerto Rico Dust
Experiment (PRIDE), is modified in this study to assim-
ilate a satellite-derived smoke emission inventory and to
simulate the long-range transport of CABB smoke aero-
sols (section 3.1). During the simulation, smoke AOT is
computed (section 3.2) and the smoke radiative impacts
are taken into account at each model step. The different
model experiments are then designed to investigate the
smoke emission uncertainties and the impacts of diurnal

Table 1. Location and Site Names of Nine IMPROVE Monitoring Stations

Site Name Location Latitude, �N Longitude, �W

BIBE Big Band National Park, Texas 29.30 103.12
GUMO Guadalupe Mountains, Texas 31.83 104.81
SAFO Sac and Fox, Kansas 39.98 95.57
TALL Tallgrass, Kansas 38.30 96.60
SIPS Sipsy Wilderness, Alabama 34.34 87.34
BRET Brenton, Louisiana 29.12 89.21
SIKE Sikes, Louisiana 32.06 92.43
CACR Caney Creek, Arkansas 34.45 94.14
UPBC Upper Buffalo Wilderness, Arkansas 35.83 93.20
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variations in smoke emissions on the model simulation
(section 3.3).

3.1. Smoke Transport and Assimilation of Smoke
Emission

[22] Smoke particles can undergo various processes such
as condensation, coagulation, dispersion, advection, and
activation (as cloud condensation nuclei) before they are
removed from the atmosphere through dry and wet deposi-
tion [Reid et al., 2005a]. Since smoke plumes contain
hundreds of organic compounds whose individual compo-
sition and formation mechanisms are not well understood
[Turpin et al., 2000], the evolution of smoke physical and
chemical properties are still not clear [Gao et al., 2003].
What has been recognized is the rapid change of smoke
properties in the first �30 min to 1 hour after the emission
[Reid and Hobbs, 1998; Reid et al., 1998], a period in which
the young smoke particles dilute rapidly from a high-
temperature environment into the cooler ambient atmo-
sphere, and thus condensation and coagulation processes
are expected to occur favorably [Hobbs et al., 2003]. If
meteorological conditions allow, regional haze composed of
aged smoke particles from different individual fires can be
transported long distances to the downwind areas. During
transport, the evolution of smoke particles continues
through formation of secondary organic aerosol particles
(e.g., photochemical production and gas-to-particle conver-
sion), oxidation of hydrocarbon compounds, as well as
condensation of organic and inorganic species on the smoke
particles [Reid et al., 2005a].
[23] Numerical modeling of the smoke aging process

immediately after the emission [e.g., Turco and Yu, 1999]
as well as the formation of secondary organic aerosols
(SOA) in the atmosphere [e.g., Strader et al., 1999; Schell
et al., 2001] demonstrate the need for further improvement
in the models (see review by Kanakidou et al. [2005]). The
global and annual SOA formation estimates vary by almost
a factor of 6 in different CTMs, partially because of the lack
of detailed and consistent treatment of the relevant chemical
mechanisms (such as gas-particle portioning) [Pun et al.,
2003] and the large uncertainties (a factor of 2–5) in the
estimates of SOA precursor emissions [Kanakidou et al.,
2005]. In regional scale, several case studies have demon-
strated the success of SOA simulation [Jacobson, 1997;
Zhang et al., 2004]. However, the initialization of these
models requires the detailed and accurate chemical specia-
tion data (such as SOA precursor emissions) that can only
be possible through extensive measurements [Jacobson,
1997; Zhang et al., 2004]. Indeed, direct measurements of
SOAs are needed, and the current estimation of SOA relies
mostly on indirect methods that are highly uncertain (see
discussion by Yu et al. [2004]). Furthermore, since smoke
aging processes depend strongly on the biomass burning
characteristics (e.g., flaming, smoldering, fuel types, etc.)
and ambient meteorology of individual fires [Reid and
Hobbs, 1998; Hobbs et al., 2003], it remains a challenging
task to consider the aging process of smoke particles from
thousands of individual fires in the Eulerian models (such as
RAMS) operating on synoptic spatial scales. Therefore
RAMS-AROMA assumes that the satellite-derived smoke
emissions represent aged smoke particles and hence
neglects the SOA formation and smoke aging process in

the model. This assumption is similar to those made in other
aerosol transport models [Westphal and Toon, 1991; Liousse
et al., 1996; Chin et al., 2002; Park et al., 2003; Uno et al.,
2003]. A multiyear analysis of IMPROVE data will be used
in the top-down analysis of smoke emissions to evaluate
possible model uncertainties due to the lack of SOA
formation in the model (section 5.1).
[24] By neglecting SOA formation and chemical pro-

cesses associated with smoke aging, the change of local
smoke mass concentration is mainly due to such processes
as transport, emission, dry deposition, and wet deposition:

@C

@t
¼ @C

@t

� �
transport

þ @C

@t

� �
emission

þ @C

@t

� �
dry�deposition

þ @C

@t

� �
wet�deposition

ð1Þ

In AROMA, the transport term is implemented using the
generalized scalar advection framework available in RAMS
[Wang et al., 2004]. In addition to the dry deposition by
Slinn and Slinn [1980] over the ocean surface already
present in RAMS-AROMA [Wang et al., 2004], modifica-
tions have been made to include a dry deposition scheme
over the land [Zhang et al., 2001] and a wet-deposition
scheme for both washout [Slinn, 1984] and rainout
processes [Pruppacher and Klett, 1978]. Both dry deposi-
tion schemes include effects of gravitational settling,
Brownian diffusion, and surface characteristics (surface
roughness length and radius of collectors as a function of
surface type and season). In the two wet deposition
schemes, the deposition velocity is parameterized as a
function of rain rate in the model. The smoke emission rate
within a grid cell of area A (m2) is calculated as:

@C

@t

� �
emission

¼

X
j

Fj � Sj

A � H � Dt ð2Þ

where j represents jth fire within that grid; F and S are the
smoke emission flux (kg m�2) and fire size (m2),
respectively, both specified using the FLAMBE data set;
H is the injection height (m), and the smoke particles are
well mixed in all model layers below this height. Since
hourly smoke emission is used, Dt is set to 1 hour.
[25] It is a common practice in aerosol transport models

to uniformly distribute the smoke aerosols within H so that
the buoyancy caused by the heat from fires can be taken into
account [Colarco et al., 2004]. However, there is no
consensus on the method of defining H in the model. Prior
studies suggest various values of H that ranging from 2 km
in global CTMs [Liousse et al., 1996; Forster et al., 2001;
Davison et al., 2004] to 5–8 km in regional simulations of
smoke from intensive Canadian fires [Westphal and Toon,
1991; Colarco et al., 2004]. On the basis of the observations
from different field experiments, Lavoue et al. [2000] found
that typical injection height generally follows a linear
relationship (with correlation coefficient of 0.95) with the
fireline intensity (I, in unit of kW m�1):

H ¼ a � I ð3Þ
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where a = 0.23 m2 kW�1. They further showed that H is
usually about 2–3 km for fires in northern latitudes (such as
over Russia), but Canadian intensive ‘‘crown’’ fires usually
have a mean I of 33,000 kW m�1, which render a mean
injection height up to 7–8 km.
[26] The biomass burning in Central America is usu-

ally less intensive than boreal forest fires, because
individual farmers ignite most fires for agricultural pur-
poses [Kauffman et al., 2003]. Indeed, the trees are first
slashed and useful wood products are removed by farmers
before they are ignited [Kauffman et al., 2003]. As a
result, the fireline intensity I of CABB fires is only in the
range �4000–7800 kW m�1 [Kauffman et al., 2003],
which, on the basis of equation (3), implies that the
injection height H is �0.9–1.5 km. Therefore we set H
at the eighth layer (about 1.2 km) in the model. Sensitivity
studies are carried out to examine the impact of injection
height on the simulation results (section 5.2).

3.2. Modeling of Smoke Optical Properties

[27] Smoke optical properties including mass extinction
coefficient, single scattering albedo, and asymmetry factor
are needed in the RAMS-AROMA to derive the smoke
AOT and extinction profile from the smoke mass concen-
tration and to compute the smoke radiative effects. In
RAMS-AROMA, the smoke AOT is calculated using:

t ¼
XK
i¼1

Qi � Ci � f rhið Þð Þ � Dzi ð4Þ

where i denotes the index for the vertical layers, K is the
total number of layers in the model, C is the aerosol
mass concentration (g m�3), Q is the mass extinction
efficiency (m2 g�1), Dz is the layer thickness (m) and
f(rh) is the hygroscopic factor expressed in RAMS-AROMA
as a function of relative humidity (rh) described by
Kotchenruther and Hobbs [1998]. Smoke optical properties
in RAMS-AROMA are adapted from Christopher and
Zhang [2002], and are based on Mie theory computations in
which the size distribution and refractive index of smoke
aerosols derived during the Smoke, Cloud and Radiation–
Brazil (SCAR-B) experiment are used. The computed Q of
dry smoke aerosols is approximately 4.5 m2 g�1 at 550 nm.
Although this value is consistent with the lower end of Q
reported in the literature (see review paper by Reid et al.
[2005b]), an underestimation of 30% is possible. A Q value
of 5 m2 g�1 was used by Penner et al. [1992] in the box
model estimation of global smoke radiative forcing at TOA.
Recent studies also reported that the CABB smoke aerosols
might have larger hygroscopicity than southern American
smoke aerosols [Kreidenweis et al., 2001; Iziomon and
Lohmann, 2003] This uncertainty of Q is considered in the
analysis of our model results (section 5.1).

3.3. Experiment Design

[28] A nested grid configuration is used in this study,
with a fine grid of 62 � 62 points and 30 km grid
spacing covering Texas, nested within a coarse grid with
48 � 48 grid points and 120 km grid spacing (Figure 1).
Both horizontal grids use a stretched vertical grid of
30 points and grid stretch ratio of 1.2, with the vertical
grid spacing increasing from 50 m near the surface to a

maximum of 750 m higher in the atmosphere. The
National Center for Environmental Prediction (NCEP)
reanalysis data [Kalnay et al., 1996] at 0000, 0600,
1200 and 1800 UTC are used for initializing and specify-
ing the temporally evolving lateral boundary conditions. In
RAMS-AROMA, we select the Kuo’s cumulus cloud
parameterization to represent the subgrid-scale cumulus
convection [Walko et al., 1995]. The level 2.5 turbulent
closure model [Mellor and Yamada, 1974] and Land
Ecosystem Atmosphere Feedback module [Walko et al.,
2000] are used to simulate the boundary diffusion process
and air-surface interaction, respectively. Since we are only
interested in the CABB smoke particles, the background
aerosols and the transport of aerosols from outside the
model boundary are not included.
[29] Six different simulations are considered in this study

and they differ only in the treatment of biomass-burning
emissions and injection height. Experiment A (section 4)
uses the hourly FLAMBE baseline emissions and sets the
eighth model layer as the injection height (hereinafter will
be referred as Layer8-Hourly-1.0E simulation, or simply
baseline simulation). This baseline emission inventory is
also used in the NRL Aerosol Analysis and Prediction
System (NAAPS) operational aerosol forecast model
(http://www.nrlmry.navy.mil/aerosol/), but with a 6-hour
temporal resolution. In experiments B and C (section 5.1),
FLAMBE emissions are increased (through scaling the
emission in each hour) by 50 and 100%, respectively
(hereinafter will be referred as Layer8-Hourly-1.5E and
Layer8-Hourly-2.0E). Experiment D (section 5.2) uses the
daily emissions derived from hourly FLAMBE baseline
emissions to examine the impact of diurnal emissions on
the smoke transport (hereinafter Layer8-Daily-1.0E). The
daily smoke emission is constructed by merging all (24)
hourly baseline emission on a given day, and the emission
rate is calculated similarly to equation (2), except that Dt is
set as 24 hours. Experiments E and F are similar to the
baseline experiment, but the injection height is set at the
seventh (DH � 1.0 km) and ninth model layer (DH �
1.4 km), respectively (hereinafter Layer7-Hourly-1.0E
and Layer9-Hourly-1.0E). All numerical experiments are
initiated at 1200 UTC on 20 April 2003 and end at
1200 UTC on 21 May 2003.

4. Results in the Baseline Simulation

4.1. Overview and Qualitative Analysis

[30] The PM2.5 mass measurements at various stations in
Texas during 21 April to 21 May 2003 indicate that the air
quality in southern (Figures 2a and 2b), central (Figures 2c–2e),
and eastern Texas (Figure 2f) were severely degraded by
the smoke events and the air quality categories ranged
from moderate to unhealthy. Particularly, the air quality in
southern Texas was affected by CABB smoke events almost
everyday during the 30-day time period (Figures 2a and 2b).
The PM2.5 mass variations shown in Figure 2 illustrate that
there were four major smoke events during the following
time frames: 21–26 April, 27 April to 12 May, 13–17 May,
and 18–21 May, respectively. In the second event, the PM2.5

mass concentration started to increase on 27 April and
reached the peak during 8–10 May at almost all stations
except those in the western and northern parts of Texas
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Figure 2. Time series of PM2.5 mass concentration in various ground-based stations in the state of
Texas. The inset map in each panel shows the location of the corresponding station in Texas. The
horizontal dotted lines in each panel outline the air quality categories based on the EPA 24-hour standard;
for example, PM2.5 mass (in mgm�3) of 15.4, 40.4, 65.4, 150.4, 250.4, and 500.4 are upper limits for the
categories of good, moderate, unhealthy for special groups (e.g., elderly and children), unhealthy, very
unhealthy, and hazardous, respectively. The shaded background in different time intervals highlights
the time frames of four major smoke events (see text for details).
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(Figures 2g and 2h). PM2.5 mass concentrations in southern
and central Texas stations (Figures 2a–2f) suddenly dropped
by a factor of about 2–3 on 12 May, a clear sign of cessation
of the 15-day smoke pollution event. The events on 8–
10 May were the most severe, resulting in unhealthy air
quality at most stations. Satellite images during this time
period indicate large smoke plumes were continuously
transported across the Gulf of Mexico, impacting the SEUS
(Figures 3a and 3b).
[31] Note that CABB smoke was not observed at all

stations in Texas. There was apparently less smoke (if
any) being transported to the western part of Texas, as
the timeline of PM2.5 mass in this region demonstrated
(Figure 2g) little consistency with that in other stations
(Figures 2a–2f). The sharp spikes of PM2.5 mass concen-
tration in Figure 2g spanned relatively short time intervals
ranging from 1 to 2 hours and were possibly caused by
local emission sources. The influence of smoke events was
also not obvious in the station located in northern Texas
(Figure 2h) except on 12–18 May when an increase in
PM2.5 mass concentrations was consistent with other
stations. The area most frequently covered by smoke
during this 30-day time period include the southern,
central and eastern part of Texas, as well as nearby
areas in Louisiana, Arkansas and Oklahoma [Peppler et
al., 2000]. Hereinafter these areas are referred as the
smoke pathway regions.
[32] The RAMS-AROMA simulation of the largest

CABB smoke episode that occurred during 9–12 May
2003 is depicted in Figures 3e–3h, respectively. A stable
high-pressure system was centered over Florida from 9 to
10 May, building a ridge along 85�W north to 35�N
(Figures 3e and 3f). Southeasterly winds in the lower
troposphere associated with this system continuously trans-
ported smoke aerosols from the source regions over the
Yucatan Peninsula to Texas and other parts of the SEUS,
which was also observed in the satellite images (Figures 3a
and 3b). In the midlatitude region (35�N–40�N), the smoke
plumes were moved eastward by the prevalent westerly
flow. These optimal meteorological conditions resulted in
the smoke front reaching West Virginia on 10 May
(Figure 3f). The northern part of the ridge started to move
eastward on 11 May (Figure 3g). A low-pressure system
originally centered at 45�N, 103�W on 9 May (Figure 3e)
moved in on 10 May, and replaced the ridge on 12 May
(Figure 3h). These synoptic changes shifted the winds from
southeasterly flow (Figures 3e and 3f) to mainly westerly
(Figure 3g) and northwesterly flow (Figure 3h) between 35
and 40�N, resulting in the retreat of smoke fronts on 11 and
12 May. The clouds associated with the low-pressure
system made such retreat invisible in the satellite images
over the continental United States (Figure 3c). However,
this retreat can still be seen in Figure 3d that showed the
majority of smoke plumes were in the southern part of
the Gulf of Mexico. Overall, the model-simulated spatial
distribution of smoke plumes (Figures 3e–3h) over the
ocean is in a good agreement with those in the satellite
images (Figures 3a–3d).
[33] Assuming that the occurrence of moderate to worse

air quality over large contiguous areas is an indicator of
large-scale aerosol events, the model performance is
qualitatively evaluated by comparing simulations to air

quality categories at various AIRS PM2.5 stations. On 9
and 10 May, the baseline simulation indicates that the air
quality in Texas, Arkansas, Kentucky and West Virginia
were affected by the smoke (Figures 3e and 3f), consistent
with the moderate to unhealthy air quality category (e.g.,
AIRS PM2.5 mass > 15.5 mg m�3) reported by the
majority of the stations (88%) in these regions. On 11–
12 May, observations showed that except for the southern
part of Texas, air quality in the majority of the SEUS was
good, indicating that these regions were not affected by
CABB smoke. These features are also well simulated by
the model (Figures 3g and 3h), particularly in the Texas
region where the areas with modeled high smoke con-
centration match well with the polluted area estimated by
the TECQ (denoted by red curves in Figure 3). It should
be emphasized that the smoke coverages estimated by
TECQ are mainly based upon ground-based measure-
ments and local reports in Texas and nearby regions.
Therefore the red curves only extended to 37�N, and did
not cover the northeastern states such as West Virginia,
albeit these regions were affected by smoke plumes
(Figures 3e and 3f). Note that PM2.5 mass measurements
showed moderate air quality in New Jersey on 10 May
(Figures 3e and 3f) that may potentially be related to a
local emission sources that is not resolved by the current
version of RAMS-AROMA.
[34] The performance of RAMS-AROMA is further eval-

uated by comparing model-simulated vertical distribution
of smoke to lidar-derived aerosol extinction profiles from
the ARM SGP site during 9–11 May 2003. At 0000 UTC
on 9 May 2003 (local time is 5 hours behind UTC), the
lidar measurements showed that the smoke layer was
located in a shallow PBL within 700 m above the surface
(Figure 4a). Around midnight (0500 UTC), the nocturnal
PBL demarcated the residual layer and eventually became
a 100-m shallow layer near the surface in the early morning
(1200 UTC, 9 May), and the smoke concentration decreased
during this time period (Figure 4a). The PBL height rose and
reached about 1km in late morning (1500 UTC) on 9 May.
Associated with the increase in PBL height was the
transport of smoke that enhanced the smoke concentration
in the PBL. An upper level (3–4 km above the surface)
smoke layer moved into the ARM site and was entrained
together with the PBL in the late afternoon (2000 UTC).
At night, the PBL height decreased. High concentrations
of smoke were found in the shallow PBL from 0600 UTC
to 1500 UTC on the late morning of 10 May (Figure 4b),
and a residual layer with low smoke concentrations can be
seen from 0300 UTC to 1500 UTC on 10 May. The smoke
concentrations decreased and totally disappeared on 11 May
(Figure 4c). The model (Figures 4d–4f) successfully cap-
tured the relative locations of each smoke layer as well as
their diurnal evolution shown in Figures 4d–4f, particularly
the evolution of smoke profiles from 0000 to 1500 UTC
on both 9 and 10 May, and the cessation of smoke plumes
on 11 May. However, because of the temporal (hourly) and
spatial resolution (30 � 30 km2 and 18 vertical layers) of
the model output used in the Figures 4d–4f, the model
results are unable to resolve the subgrid fine structures
shown in Figures 4a–4c. In addition, the Rayleigh and
Mie scattering of background aerosols could also be
important at 335 nm, thus some variations in the lidar-
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Figure 3. (a–d) MODIS three-band color overlay images (red, band 1; green, band 4; and blue, band 3)
from Terra and Aqua satellites during 9–12 May 2003 of smoke plumes transiting from Yucatan
Peninsula along the Gulf coast of Mexico to the SEUS. Red dots indicate the location of fires detected by
MODIS. Sunglint and smoke regions have also been denoted. (e) Modeled dry smoke concentration near
the surface on 1800 UTC 9 May 2003. Solid dots show the locations of different PM2.5 observation sites
and are color-coded on the basis of air quality categories. Red curves show the TECQ best estimate of
smoke coverage (see text for details). Pink contour lines are the geopotential heights (in 10 m) at 700 hpa.
Letters H and L locate the major high- and low-pressure systems. (f–h) Same as Figure 3e but
for 10, 11, and 12 May, respectively. Note in Figure 3g that PM2.5 data were only available in Texas.
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derived aerosol profile (such as low aerosol extinction
coefficients at 2–3 km during 0300–1500 UTC of 9 May
2003) may be caused by the inhomogeneous distribution
of nonsmoke aerosols.

4.2. Quantitative Analysis of Baseline Simulation

4.2.1. Comparison With PM2.5

[35] The spatial distribution of the linear correlation
coefficient R between daily averaged model-simulated sur-
face smoke mass concentrations and the daily averaged
PM2.5 mass concentrations at 36 stations in Texas (Figure 5)
shows values ranging between 0.7 and 0.9 for the majority
of the stations (23 out of 36). Daily averaged PM2.5 mass
concentration, one of the EPA’s standards in evaluating the
daily air quality, is considered in this study rather than the
hourly averaged value. The hourly PM2.5 mass concentra-
tion could be significantly affected by local emissions such
as traffic and microscale rapid change in meteorological
conditions [Allen et al., 1997], factors not currently resolved
in RAMS-AROMA. The daily averaged PM2.5 mass is less
affected by these factors, and is a reasonable indicator of the
smoke particle concentration during the smoke event. Com-
parison between hourly PM2.5 mass and model-simulated
smoke mass concentrations indicates a mean R value of
0.55 at the 36 stations in Texas, significantly lower than
0.73 in the daily comparison (figures not shown).
[36] High correlations (>0.7) are generally in the southern

(Figures 6b and 6c), central Texas (Figure 6d) and north-
eastern (Figures 6e–6f) Texas. In the Dallas region (33�N,

97�W), about two third of the stations have R values larger
than 0.8. Low correlations exist mainly in western Texas
and coastal region, in particular near the Houston area
(Figure 5). Since less smoke was transported to western
Texas, local emissions dominated the daily averaged

Figure 4. (a–c) Time series of aerosol extinction coefficient (km�1) profiles at 335 nm derived
from lidar measurements at ARM SGP site on 9, 10, and 11 May 2003, respectively. (d–f) Same as
Figures 4a–4c but showing the profile of modeled smoke mass concentration.

Figure 5. Map of correlation coefficients between daily
averaged modeled smoke concentration near the surface
with the measured PM2.5 concentration at different PM2.5

sites in Texas.
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PM2.5 mass, and hence RAMS-AROMA failed to capture
the variations of daily mean PM2.5 mass in this region
(Figure 6h). In the Houston area, emissions from petro-
chemical industries in the ‘‘ship channel area’’ along the
bank of Galveston Bay include significant amounts of
hydrocarbons [Allen, 2005]. Its large day-to-day variation
is a major factor in controlling daily fluctuations of PM2.5

mass in the Houston area [Ryerson et al., 2003; Tropp et al.,
1998; Allen, 2005], and so resulted in reduced correlations
between simulated and observed concentrations (Figure 5).
In addition, the impact of the sea breeze might also be
another factor that resulted in the lower correlation along
the coastal regions. After removing two PM2.5 stations in
the western tip of Texas (107�E west), the overall R value
in the remaining 34 stations in Texas is 0.77 (Figure 6a).
Such a high correlation clearly demonstrates that the
daily fluctuation of PM2.5 mass are well simulated in
RAMS-AROMA, particularly along the smoke pathway
region (the correlation are all at >99.99% confidence level,
Figure 6). It also indicates that the long-range transported

CABB smoke aerosols are the major contributors affecting
the air quality in Texas during the study time period.
[37] The linear relationship between daily averaged PM2.5

mass and modeled smoke concentration varies by station,
but in general the slope is about 1.5�3 (Figures 6b–6g),
except in northern and western Texas where the slope varies
from 3�4.5 (Figures 6h and 6i). The slopes indicate that on
average, the contribution of smoke mass to PM2.5 mass is
much larger in southern and central Texas than that in
western and northern Texas, which is consistent with the
previous analysis in Figure 2. If we interpret the intercept in
the linear equation as the concentration of background
PM2.5 mass, (e.g., aerosol mass concentration in no smoke
condition), the model results suggested that the transported
smoke resulted in an increase in PM2.5 mass over back-
ground by about 25–35% (Figure 6a).
4.2.2. Comparison With IMPROVE Carbon and
KNON
[38] Various studies have shown that high concentrations

of both KNON and carbon are reliable indicators of smoke

Figure 6. (a) Comparison between daily averaged modeled smoke concentrations (x axis) near the
surface with the measured PM2.5 concentration (y axis) near the surface at 34 PM2.5 observation sites in
state of Texas. (b–i) same as Figure 6a but at different individual site (solid square in the inset map). Also
shown in each panel are the correlation coefficient (R), the significance level of correlation (P, not
significant when P greater than 0.05), number of comparison pairs (N), root mean square error (RMSE),
and mean ± standard deviation of both modeled and measured quantities.
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aerosols [Kreidenweis et al., 2001]. Figure 7 shows the time
series of simulated smoke concentrations and measured total
aerosol carbon at nine IMPROVE sites over the SEUS.
Overall, the modeled smoke concentration correlates well
with measured total carbon mass and KNON at three
IMPROVE sites along the smoke pathway, with R values
of 0.66, 0.8, and 0.88 in SIKE, CACR, and UPBU stations,
respectively (Figures 7g–7i); while comparisons at other
sites show no significant correlations (Figures 7a–7f)
possibly because of two factors. First, the model indicates
that there is less smoke transported to these stations. The
averaged smoke concentration is less than 1 mg m�3 in
Figures 7a–7f, while all are larger than 2.5 mg m�3 in
Figures 7g–7i. Therefore, for those stations not along the
smoke pathway, the variations of local emission may
outweigh the transported smoke and dominate the fluctua-
tions of total carbon. Second, the every-third-day sampling
procedure employed by the IMPROVE network may not

be sufficient enough to capture all the smoke events. For
instance, there were no samplings during the smoke
events on 7–8 May and 10–11 May. Consequently, in
the following analysis, we will mainly focus on results for
the SIKE, CACR, and UPBU stations, the stations that
were frequently affected by the smoke events.
[39] The comparison shows that the overall correlations

of modeled smoke concentration to the KNON and total
carbon at SIKE, CACR, and UPBU sites are 0.69, and 0.74,
respectively (Figures 8a and 8b). Such comparisons could
be influenced by several factors such as the variation of K
and the carbon percentage in smoke particles from different
biomass fuels. In addition, the atmospheric carbon may
originate from many sources, not only transported smoke
particles, but also secondary production and local emissions
such as biogenic sources (carbon from nonsmoke sources
will be referred to as background carbon). As noted by
Kreidenweis et al. [2001], the industrial pollutants in

Figure 7. (a–i) Time series of modeled smoke mass concentration (SMK, continuous line) and the
measured concentration of total carbon (TC, solid dots) in different IMPROVE sites. Also shown are the
correlation coefficient R between these two variables as well as the mean ± standard deviation of each
variable. (j) Locations of each IMPROVE stations corresponding to Figures 7a–7i.
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Mexico, when mixed with CABB smoke aerosols, can be
transported to the SEUS, and to some extent increase the
level of K and carbon in the smoke plumes. Therefore a
multiyear analysis of IMPROVE data is used in this study to
investigate these uncertainties.
[40] The average mass concentrations of PM2.5 sulfate

particles and total carbon in April and May from 2000 to
2002 at the SIKE, CACR, and UPBU sites along the smoke
pathway are shown in Figure 9 (hereinafter these 3-year
averaged values are called climatological values). The
impact of upwind industrial pollution sources on the con-
centrations at those sites is evaluated by the comparison of
the sulfate concentrations observed on smoke pollution days
(as judged from modeled smoke distribution and large-scale
PM2.5 observations) with the climatological values. Com-
pared to climatological values, the PM2.5 mass concentra-
tions during smoke pollution days are increased at all three
sites by �30 to 80% (Figure 9). The differences in these
percentages could potentially be due to the inhomogeneous
spatial distribution of smoke. Figure 9 shows that the
increase of PM2.5 mass mainly results from the substantial
increase of carbon (greater than �60%) at all three sites,
which is expected since the majority of smoke mass is
carbon. Interestingly, the sulfate concentration also increased
(at least >10%) at all three sites during the smoke events.
This is consistent with the hypothesis of Kreidenweis et

al. [2001] indicating that the comparison in Figure 8 could
be affected by upwind industrial sources. In addition, Reid
et al. [1998] also showed that sulfate is an integral part of
biomass burning smoke, and its mass contribution could
be 10–20% of smoke particle mass after smoke plumes
pass through cloud layers. Accurate quantification of such
impacts is beyond the scope of this study, since detailed
emission inventories of industrial pollution in Central
America are required. Nevertheless, the relatively high
correlations at three sites along the smoke pathway
indicate that the model reasonably simulates the timing
and relative magnitude of the smoke distribution, even
though detailed chemistry processes (such as secondary
production of carbon) are not considered in this study.

5. Sensitivity Analysis of Smoke Emission

5.1. Top-Down Estimation of Smoke Emission
Uncertainty

[41] Since the majority of smoke particle mass is com-
posed of carbon, several studies have used the IMPROVE
carbon data to calibrate the smoke emission [e.g., Park et
al., 2003; Carmichael et al., 2003]. However, the total
carbon from the IMPROVE data includes not only the
carbon originated from smoke aerosols (SMK-Carbon) but
also the background carbon (BG-Carbon). The knowledge

Figure 8. Comparison of modeled smoke concentration (x axis) from RAMS-AROMA baseline
simulation with the measured mass concentrations of (a) KNON and (b) total carbon at three IMPROVE
sites (SIKE, CACR, and UPBU). (c and d) Same as Figure 8b except that the modeled smoke
concentration are from simulations with 1.5 and 2.0 of baseline smoke emissions, respectively.
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of the BG-Carbon mass is therefore required before the
IMPROVE-measured carbon can be used as a constraint for
the estimation of smoke emission uncertainties. Although
the multiyear averaged total carbon mass concentration
(or climatological values) to some extent can be considered
as the amount of BG-Carbon [e.g., Malm et al., 2004], this
is only applicable in the regions that do not contain long-
distance transported aerosols. For regions such as SIKE,
CACR and UPBU, sites that are affected by the CABB

smoke aerosols in every spring season, their climatological
amount of carbon should be larger than the amount of
BG-Carbon. Nevertheless, the climatological values in SIKE,
CACR, and UPBU sites indicate a remarkable consistency,
all showing that the PM2.5 mass is �10 mg m�3 among
which total carbon is 2.2 mg m�3 (or 22%) and sulfate
particle mass is �47% (Figure 9). This consistency
allowed us to group the measured carbon at SIKE, CACR,
and UPBU sites together in the top-down analysis, and to
hypothesize that the BG-Carbon mass averaged at these
three sites during the 30-day time period should be less
than 2.2 mg m�3.
[42] To further quantify the BG-Carbon, a best fit linear

equation was computed between model-simulated smoke
concentrations and IMPROVE total carbon concentrations
at the three IMPROVE sites (Figure 8b). The intercept of
1.3 mg m�3 in the best fit linear equation (Figure 8b) can be
interpreted as the amount of BG-Carbon mass, since both
quantities are the total carbon mass in no smoke condi-
tions. This BG-Carbon mass is consistent with the above
hypothesis that its value should be less than 2.2 mg m�3.
This estimate is also consistent with recent measure-
ments by Russel and Allen [2004] who showed that the
BG-Carbon in the southern Texas was in the range of
1.1–1.6 mg m�3 (with mean value of 1.3 mg m�3) during
April–May timeframe in 2001 and 2002 [cf. Russel and
Allen, 2004, Figure 6]. The contribution of SMK-Carbon to
the climatological values of total carbon is difficult to
measure directly, and the simulation from global aerosol
models by Park et al. [2003] showed that this contribution
is about 1.0 mg m�3 along the smoke pathway [e.g., Park et
al., 2003]. On the basis of the analyses above, our best
estimate of the BG-Carbon mass averaged in the SIKE,
CACR, and UPBU during April–May is about 1.2 mg m�3.
[43] Using the estimated GB-Carbon mass and consid-

ering that the total carbon mass averaged at the three
IMPROVE sites during the 30-day study time period is
approximately 2.7 mg m�3 (Figure 8d), we estimate that
the SMK-Carbon is about 1.5 mg m�3 during the smoke
events in 2003. The ratio of smoke particle mass to the
SMK-carbon mass varies with different fuel types, burning
characteristics as well as meteorological conditions, and
the reported values usually are in the range from 1.4 to 2.0
[Reid et al., 2005a]. If we use the median value of 1.7 as
the ratio for this study, then the smoke mass averaged at
the three IMPROVE sites should be about 2.6 mg m�3 (in
order to render 1.5 mg m�3 SMK-Carbon). This value of
smoke mass is larger than 2.0 mg m�3 in the baseline
simulation, but smaller than 3.0 mg m�3 and 4.0 mg m�3 in
Layer8-hourly-1.5E and Layer8-hourly-2.0E simulations
(Figures 8c and 8d), respectively, implying that the smoke
emission is possibly underestimated by 40% in the baseline
case-consistent with Reid et al.’s [2004] finding for the
Amazon Basin. However, the above estimate varies with the
ratio of smoke particle mass to SMK-Carbon mass, and if
we choose a ratio of 2.3 suggested by Turpin and Lim
[2001], then the baseline emission may underestimate the
true emission by 70%.
[44] Because the above top-down emission analysis is

based upon the surface measurements only, any errors in the
modeled smoke vertical profile can result in uncertainties
in the emission estimates. To further quantify the emission

Figure 9. (a) Averaged mass concentration of PM2.5,
carbon and sulfate aerosols at IMPROVE site SIKE LA in
two time periods, one in April–May of 2000–2002 and
another in smoke days during 20 April to 20 May 2003. Also
shown in the first time period is the mass percentage of
carbon and sulfate aerosols relative to the PM2.5 mass
concentration. In the second time period, only the increased
percentages (with plus sign) of PM2.5, carbon and sulfate
mass relative to their corresponding values in the first time
period are shown. See text for details. (b and c) Same as
Figure 9a but for the other two IMPROVE sites, CACR AR
and UPBU AR, respectively. The numbers in the bracket of
each panel show the latitude and longitude of each
IMPROVE site.
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uncertainties, the simulated columnar smoke AOT are
compared against the measured columnar AOTs at the
ARM SGP site (Figure 10). In all three experiments (e.g.,
baseline, Layer8-hourly-1.5E, and Layer8-hourly-2.0E),
the modeled AOT consistently captured the fluctuations
of measured AOT (Figure 10). In particular, if we consider
the increase, maximum and decrease of AOTs as indicators
of the timeline of smoke events (e.g., starting, peak, and
ending time), then the model-simulated timeline of smoke
events (e.g., 8–12 May 2003) is in good agreement with
those identified from observed AOTs (the temporal differ-
ences are within 4–6 hours at most). Note that the
Angstrom exponents decreased during the smoke events,
which is consistent with the results of Andrews et al.
[2004] who used 2 years of ARM data sets and showed
that long-range transported smoke aerosols decreased the
Angstrom exponent at the ARM site.
[45] Quantitatively, the long-term record of AOT data at

the ARM SGP site showed that the background AOT in this
region is fairly constant around 0.1 [Andrews et al., 2004]
(also Figure 10). In the baseline case, the model-simulated
AOT is always lower than the measured AOT, even after
adding the background AOT of 0.1 (as shown in Figure 10).
The difference between modeled and measured AOT
becomes smaller after the smoke emission was increased
in both Layer8-hourly-1.5E and Layer8-hourly-2.0E experi-
ments. In the latter case, the model almost reproduces the
same time series of measured AOT on 8–10 May, which
indicates that the FLAMBE emissions could underestimate

the true emission by 100%. However, it should be noted that
the modeled AOT values not only depend on the total
smoke emission, but also can be affected by the smoke
mass extinction efficiency and hygroscopicity that were
formulated in the model. Therefore the modeled and mea-
sured AOT difference in Figure 10 could also be partially
due to the 20–30% underestimation of smoke mass extinc-
tion efficiency used in the model (see section 3.2) as well as
the additional sulfate particles associated with CABB
smoke plumes that are not considered in the modeled
AOT. If this is the case, an increase of baseline smoke
emission by 100% would be impossible, and a 50–70%
increase would be more reasonable.
[46] Given all the uncertainties mentioned in the above

analyses, an exact quantification of total smoke emission
seems difficult at this point. While the intercomparison
between the modeled and the measured mass quantities at
three IMPROVE sites indicate a 40–70% underestimation
in the baseline emission, the analysis of AOT intercompar-
ison at the ARM SGP site showed an underestimation about
50–70%. To reconcile these estimate differences, collabo-
rative efforts involving numerical modeling and in situ
measurements of smoke particle chemical, physical and
optical properties are needed. An increase in the baseline
smoke emission by about 60 ± 10% would provide our
best estimate of smoke emissions. According to this best
estimate, the total CABB smoke emission during 20 April
to 21 May 2003 is about 1.3 ± 0.2 Tg, which is less than
the value suggested by Park et al. [2003] for smoke
emission during the big fire events in May 1998, but is
higher than values in the normal years (on the basis of the
extrapolation of data from HL94).

5.2. Impact of Diurnal Variations and Injection Height
in Smoke Emission

[47] Compared to the baseline experiment, the Layer8-
Daily-1.0E experiment shows a slightly higher correlation
between the modeled smoke mass and measured quantities
(R = 0.77 for both carbon and KNON, 0.78 for PM2.5 in
Texas, Table 2) in the downwind SEUS region. Further
comparisons indicate that there are 12 stations in Texas
showing R larger than 0.8 between PM2.5 and modeled
smoke concentration in Layer8-Daily-1.0E simulation, in
contrast to 7 stations in the baseline simulation (Figure 11).
This analysis seems to suggest that Layer8-Daily-1.0E
provides a better simulation of smoke distribution in the
downwind region, albeit there are measurable differences of
smoke mass concentration between Layer8-Daily-1.0E and
baseline experiments. (Table 2).
[48] The mean value of near-surface smoke mass concen-

tration at 34 PM2.5 stations in Texas (not including 2 stations
in Western Texas) is 3.6 mg m�3 in Layer8-Daily-1.0E
simulation, which is about 20% higher than 3.0 mg m�3 in
the baseline experiment (Table 2). In contrast, the collocated
smoke concentration at the three IMPROVE sites along the
smoke pathway stations is 2.1 mg m�3 in the Layer8-Daily-
1.0E experiment, only about 7% higher than 2.0 mg m�3

in the baseline experiment (Table 2). These statistical differ-
ences in comparisons at the IMPROVE sites and PM2.5 sites
might be due to their sample differences, i.e., IMPROVE
only carries out a measurement every third day, while PM2.5

is measured on an hourly basis. However, in either com-

Figure 10. Measured column AOT (blue dots) and
modeled smoke AOT (pink lines) at the ARM SGP site.
The measured AOT at 0.55 mm is derived from the
logarithmic fit between NIMFR AOT at 0.50 mm and
0.61 mm. Blue and green bars show the daily averaged
AOT and Angstrom exponents derived from the ground-
based AOT measurements, respectively. Since AOT values
during the night were not measured, the daily averaged
values (shown as bars) are only plotted across the daytime.
Solid, dashed, and dot-dashed (pink) lines represent
modeled AOT for baseline smoke emission, 1.5 baseline,
and 2.0 baseline emission, respectively. Note that the two
arrows indicate that AOT and Angstrom exponents are
corresponding to different y axis.
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parison, the smoke concentrations near the surface in the
Layer8-Daily-1.0E case are systemically higher than those
in the baseline case, possibly because of the fact that the
daily emission inventory does not capture the diurnal
variations of smoke emission. In the Layer8-Daily-1.0E
experiment, the total emitted smoke amount is equally
distributed in both day and night. Since the biomass burning
mainly occurs during the daytime, and the emission rate
should be close to zero [Prins et al., 1998] during the
night, the ‘‘equally distributed’’ emission scheme artifi-
cially distributes more smoke during the night, and less
smoke during the daytime. Because the turbulent mixing
is much weaker during the night than during the day
[Stull, 1989], the impact of distributing more smoke
particles during the night would lead to much higher
smoke concentration near the surface, and overwhelm the
impact caused by the decreased smoke emission during
the daytime. As the result, the simulation with a daily
emission inventory provides a higher smoke concentration
near the surface (even in the downwind regions) than
those in the baseline experiment using an hourly smoke
emission inventory.
[49] Because of the lack of hourly chemical speciation

data in downwind regions, the above analyses can only be
made on daily scales. This prevents us from drawing a solid
conclusion on whether diurnal variation of smoke emission
is important or not in the smoke simulation. As suggested
by Heald et al. [2003], one important feature regarding the
long-range aerosol transport is dynamical mixing, that tends
to result in a relatively homogenous aerosol distribution in
the downwind region. Therefore, under the influence of
dynamical mixing, the impact of diurnal variation of smoke
emission on the temporal variation of smoke distribution
becomes smaller and smaller as the smoke plumes move
further from the source region (e.g., Yucatan Peninsula).
This might explain why the simulations using a daily smoke
emission inventory indicate similar or even slightly better
performance in the downwind SUES regions than the
simulation using an hourly smoke inventory. In addition,
because our daily emission inventory is built upon the
hourly emission inventory derived from the GOES satellite,
it has a better chance of characterizing the fire distribution
and emission than those daily emission inventories built
from polar-orbiting satellites that view the same region
only once or twice per day. In our other experiments (not

shown) using an emission inventory from the hourly
emission inventory at a particular time (1000–1100 LT)
as a proxy for those daily emission inventories based on
the polar-orbiting satellite fire products, we found that the
simulation results, compared to baseline experiment, were
in less agreement with the observations.
[50] On the basis of the aforementioned discussion we

speculate that an hourly smoke inventory should be critical
for realistic simulation of the smoke distribution near the
source regions where the impact of dynamical mixing is
relatively small, and the diurnal variation of smoke emission
has more influence on the smoke temporal variation. How-
ever, the lack of aerosol measurements in Central America
makes quantitative verification of this hypothesis difficult.
Instead, we qualitatively elucidate this hypothesis by exam-
ining the diurnal variation of simulated AOT in the smoke
source region. Both satellite measurements and ground-
based observations have shown that biomass-burning fires
in the tropics have a distinct diurnal variation with a peak
around local noon time [Kauffman et al., 2003; Prins et al.,
1998]. Consequently, in the smoke source region, the smoke

Table 2. Comparison Statistics Between Measured Quantities (Y) and Modeled Smoke Concentration (X) in Different Simulation

Experimentsa

Measured Quantity Experiments N R Linear Equation Modeled Smoke, mg m�3

IMPROVE carbon Layer8-Hourly-1.0E 30 0.74 Y = 0.67X + 1.37 2.01 ± 1.55
IMPROVE carbon Layer8-Daily-1.0E 30 0.77 Y = 0.66X + 1.30 2.15 ± 1.63
IMPROVE carbon Layer7-Hourly-1.0E 30 0.70 Y = 0.61X + 1.42 2.13 ± 1.61
IMPROVE carbon Layer9-Hourly-1.0E 30 0.75 Y = 0.74X + 1.41 1.77 ± 1.42
IMPROVE KNON Layer8-Hourly-1.0E 30 0.69 Y = 32.80X + 6.63 2.01 ± 1.55
IMPROVE KNON Layer8-Daily-1.0E 30 0.77 Y = 34.39X – 1.32 2.15 ± 1.63
IMPROVE KNON Layer7-Hourly-1.0E 30 0.63 Y = 28.61X + 11.45 2.13 ± 1.61
IMPROVE KNON Layer9-Hourly-1.0E 30 0.72 Y = 37.10X + 6.67 1.77 ± 1.42
PM2.5 in 34 stations in Texas Layer8-Hourly-1.0E 1005 0.76 Y = 2.90X + 9.15 3.02 ± 2.90
PM2.5 in 34 stations in Texas Layer8-Daily-1.0E 1005 0.78 Y = 2.56X + 8.69 3.61 ± 3.42
PM2.5 in 34 stations in Texas Layer7-Hourly-1.0E 1005 0.75 Y = 2.50X + 9.40 3.40 ± 3.35
PM2.5 in 34 stations in Texas Layer9-Hourly-1.0E 1005 0.75 Y = 3.56X + 0.02 2.50 ± 2.35

aSee text for details. N, number of comparison pairs; R, linear correlation coefficient. Also shown is the best fit linear equation and averaged smoke
concentration in each comparison.

Figure 11. Frequency distribution of correlation coeffi-
cients between modeled smoke and measured PM2.5

concentration at 36 stations in Texas for simulations with
hourly and with daily emission, respectively.
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AOT symmetrically shows high values during late afternoon
and evening [Eck et al., 2003]. Shown in Figure 12 is the
model-simulated smoke AOT in the smoke source region
(Yucatan Peninsula and southern Mexico) averaged over 30
days. It indicates that the baseline simulation shows mini-
mum AOT values of 0.13 at 1000 LT and a maximum value
of 0.17 at 1800 LT, with a mean AOT of 0.15 and a diurnal
variation of 0.04 (or �25%). Such diurnal variation patterns
and magnitude are comparable to the observations by Eck et
al. [2003] during southern African biomass burning sea-
sons. In contrast, the Layer8-Daily-1.0E experiment using a
daily smoke emission inventory fails to simulate the diurnal
variation of smoke AOT (Figure 12), indicating that it is
critical to use high temporal resolution emission database
for assessing air quality.
[51] Two experiments, Layer7-Hourly-1.0E and Layer9-

Hourly-1.0E, are conducted to investigate the impact of the
injection height of smoke emission on the RAMS-AROMA
performance. Qualitatively, these two experiments show
similar results to the baseline Layer8-hourly-1.0E experi-
ment. Quantitative comparisons with observations are
shown in Table 2. Compared to the baseline experiment,
the model-simulated smoke concentration showed slightly
lower correlation to PM2.5 mass concentration in Texas,
IMPROVE measured carbon and KNON (R = 0.75, 0.70,
and 0.63, respectively) in Layer7-Hourly-1.0E experiment,
but equivalent or slightly higher correlation in the Layer9-
Hourly-1.0E experiment (R = 0.75, 0.72, 0.72, respec-
tively). The difference in smoke concentrations near the
surface between the Layer7-Hourly-1.0E (Layer9-Hourly-
1.0E) and the baseline experiment is within 15% (�15%).
Such differences are smaller than the uncertainties in the
smoke emission inventories, and therefore their impact on
our top-down analysis is insignificant.

6. Discussion

[52] We have estimated the uncertainties in the FLAMBE
smoke emission database by comparing the model-simulated
smoke concentrations with the total carbon in areas
thousands of kilometers downwind of CABB smoke emis-

sion sources. Even though the top-down approach utilized in
the present study has been explored by a variety of prior
research efforts [e.g., Park et al., 2003], there are several
aspects that require further investigation, including the
parameterization of smoke emissions from subgrid-scale
fires and accounting for the smoke aging effects.
[53] A common and traditional approach to ingest the

smoke emission into aerosol transport models is to compute
the smoke emission rate during a time interval by assuming
that smoke plumes in that time interval are distributed
throughout the atmospheric column over the grid point to
the injection height, with well mixed or some type of
predefined (such as exponential) vertical profile. This type
of scheme is not expected to capture fine-scale features such
as subgrid smoke plumes. At any particular time step, large
model uncertainties could exist in the smoke source region
where smoke plumes from different fires are possibly in
different aging states and most likely are not mixed in a
similar way as being assumed in the model. Therefore the
current scheme for the smoke assimilation can only capture
the average smoke spatial and temporal distribution in the
source region. However, because of the dynamical mixing
during the long-range transport, the smoke distribution in
the downwind region can be considered to be dominated by
the quasi-equilibrated regional haze layers. It is thus
expected that the traditional ‘‘injection height’’ approach,
although having large uncertainties in specifying the instan-
taneous emission rate in the smoke source region, can give a
reliable simulation of smoke distribution in the downwind
regions, which is also indicated by the validation analysis in
this study. Consequently, the top-down approach would be
more physically meaningful if we apply it to estimates of
smoke emissions on regional scales and interpret the emis-
sion estimation from a statistical standpoint. In this regard,
this study only gives the total smoke emission estimate for a
30-day period.
[54] We have neglected the smoke aging processes,

secondary organic aerosol formation, and biogenic emis-
sions of organic aerosols in the model. This simplification in
the model can lead to various uncertainties in the conclu-
sions we draw from the comparison between modeled and
measured quantities. We have accounted for the uncertain-
ties arising from these neglected processes through the
analyses of IMPROVE data and cross validation using
different data sets (section 5.1). Further quantification of
these uncertainties requires better measurements of total
carbon and secondary organic carbon as well as the im-
provement in modeling of secondary organic aerosols.
Detailed chemical speciation data in daily or even hourly
scales together with a better understanding of CABB smoke
microphysics (such as mass extinction efficiency and the
mass budget of chemical species in smoke particles) would
also benefit the top-down approach used in this study.

7. Summary

[55] Using the RAMS-AROMA we have explored the
application of an hourly smoke emission inventory for the
numerical simulation of CABB smoke transport in 2003.
Comparisons with ground-based measurements suggest that
RAMS-AROMA is able to realistically simulate the smoke
spatial distribution as well as the timing and the location of

Figure 12. Diurnal variation of AOT in the smoke source
region simulated in two model experiments using hourly
and daily smoke emission inventories, respectively. The
AOT at each hour is computed by averaging the AOTs at
that hour in 30 days.
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smoke fronts on daily to hourly scales. Results also indi-
cated that the model-simulated smoke concentration cap-
tures the fluctuations of daily averaged PM2.5 in the Texas
region (with averaged R larger than 0.76), implying that the
forecasts made using the RAMS-AROMA model could
potentially be a useful tool in assessing the air quality in
the SEUS during CABB fire seasons. Uncertainties in the
smoke emission are analyzed by comparing the model-
simulated smoke concentration to the measured mass of
carbon aerosols. The top-down analysis indicates that the
baseline FLAMBE emission inventory underestimates the
smoke emission by 60 ± 10%, and the best estimate of total
emitted smoke is 1.3 ± 0.2 Tg. This underestimate is similar
in magnitude to that found in the Amazon Basin [Reid et al.,
2004]. Sensitivity studies reveal that the simulation using a
daily smoke emission inventory provides a slightly better
correlation with measurements in the downwind region on
daily scales, but gives an unrealistic diurnal variation of
AOT in the smoke source region. These results suggest that
the assimilation of hourly emission inventories from geo-
stationary satellites has the unique capability for the high
spatiotemporal simulation of long-range smoke transport
that is not possible by using emission inventories derived
from polar-orbiting satellites. However, the detailed chem-
ical speciation data with high temporal resolutions (e.g.,
daily or hourly), a better understanding of smoke chemical
and physical properties, as well as the modeling of smoke
aging process are needed to further narrow down the model
uncertainties.

[56] Acknowledgments. This research was supported by NASA’s
Radiation Sciences, Interdisciplinary sciences and ACMAP programs.
J. Wang was supported by the NASA Earth System Science Graduate
Fellowship and the NOAA Climate and Global Change Postdoctoral
Fellowship under the administration of UCAR. The GOES WF-ABBA
fire monitoring effort is supported by NOAA contract 40AANE1A4073
and by NASA’s ESE Interdisciplinary Science Program through Navy
subcontract N66001-00-C-0039. NRL participation was also supported
by ONR 322 contract N0001405WR20206. The views, opinions, and
findings contained in this report are those of the author(s) and should not
be construed as an official U.S. Government position, policy, or decision.
The lidar and AOT data were obtained from the DOE ARM program, and
we are grateful to Rich Ferrare, David Turner, Joseph Michalsky, and
James Barnard for their guidance in using the data.

References
Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield,
V. Ramanathan, and E. J. Welton (2000), Reduction of tropical cloudi-
ness by soot, Science, 288, 1042–1047.

Ahern, F. J., J. G. Goldammer, and C. O. Justice (Eds.) (2001), Global
and Regional Vegetation Fire Monitoring From Space: Planning an
Coordinated International Effort, SPB Acad., The Hague, Netherlands.

Allen, D. (2005), Gulf coast aerosol research and characterization program
(Houston supersite), final report, Coop. Agreement 82806201, Environ.
Prot. Agency, Washington, D. C. (Available at http://eosweb.larc.nasa.
gov/PRODOCS/narsto/table_narsto.html#houston)

Allen, G. A., C. Sioutas, P. Koutrakis, R. Reiss, F. W. Lumann, and P. T.
Roberts (1997), Evaluation of the TEOM method for measurement of
ambient particulate mass in urban areas, J. Air Waste Manage. Assoc.,
47, 682–689.

Andrews, E., P. J. Sheridan, J. A. Ogren, and R. Ferrare (2004), In situ
aerosol profiles over the Southern Great Plains cloud and radiation test
bed site: 1. Aerosol optical properties, J. Geophys. Res., 109, D06208,
doi:10.1029/2003JD004025.

Byun, D. W., and J. K. S. Ching (1999), Science algorithms of the EPA
Model-3 Community Multiscale Air Quality (CMAQ) modeling system,
Rep. EPA-600/R-99/030, U. S. Eviron. Prot. Agency, Washington, D. C.

Carmichael, G. R., et al. (2003), Evaluating regional emission estimates
using the TRACE-P observations, J. Geophys. Res., 108(D21), 8810,
doi:10.1029/2002JD003116.

Charron, A., R. M. Harrison, S. Moorcroft, and J. Booker (2004), Quanti-
tative interpretation of divergence between PM10 and PM2.5 mass
measurement by TEOM and gravimetric (Partisol) instruments, Atmos.
Environ., 38, 415–423.

Chin, M., P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan,
R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima (2002),
Troposphere aerosol optical thickness from the GOCART model and
comparisons with satellite and sun photometer measurements, J. Atmos.
Sci., 59, 461–483.

Chow, J. C., J. G. Watson, L. C. Prichett, W. R. Pierson, C. A. Frazier,
and R. G. Purcell (1993), The DRI thermal/optical reflectance carbon
analysis system: Description, evaluation, and applications in U.S. air
quality studies, Atmos. Environ., 27, 1185–1201.

Christopher, S. A., and J. Zhang (2002), Daytime variation of shortwave
direct radiative forcing of biomass burning aerosols from GOES 8
imager, J. Atmos. Sci., 59, 681–691.

Colarco, P. R., M. R. Schoebert, B. G. Doddridge, L. T. Marufu, O. Torres,
and E. J. Welton (2004), Transport of smoke from Canadian forest fires to
the surface near Washington, D.C.: Injection height, entrainment, and
optical properties, J. Geophys. Res., 109, D06203, doi:10.1029/
2003JD004248.

Crutzen, P. J., L. E. Heidt, J. P. Krasnec, W. H. Pollock, and W. Seiler
(1979), Biomass burning as a source of atmospheric gases CO, H2, N2O,
NO, CH3Cl and COS, Nature, 282, 253–256.

Crutzen, P. J., and M. O. Andreae (1990), Biomass burning in the tropics:
Impact on atmospheric chemistry and biogeochemical cycles, Science,
250, 1669–1678.

Davison, P. S., D. L. Roberts, R. T. Arnold, and R. N. Colvile (2004),
Estimating the direct radiative forcing due to haze from the 1997 forest
fires in Indonesia, J. Geophys. Res., 109, D10207, doi:10.1029/
2003JD004264.

Eck, T. F., et al. (2003), Variability of biomass burning aerosol optical
characteristics in southern Africa during the SAFARI 2000 dry season
campaign and a comparison of single scattering albedo estimates from
radiometric measurements, J. Geophys. Res., 108(D13), 8477,
doi:10.1029/2002JD002321.

Ferek, R. J., J. S. Reid, P. V. Hobbs, D. R. Blake, and C. Liousse (1998),
Emission factors of hydrocarbons, halocarbons, trace gases and particles
from biomass burning in Brazil, J. Geophys. Res., 103, 32,107–32,118.

Ferrare, R., D. D. Turner, L. A. Heilman, W. Feltz, O. Dubovik, and
T. Tooman (2001), Raman lidar measurements of the aerosol extinction-
to-backscatter ratio over the southern great plains, J. Geophys. Res.,
106, 20,333–20,347.

Ferrare, R., et al. (2006), Raman Lidar measurements of aerosols and water
vapor over the Southern Great Plains during the May 2003 Aerosol IOP,
J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836.

Food and Agricultural Organization (1997), State of the world’s forest
1997, report, Food and Agric. Organ. of the U. N., Rome, Italy.

Forster, C., et al. (2001), Transport of boreal fire emissions from Canada to
Europe, J. Geophys. Res., 106, 22,887–22,906.

Fu, Q., and K. N. Liou (1993), Parameterization of the radiative properties
of cirrus clouds, J. Atmos. Sci., 50, 2008–2025.

Gao, S., D. A. Hegg, P. V. Hobbs, T. W. Kirchstetter, B. I. Magi, and
M. Sadilek (2003), Water-soluble organic components in aerosols
associated with savanna fires in southern Africa: Identification, evolu-
tion, and distribution, J. Geophys. Res., 108(D13), 8491, doi:10.1029/
2002JD002324.

Grell, G. A., J. Dudhia, and D. Stauffer (1995), A description of the
fifth-generation Penn State/NCAR Mesoscale Model (MM5), NCAR/
TN-398+STR, 122 pp., Natl. Cent. for Atmos. Res., Boulder, Colo.
(Available at http://www.mmm.ucar.edu/mm5)

Hao, W. M., and M.-H. Liu (1994), Spatial and temporal distribution of
tropical biomass burning, Global Biogeochem. Cycles, 8, 495–503.

Harrington, J. Y., and P. Q. Olsson (2001), A method for the parameteriza-
tion of cloud optical properties in bulk and bin microphysical models.
Implications for arctic cloudy boundary layers, Atmos. Res., 57, 51–80.

Heald, C. L., D. J. Jacob, P. I. Palmer, M. J. Evans, G. W. Sachse, H. B.
Singh, and D. R. Blake (2003), Biomass burning emission inventory with
daily resolution: Application to aircraft observations of Asian outflow,
J. Geophys. Res., 108(D21), 8811, doi:10.1029/2002JD003082.

Hitzenberger, R., et al. (2004), Intercomparison of methods to mea-
sure the mass concentration of the atmospheric aerosol during
INTERCOMP2000—Influence of instrumentation and size cuts, Atmos.
Environ., 38, 6467–6476.

Hobbs, P. V., P. Sinha, R. J. Yokelson, T. J. Christian, D. R. Blake, S. Gao,
T. W. Kirchstetter, T. Novakov, and P. Pilewskie (2003), Evolution of
gases and particles from a savanna fire in South Africa, J. Geophys. Res.,
108(D13), 8485, doi:10.1029/2002JD002352.

Intergovernmental Panel on Climate Change (2001), Climate Change 2001:
The Scientific Basis—Contribution of Working Group I to the Third

D05S17 WANG ET AL.: MESOSCALE MODELING OF SMOKE TRANSPORT

19 of 21

D05S17



Assessment Report of the Intergovernmental Panel on Climate Change,
edited by J. T. Houghton et al., 881 pp., Cambridge Univ. Press, New
York.

Ito, A., and J. E. Penner (2004), Global estimates of biomass burning
emissions based on satellite imagery for the year 2000, J. Geophys.
Res., 109, D14S05, doi:10.1029/2003JD004423.

Iziomon, M. G., and U. Lohmann (2003), Optical and meteorological
properties of smoke-dominated haze at the ARM Southern Great
Plains central facility, Geophys. Res. Lett., 30(3), 1123, doi:10.1029/
2002GL016606.

Jacobson, M. Z. (1997), Development and application of a new air pollution
modeling system part II: Aerosol module structure and design, Atmos.
Environ., Part A, 31, 131–144.

Jacobson, M. Z. (2001), Strong radiative heating due to the mixing state of
black carbon in atmospheric aerosols, Nature, 409, 695–697.

Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, Bull.
Am. Meteorol. Soc., 77, 437–471.

Kanakidou, M., et al. (2005), Organic aerosol and global climate modeling:
A review, Atmos. Chem. Phys., 5, 1053–1123.

Kaufman, Y. J., D. Tanre, and O. Boucher (2002), A satellite view of
aerosols in climate systems, Nature, 419, 215–223.

Kauffman, J. B., M. D. Steele, D. L. Cummings, and V. J. Jaramillo (2003),
Biomass dynamics associated with deforestation, fire, and conversion to
cattle pasture in a Mexican tropical dry forest, For. Ecol. Manage., 176,
1–12.

Koren, I., Y. J. Kaufman, L. A. Remer, and J. V. Martins (2004), Measure-
ment of the effect of Amazon smoke on inhabitation of cloud formation,
science, Science, 303, 1342–1345.

Kotchenruther, R. A., and P. V. Hobbs (1998), Humidification factors of
aerosols from biomass burning in Brazil, J. Geophys. Res., 103,
32,081–32,089.

Kreidenweis, S. M., L. A. Remer, R. Bruintjes, and O. Dubovik (2001),
Smoke aerosols from biomass burning in Mexico: Hygroscopic smoke
optical model, J. Geophys. Res., 106, 4831–4844.

Lavoue, D., C. Liousse, H. Cachier, B. J. Stocks, and J. G. Goldammer
(2000), Modeling of carbonaceous particles emitted by boreal and
temperate wildfires at northern latitudes, J. Geophys. Res., 105,
26,871–26,890.

Levinson, D. H., and A. M. Waple (Eds.) (2004), State of the climate in
2003, Bull. Am. Meteorol. Soc., 85, S1–S72.

Liousse, C., J. E. Penner, C. C. Chuang, J. J. Walton, and H. Eddleman
(1996), A global three dimensional model study of carbonaceous
aerosols, J. Geophsy. Res., 101, 19,441–19,432.

Malm, W. C., J. F. Sisler, D. Huffman, R. A. Eldred, and T. A. Cahill
(1994), Spatial and seasonal trends in particle concentration and optical
extinction in the United States, J. Geophys. Res., 99, 1357–1370.

Malm, W. C., B. A. Schichtel, M. L. Pitchford, L. L. Ashbaugh, and R. A.
Eldred (2004), Spatial and monthly trends in speciated fine particle
concentration in the United States, J. Geophys. Res., 109, D03306,
doi:10.1029/2003JD003739.

Mellor, G. L., and T. Yamada (1974), A hierarchy of turbulent closure
models for planetary boundary layers, J. Atmos. Sci., 31, 1791–1806.

Myhre, G., T. K. Berntsen, J. M. Haywood, J. K. Sundet, B. N. Holben,
M. Johnsrud, and F. Stordal (2003), Modeling the solar radiative impact
of aerosols from biomass burning during the Southern African Regional
Science Initiative (SAFARI-2000) experiment, J. Geophys. Res.,
108(D13), 8501, doi:10.1029/2002JD002313.

Park, R. J., D. J. Jacob, M. Chin, and R. V. Martin (2003), Sources of
carbonaceous aerosols over the United States and implications for
natural visibility, J. Geophys. Res., 108(D12), 4355, doi:10.1029/
2002JD003190.

Penner, J. E., R. Dickinson, and C. O’Neill (1992), Effects of aerosol from
biomass burning on the global radiation budget, Science, 256, 1423–
1434.

Peppler, R. A., et al. (2000), ARM Southern Great Plains site observations
of the smoke pall associated with the 1998 Central American fires, Bull.
Am. Meteorol. Soc., 81, 2563–2592.

Pielke, R. A., R. L. Walko, J. L. Eastman, W. A. Lyons, R. A. Stocker,
M. Uliasz, and C. J. Tremback (1992), A comprehensive meteorological
modeling system—RAMS, Meteorol. Atmos. Phys., 49, 69–91.

Prins, E. M., J. M. Feltz, W. P. Menzel, and D. E. Ward (1998), An
overview of GOES-8 diurnal fire and smoke results for SCAR-B and
the 1995 fire season in South America, J. Geophys. Res., 103,
31,821–31,835.

Pruppacher, H. R., and J. D. Klett (1978), Microphysics of Clouds and
Precipitation, 714 pp., Springer, New York.

Pun, B. K., S.-Y. Wu, C. Seigneur, J. H. Seinfeld, R. J. Griffin, and S. N.
Pandis (2003), Uncertainties in modeling secondary organic aerosols:
Three-dimensional modeling studies in Nashville, TN, Environ. Sci.
Technol., 37, 3647–3661.

Reid, J. S., and P. V. Hobbs (1998), Physical and optical properties of young
smoke from individual biomass fires in Brazil, J. Geophys. Res., 103,
32,013–32,030.

Reid, J. S., P. V. Hobbs, R. J. Ferek, D. R. Blake, J. V. Martins, M. R.
Dunlap, and C. Liousse (1998), Physical, chemical, and optical properties
of regional hazes dominated by smoke in Brazil, J. Geophys. Res., 103,
32,059–32,080.

Reid, J. S., T. F. Eck, S. A. Christopher, P. V. Hobbs, and B. R. Holben
(1999), Use of the Angstrom exponent to estimate the variability of
optical and physical properties of aging smoke particles in Brazil,
J. Geophys. Res., 104, 27,473–27,490.

Reid, J. S., E. M. Prins, D. L. Westphal, C. C. Schmidt, K. A. Richardson,
S. A. Christopher, T. F. Eck, E. A. Reid, C. A. Curtis, and J. P. Hoffman
(2004), Real-time monitoring of South American smoke particle emis-
sions and transport using a coupled remote sensing/box-model approach,
Geophys. Res. Lett., 31, L06107, doi:10.1029/2003GL018845.

Reid, J. S., R. Koppmann, T. F. Eck, and D. P. Eleuterio (2005a), A review
of biomass burning emissions part II: Intensive physical properties of
biomass burning particles, Atmos. Chem. Phys., 5, 799–825.

Reid, J. S., T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P.
Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang (2005b), A review of
biomass burning emissions part III: Intensive optical properties of bio-
mass burning particles, Atmos. Chem. Phys., 5, 827–849.

Robock, A. (1988), Enhancement of surface cooling due to forest fire
smoke, Science, 242, 911–913.

Rogers, C. M., and K. P. Bowman (2001), Transport of smoke from the
Central American fires of 1998, J. Geophys. Res., 106, 28,357–28,368.

Russel, M., and D. T. Allen (2004), Seasonal and spatial trends in primary
and secondary organic carbon concentrations in southeast Texas, Atmos.
Environ., 38, 3225–3239.

Ryerson, T. B., et al. (2003), Effect of petrochemical industrial emissions of
reactive alkenes and NOx on tropospheric ozone formation in Houston,
Texas, J. Geophys. Res., 108(D8), 4249, doi:10.1029/2002JD003070.

Schell, B., I. J. Ackermann, H. Hass, F. S. Binkowski, and A. Ebel (2001),
Modeling the formation of secondary organic aerosol within a compre-
hensive air quality model, J. Geophys. Res., 106, 28,275–28,293.

Schmid, B., et al. (2006), How well do state-of-the-art techniques mea-
suring the vertical profile of tropospheric aerosol extinction compare?,
J. Geophys. Res., 111, D05S07, doi:10.1029/2005JD005837.

Schmid, H., et al. (2001), Results of the ‘‘carbon conference’’ international
aerosol carbon round robin test stage I, Atmos. Environ., 35, 2111–
2121.

Slinn, S. A., and W. G. N. Slinn (1980), Predictions for particle deposition
on natural waters, Atmos. Environ., 14, 1013–1016.

Slinn, W. G. N. (1984), Precipitation scavenging, in Atmospheric
Science and Power Production, edited by D. Danderson, pp. 466–
532, Tech. Inf. Cent. Off. of Sci. and Tech. Inf., Dep. of Energy,
Washington, D. C.

Strader, R., F. Lurmann, and S. N. Pandis (1999), Evaluation of secondary
organic aerosol formation in winter, Atmos. Environ., 33, 4849–4863.

Stull, R. B. (1989), An Introduction to Boundary Layer Meteorology, 666
pp., Springer, New York.

Tanner, R. L., W. J. Parkhurst, M. L. Valente, K. L. Humes, K. Jones, and
J. Gilbert (2001), Impact of the 1998 Central American fires on PM2.5
mass and composition in the southeastern United States, Atmos. Environ.,
35, 6539–6547.

Tegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner (1997),
Contribution of different aerosols to the global aerosol extinction optical
thickness: Estimates from model results, J. Geophys. Res., 102, 23,895–
23,915.

Trentmann, J., M. O. Andreae, H.-F. Graf, P. V. Hobbs, R. D. Ottmar,
and T. Trautmann (2002), Simulation of a biomass-burning plume:
Comparison of model results with observations, J. Geophys. Res.,
107(D2), 4013, doi:10.1029/2001JD000410.

Tropp, R. J., S. D. Kohl, J. C. Chow, and C. A. Frazier (1998), Final report
for the Texas PM2.5 sampling and analysis study, Doc. 6570-685-
7770.1F, Bur. of Air Qual. Control, Houston, Tex. (Available at http://
eosweb.larc.nasa.gov/GUIDE/dataset_documents/narsto_texas_guide.
html)

Turco, R. P., and F. Yu (1999), Particle size in an expanding plume under-
going simultaneous coagulation and condensation, J. Geophys. Res., 104,
19,227–19,241.

Turpin, B. J., and H.-J. Lim (2001), Species contributions to PM2.5 mass
concentration: Revisiting common assumptions for estimating organic
mass, Aerosol Sci. Technol., 35, 602–610.

Turpin, B. J., P. Saxena, and E. Andrews (2000), Measuring and simulating
particulate organics in the atmosphere: Problems and prospects, Atmos.
Environ., 34, 2983–3013.

Twomey, S. (1977), The influence of pollution on the shortwave albedo of
clouds, J. Atmos. Sci., 34, 1149–1152.

D05S17 WANG ET AL.: MESOSCALE MODELING OF SMOKE TRANSPORT

20 of 21

D05S17



Uno, I., et al. (2003), Regional chemical weather forecasting system
CFORS: Model description and analysis of surface observations at
Japanese island stations during the ACE-Asia experiment, J. Geophys.
Res., 108(D23), 8668, doi:10.1029/2002JD002845.

Walko, R. L., W. R. Cotton, M. P. Meyers, and J. Y. Harrington (1995),
New RAMS cloud microphysics parameterization, part I: The single-
moment scheme, Atmos. Res., 38, 29–62.

Walko, R. L., et al. (2000), Coupled atmosphere-biophysics-hydrology
models for environmental modeling, J. Appl. Meteorol., 39, 931–944.

Wang, J., U. Nair, and S. A. Christopher (2004), GOES 8 Aerosol
optical thickness assimilation in a mesoscale model: Online integra-
tion of aerosol radiative effects, J. Geophys. Res., 109, D23203,
doi:10.1029/2004JD004827.

Watson, J. G., J. C. Chow, H. Moosmuller, M. Green, N. Frank, and
M. Pitchfort (1998), Guidance for using continuous mintors in PM2.5
monitoring networks, EPA-454/R-98-012, Off. of Air Qual. Plann. and
Stand., U. S. Environ. Prot. Agency, Washington, D. C.

Westphal, D. L., and O. B. Toon (1991), Simulation of microphysical,
radiative, and dynamical processes in a continental-scale forest smoke
plume, J. Geophys. Res., 96, 22,379–22,400.

Yu, S., R. L. Dennis, P. V. Bhave, and B. K. Eder (2004), Primary and
secondary organic aerosols over the United States: Estimates on the
basis of observed organic carbon (OC) and elemental carbon (BC),
and air quality modeled primary OC/EC ratios, Atmos. Environ., 38,
5257–5268.

Zhang, L., S. Gong, J. Padro, and L. Barrie (2001), A size-segregated
particle dry deposition scheme for an atmospheric aerosol module, Atmos.
Environ., 35, 549–560.

Zhang, Y., B. Pun, K. Vijayaraghavan, S.-Y. Wu, C. Seigneur, S. N. Pandis,
M. Z. Jacobson, A. Nenes, and J. H. Seinfeld (2004), Development and
application of the model of aerosol dynamics, reaction, ionization, and
dissolution, J. Geophys. Res., 109, D01202, doi:10.1029/2003JD003501.

�����������������������
S. A. Christopher and U. S. Nair, Department of Atmospheric Science,

University of Alabama, 320 Sparkman Drive, Huntsville, AL 35805,
USA.
J. L. Hand, Cooperative Institute for Research in the Atmosphere (CIRA),

Colorado State University, Fort Collins, CO 80523, USA.
E. M. Prins, 17207 Alexandra Way, Grass Valley, CA 95949, USA.
J. S. Reid, Aerosol and Radiation Modeling Section, Marine Meteorology

Division, Naval Research Laboratory, 7 Grace Hopper Avenue, Monterey,
CA 93943, USA.
J. Szykman, NASA Langley Research Center, MS-401A, Hampton, VA

23681, USA.
J. Wang, Division of Engineering and Applied Science, Harvard

University, Pierce Hall, Room G3F, 29 Oxford Street, Cambridge, MA
02138, USA. (junwang@fas.harvard.edu)

D05S17 WANG ET AL.: MESOSCALE MODELING OF SMOKE TRANSPORT

21 of 21

D05S17


