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A new algorithm, using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite reflectance and
aerosol single scattering properties simulated from a chemistry transport model (GEOS-Chem), is developed to
retrieve aerosol optical thickness (AOT) over land in China during the spring dust season. The algorithmfirst uses
a “dynamic lower envelope” approach to sample theMODIS dark-pixel reflectance data in lowAOT conditions, to
derive the local surface visible (0.65 μm)/near infrared (NIR, 2.1 μm) reflectance ratio. Joint retrievals of AOT at
0.65 μm and surface reflectance at 2.1 μm are then performed, based on the time, location, and spectral-
dependent single scattering properties of the dusty atmosphere as simulated by the GEOS-Chem. A linearized
vector radiative transfermodel (VLIDORT) that simultaneously computes the top-of-atmosphere reflectance and
its Jacobian with respect to AOT, is used in the forward component of the inversion of MODIS reflectance to AOT.
Comparison of retrieved AOT results in April and May of 2008 with AERONET observations shows a strong
correlation (R=0.83), with small bias (0.01), and small RMSE (0.17); the figures are a substantial improvement
over corresponding values obtained with the MODIS Collection 5 AOT algorithm for the same study region and
timeperiod. The small bias is partially due to the consideration of dust effect at 2.1 μmchannel,withoutwhich the
bias is−0.05. The surface PM10 (particulatematter with diameter less than 10 μm) concentrations derived using
this improved AOT retrieval show better agreement with ground observations than those derived from GEOS-
Chem simulations alone, or those inferred from theMODIS Collection 5 AOT. This study underscores the value of
using satellite reflectance to improve the air quality modeling and monitoring.
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1. Introduction

Atmospheric aerosol is a major concern for climate prediction and
public health, but records of global aerosol distributions have only
become available in the last decade from dedicated satellite observa-
tions such as MODIS (Remer et al., 2008) and the Multiangle Imaging
SpectroRadiometer (MISR) (Kahn et al., 2005). Despite much progress
made recently in using satellite data to derive surface aerosol
concentration over land (see Hoff and Christopher (2009) for a review),
several challenges exist. The radiance or reflectance data collected by
currently operational passive remote sensing instruments for aerosol
retrieval are mostly at the atmospheric window channels in the visible
spectrum. Therefore, they offer little information on aerosol vertical
distribution beyond the retrieval of columnar properties such as aerosol
optical thickness (AOT) (Wang et al., 2003a). In the near UV spectrum,
the slope of the reflectance is regulated by height-dependent Rayleigh
scattering and aerosol absorption, and this relationship can be used to
estimate the centroid height of absorbing aerosols (Torres et al., 2007).
However, such an algorithm requires a priori information on aerosol
single scattering albedo to infer AOT, and it lacks sensitivity to changes
in lower tropospheric aerosol mass. In contrast, active satellite remote
sensing techniques such as the Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) can provide vertical profiles of aerosol extinction,
but when compared to the aerosol plume height retrieved from MISR,
their daily observation offer very limited converge over the globe
because of narrow sensor ground track (∼100 m) (Kahn et al., 2008).

With very few observational constraints on aerosol vertical
distribution, studies to date have had to use chemistry transportmodels
(CTMs) to interpret the 2D satellite information of either AOT or
reflectance into the 3D aerosol fields (Wang & Christopher, 2003; Al-
Saadi et al., 2005). A commonpractice so far has been that the simulated
aerosol mass at each vertical layer in a model grid box is updated by a
scale factor that is the ratio of spatiotemporally -collocated AOT values
from themodel and the satellite retrieval algorithm (Wang et al., 2004;
Liu et al., 2007; van Donkelaar et al., 2010). Resultant surface aerosol
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concentrations generally show better agreement with ground-based
counterparts than those obtained without applying the scale factor,
highlighting the value of the satellite AOT for the remote sensing of air
quality (Hoff and Christopher, 2009).

Though simple in concept, the above approach has one “inconve-
nient truth”. The set of aerosol single scattering properties used in the
CTM to compute the AOT is inconsistent with the corresponding set
employed in the satellite retrieval algorithm. This inconsistency not
only adds difficulty and confusion to resolving discrepancies between
modeled and satellite-retrieved AOT, but also makes CTM simulations
constrained by the satellite-based aerosol products unable to
reproduce reflectance data that the satellites actually measure. To
overcome these issues, recent studies have started using satellite
reflectance data to constrain the CTM simulations. The principle here
is that aerosol mass fields in a CTM are iteratively updated (retrieved)
until the reflectance computed from the CTM agreeswith the satellite-
measured reflectance, while the single scattering properties of each
aerosol species are kept as generic (constant) if not explicitly
simulated in the CTM (Drury et al., 2008; Weaver et al., 2007).

However, computations of top-of-atmosphere (TOA) reflectance
require the input of the surface reflectance in addition to the CTM-
simulated aerosol microphysics. For visibly dark surfaces such as
heavily vegetated area, surface reflectance at 0.65 μm (ρ0.65SFC ) can be
approximated from the reflectance at 2.1 μm (ρ2.1

SFC) with the
relationship ρ0.65SFC =ξρ2.1SFC, where ξ primarily varies with phenology,
canopy type, soil type andwetness at the surface but generally centers
∼0.55 (Levy et al., 2007). This relationship has been used inWeaver et
al. (2007) and Drury et al. (2008) to derive ρ0.65SFC from the TOA
reflectance at 2.1 μm (hereafter ρ2.1MDTOA), assuming that the atmo-
sphere is transparent at 2.1 μm. Such assumption ρ2.1SFC=ρ2.1MDTOA may
be valid in conditions dominated by fine-mode aerosol. However, it is
not true for dusty conditions, where large particles (with Angstrom
exponent close to zero) can produce considerable extinction at
2.1 μm. In this case, an atmospheric correction is needed for ρ2.1MDTOA

before using it to estimate ρ0.65SFC .
In this paper, we develop an algorithm using MODIS reflectances and

CTMsimulations toperformAOTretrieval industy atmosphere. This study
refines the method described in Drury et al. (2008) that demonstrated
improved retrieval of AOT from MODIS over the U.S.A. in non-dusty
conditions, andherewedevelopanewapproach tominimize the retrieval
uncertainties in dusty conditions forwhich atmosphere is not transparent
at 2.1 μm. We apply our approach over the China during the spring dust
season. We further demonstrate the utility of this improved retrieval
method for air qualitymonitoring in China, by comparing our resultswith
the operational MODIS AOT product and other in situ data.

2. Data sources and atmospheric models

We use the MODIS Level 2 Collection 5 aerosol product (Levy et al.,
2007) at 10×10 km2 (nadir) resolution from the Terra and Aqua
satellites over the continental China during April and May 2008. The
data consists of cloud-screened TOA reflectance at 0.65 μm and 2.1 μm
over dark surface pixels (hereafter ρ0.65MDTOA and ρ2.1MDTOA, respectively),
and the corresponding AOT retrieved from the MODIS Collection 5
operational algorithm (hereafter τ0.65MDC5). Other observations we used
include the AOT data (level 2) collected by AErosol RObotic NETwork
(AERONET) stations in China (Holben et al., 1998), and the daily-
averaged concentration of PM10 (particulate matter with diameter
less than 10 μm) collected by the Chinese EPA observation network at
∼80 major cities (http://datacenter.mep.gov.cn/).

We simulate the 3D aerosol fields for the study time and location
using a nested-grid version (v8.1.1) of theGEOS-ChemCTM(Chen et al.,
2009; Fairlie et al., 2007; Park et al., 2004), driven by the NASA Goddard
Earth Observing System (GEOS-5) assimilated meteorological fields at
0.5°×0.667° resolution.Detaileddescriptionsof theGEOS-Chemaerosol
emission inventories and simulation evaluations are provided in Park et
al. (2004) andWang et al. (2008) for sulfur and ammonia, in Fairlie et al.
(2007) for dust, and in Chen et al. (2009) for biomass burning aerosols
and recent updates of emission inventories over the China region. The
single scattering properties for each aerosol species (including dust,
sulfate, nitrate, organic and black carbon aerosols) in GEOS-Chem are
taken from Koepke et al. (1997), except that the geometric standard
deviation for all non-dust aerosols are set to 1.6 (instead of 2.0) (Drury
et al., 2010). An external mixture is assumed to sum over aerosol
types to generate the AOT, the ensemble single scattering albedo, and
the ensemble scattering phase function at each vertical model layer
(Drury et al., 2008). All model outputs are saved at 3-hour intervals and
interpolated to the satellite overpass time.

A linearized vector discrete ordinate radiative transfer (VLIDORT)
model (Spurr, 2008) is used to compute the TOA reflectance and the
Jacobian of this reflectance with respect to AOT for a given
atmospheric column defined by the following inputs: (1) molecular
(Rayleigh) and aerosol optical thickness, ensemble single scattering
albedo, and ensemble phase functions at each vertical model layer, (2)
spectral response functions of the MODIS instrument, (3) Sun–Earth–
satellite geometry, and (4) surface reflectance estimated using the
procedure described in Section 3.

3. Retrieval algorithm

The retrieval algorithm is an improvement over the study by Drury
et al. (2008), and its flow chart is shown in Fig. 1. In low visible-AOT
conditions where ρ2.1SFC=ρ2.1MDTOA can be assumed, Drury et al. (2008)
showed that the cloud-free ρ0.65MDTOA (after scaling into the nadir) can be
simplified into two terms:

ρMDTOA
0:65 μ0 μ = ρATM0:65 + ξ ρMDTOA

2:1 μ0 μ T0:65 μ0ð Þ T0:65ðμÞ ð1Þ

where the first term on the right is the atmospheric contribution due
to Rayleigh and aerosol scattering, and the second term on the right is
the surface contribution. T0.65(μ0) and T0.65(μ) are respectively the
downward and upward atmospheric transmission functions for the
cosine of solar zenith angle, μ0, and the cosine of satellite viewing
zenith angle, μ. The Eq. (1) suggests that a linear regression for the
lower envelope of ρ0.65MDTOAμ0μ and ρ2.1MDTOAμ0μT0.65(μ0)T0.65(μ) data pairs
can be performed to derive ξ (the regression slope). In practice, we
approximate T based upon the Rayleigh optical thickness (Drury et al.,
2008), and we create a sample of lower envelope data pairs for each
day and each GEOS-Chem grid box by gathering MODIS reflectance
data over the 40-day period centered on that day over the same grid
box. As shown in Section 4.2, we varied the length of this period used
to derive ξ, and found that the 40 days was the optimal time interval.
To ensure smoothness and to capture gradual changes of ξ due to the
evolution of surface greenness over the two-month study period, we
take a 5-day running average of the time series of ξ before application
in the retrieval algorithm. We call the above procedure for deriving ξ
the “dynamic lower envelope” approach, as opposed to the “static
lower envelope” approach in Drury et al. (2008) where ξ was kept
constant with time.

The computation of TOA reflectance at 0.65 μm based upon GEOS-
chem simulated aerosol fields (hereafter ρ0.65GCTOA) starts with the
estimate of ρ2.1SFC from ρ2.1MDTOA, so that ρ0.65SFC can be derived (=ξρ2.1SFC) as
an input for VLIDORT (Fig. 1). The initial estimate of ρ2.1SFC is made by
using GEOS-Chem simulations of the timing and location of dust
events to conduct a first-order single scattering correction of ρ2.1MDTOA:

ρSFC2:1 = ρMDTOA
2:1 −ωGC

2:1P
GC
2:1ðΘÞ

1
4ðμ + μ0Þ

1−e
−τGC2:1

1
μ + 1

μ0

� �" #
ð2Þ

where τ2.1GC , ω2.1
GC and P2.1

GC are the GEOS-Chem simulated AOT, aerosol
single scattering albedo and phase function respectively at 2.1 μm; Θ

http://datacenter.mep.gov.cn/


Fig. 1. The flow chart of the retrieval algorithm. See Section 3 in the text for detailed description.
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is the scattering angle between the incident sun light and the reflected
light viewed by the satellite. To account for the differences in the
spatial resolution between GEOS-Chem and MODIS data, we followed
Drury et al. (2008); at each grid box and each day, the GEOS-Chem
simulated aerosol single scattering properties are interpolated to the
satellite overpass time and then applied in the retrieval to all the
MODIS pixels in that grid box. This is appropriate because the GEOS-
Chem's spatial resolution is 0.5°×0.67° which is sufficiently fine to
capture typical spatial scale (40–400 km) for the variation of aerosol
optical properties (Anderson et al., 2003).

From the above first guess of ρ2.1SFC, the retrieval steps are as follows
(Fig. 1):

(1) Initialize the retrieved AOTs at 0.65 μm and 2.1 μm (hereafter
τ0.65MDGC and τ2.1MDGC, MDGC denotes MODIS plus GEOS-Chem) to
the CTM values, τ0.65GC and τ2.1GC .

(2) Compute ρ0.65GCTOA and its Jacobian with respect to AOT (∂ρ0.65GCTOA /
∂τ0.65MDGC) using VLIDORT with inputs of ρ0.65SFC (=ξρ2.1SFC), τ0.65MDGC,
and the CTM ensemble aerosol scattering properties at 0.65 μm.

(3) If |ρ0.65
GCTOA−ρ0.65

MDTOA| is less than 0.001, go to step (5). Otherwise,
update the retrieved AOT: τ0.65MDGC=τ0.65MDGC+(ρ0.65

MDTOA−ρ0.65GCTOA)
∂τ0.65MDGC /∂ρ0.65

GCTOA.
(4) Repeat (2) and (3) until |ρ0.65GCTOA−ρ0.65MDTOA| is less than 0.001; the

end of this step essentially ensures the radiative closure at
0.65 μm.

(5) Scale the mass of aerosol species at each layer by a factor
of τ0.65MDGC /τ0.65GC to re-compute τ2.1MDGC, and then calculate the
TOA reflectance at 2.1 μm (hereafter ρ2.1GCTOA) using VLIDORT
with inputs of τ2.1MDGC, ρ2.1SFC, and GEOS-Chem aerosol scattering
properties at 2.1 μm.

(6) If |ρ2.1GCTOA−ρ2.1MDTOA| is less than0.001, the retrieval is successful and
the algorithm stops. Otherwise, update ρ2.1SFC=ρ2.1SFC+ρ2.1MDTOA−
ρ2.1GCTOA.

(7) Repeat steps (1) to (6) until the pair of ρ2.1SFC and τ0.65MDGC values is
found such that ρ2.1GCTOA and ρ0.65GCTOA both have less than 0.001
(absolute) difference with ρ2.1MDTOA and ρ0.65MDTOA, respectively. The
threshold of 0.001 follows that of Drury et al. (2008).
The above retrieval approach is iterative, in contrast to the
traditional look-up table approach (Levy et al., 2007). The iterations
are guided by the VLIDORT output of Jacobian of reflectance with
respect to AOT. Although the relationship between AOT and
reflectance is non-linear, it can be regarded as piecewise linear. In
this case, the VLIDORT-calculated Jacobian of reflectance with respect
to AOT (such as ∂ρ0.65GCTOA /∂τ0.65MDGC) provides the relative direction (an
increase or decrease) and magnitude needed for the adjustment of
retrieved AOT in each iteration (step 4) so that the modeled
reflectance rapidly approaches to the satellite-measured reflectance.

4. Results and discussion

4.1. Results

Regressions used for the deriving ξ in the “dynamic lower
envelope” approach are found to be statistically significant at all
times, with correlation coefficient generally larger than 0.95. The
temporal variation of ξ in the same grid box over the two-month
study period is generally less than ±5%. An example is shown in
Fig. 2a for one of the AERONET stations in China (Xinglong), where the
regression for ξ on April 1 explains 99% of data variability in the lower
envelope of the visible vs. NIR reflectance scatter plot (the inset of
Fig. 2a), and ξ changes from 0.55 in early April to around 0.64 at the
end of May. As with surface phenology, such changes of ξ through
time are not monochromatic (Fig. 2a); this is consistent with the
findings of Levy et al. (2007), who showed that ξ generally increases
with greenness (or vegetation index). The map of derived ξ averaged
over twomonths (Fig. 2b) shows larger ξ (N0.55) in heavily vegetated
or cultivated regions in the east, and smaller values for grasslands and
semi-arid regions in the west; again, this is consistent with results in
Levy et al. (2007) and Drury et al. (2008). Unexpectedly large ξ values
(close to 0.8) associated with less statistically significant regression
are found in a few GEOS-Chem grid boxes that contain water bodies
(coastline, lakes, and seasonal agriculture irrigation in the southeast-
ern China) or steep topography around the Sichuan basin (30°N,
105°E); this is consistent with Kaufman et al. (2002).



Fig. 2. (a) Time series of thederived ratio (ξ) between surface visible reflectance (ρ0.65SFC ) andnear infrared reflectance (ρ2.1SFC) for aGEOS-Chemgrid boxwhere anAERONET station, Xinglong,
is located (the black circle in (b)). The inset shows the scatter plot of scaled top-of-atmosphere reflectances at 0.65 μm(ρ0.65MDTOAμ0μ) and at 2.13 μm(ρ2.1MDTOAμ0μT0.65(μ0)T0.65(μ)) collected by
MODIS over a40-dayperiodcenteredon1April 2008, for thatGEOS-Chemgridbox. The redpluses identify the subsetof reflectancedata that constitutes the lower envelopeofpairs used in
the regression tofind the slope ξ (see text for details). (b)Mapof averaged ξ inApril–May2008 for eachGEOS-Chemgridbox in the areaof this study. (c) and (d) respectively showmaps of
averaged AOTs (in April–May 2008) at 0.65 μm retrieved by this study and by the MODIS Collect 5 algorithm. The corresponding 2-month averages of AOT at 0.67 μm collected at 6
AERONET stations are color-coded as circles in (c) and (d).
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The map of 2-month averages of τ0.65MDGC shows larger AOT values in
densely-populated coastal regions and in the central industrialized
area in China (Fig. 2c). Although the spatial distribution is similar to
that of τ0.65MDC5, τ0.65MDGC retrieved in this study is quantitatively smaller
than τ0.65MDC5 (Fig. 2d). In comparison with averages of AOT at 6
AERONET stations in China (color circles in Fig. 2c–d), τ0.65MDC5 values
clearly show a large positive bias, while virtually no systematic bias
exists for τ0.65MDGC.

To evaluate τ0.65MDGC, spatially-averaged values of this quantity over a
50×50-km2 area centered at an AERONET station is compared against
temporally-averaged AOT measured at that station (τ0.67AERT) within
30 min of the satellite overpass time (Ichoku et al., 2002). In total, 37
pairs of τ0.65MDGC and τ0.67AERT were found during the 2-month time period.
As shown in Fig. 3a–b, the correlation coefficient (R) between
τ0.65MDGCand τ0.67AERT is 0.83, which is similar to its counterpart between
τ0.65MDC5and τ0.67AERT(R=0.81). However, regarding τ0.67AERT as ground truth,
the bias (0.01) and RMSE (0.17) for τ0.67MDGC are both significantly
smaller than their respective counterparts (0.12 and 0.23) for τ0.65MDC5,
quantifying the improvement in our AOT retrieval algorithm.

To analyze potential sources of retrieval error, the comparison data
pairs in Fig. 3a–b are plotted using a color-coding based upon the
corresponding τ2.1GC simulated from GEOS-chem. Interestingly, sig-
nificant overestimations (N0.2 in average) in τ0.65MDC5 appear to occur
almost exclusively during the heavy dust conditions with τ2.1GC N0.2,
suggesting two possible error sources in the MODIS C5 aerosol
retrieval algorithm: (a) ρ0.65SFC is low, and (b) the single scattering
albedo of coarse-mode aerosols (0.95 at 0.65 μm) is low. Given that
aerosol scattering properties in the MODIS C5 algorithm are based
upon a climatology derived from AERONET retrievals, the possibility
(a) is more likely. This conjecture is supported by the fact that
negative AOT retrievals (up to −0.05) are allowed in MODIS C5
algorithm, suggesting its need to improve the characterization of
surface reflectance. In contrast, while τ0.65MDGC show a much lower
positive bias during dusty conditions, it has a small negative bias
(−0.07 in average) in non-dusty conditions. Sensitivity analysis
of other retrieval error sources such as dust non-sphericity and single
scattering albedo is our next-step research (see discussion in
Section 4.2).

To check further the robustness of the above validation statistics,
we also compared the time averages of retrieved AOTs with AERONET
observations (Fig. 3c–d). Statistics were computed as a function of the
number of days used in the average, for AOTs from three retrievals:
τ0.65MDC5, τ0.65MDGC, and τ0.65MDGC without applying the atmospheric correction
in 2.1 μm for deriving ρ2.1SFC (hereafter τ0.65,noACMDGC ). Overall, for a given
number of days used in the average, RMSEs of τ0.65,noACMDGC and τ0.65MDGCare
nearly equal; but both are considerably smaller than that of τ0.65MDC5

(Fig. 3c). Furthermore, the decreasing trend of RMSE with time (from
1 to 9 days) is much larger for τ0.65MDGC (0.17 to 0.06) than that of τ0.65MDC5

(0.23 to 0.15). In contrast, the biases in all three retrievals show little
change with time, indicating that they are systematic. A large positive
bias (0.12) is evident in τ0.65MDC5, in comparison with biases of 0.01 in
τ0.65MDGC and −0.05 in τ0.65,noACMDGC . In addition, the improved quality of
τ0.65MDGC also shows up in the regression statistics (Fig. 3d): (a) the slope
of the regression line (1.4–1.5) for τ0.65MDC5 (with respect to τ0.67AERT) shows
a larger deviation from unity than that for τ0.65,noACMDGC and τ0.65MDGC (both
around 1.1–1.2), regardless of the averaging time; (b) when the

image of Fig.�2


Fig. 3. (a) and (b) respectively show the comparison of spatiotemporally-collocated AOTs at 0.65 μm retrieved in this work and fromMODIS Collection 5 with corresponding values
from AERONET; symbols are color-coded based upon the AOT at 2.1 μm simulated by GEOS-chem (see text for details). Also shown are comparison statistics for a total number of
data comparison pairs (N): mean bias, root mean square error (RMSE), correlation coefficient (R), and the slope and intercept of the linear regression line (in solid black). The one-to-
one fit line is shown in dotted black. (c) and (d) show the statistics of comparison of AOTs from AEROENT with those retrieved by different algorithms for various averaging times
from 1 to 9 days. Results from our algorithmwith andwithout the atmospheric correction (AC) at 2.1 μmare plotted as black plus symbols and blue diamond symbols respectively, as
opposed to the MODIS Collection 5 values (red squares). The comparison statistics include RMSE, bias, R, the slope, and the intercept of the linear regression line.
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averaging time increases, the intercepts for both τ0.65,noACMDGC and τ0.65MDGC

decrease from−0.1 to−0.04, and thus move closer to zero than that
for τ0.65MDC5 (increases from −0.02 to −0.1). The R values for a given
averaging time for τ0.65MDC5 are either equivalent to or slightly better
than those for τ0.65MDGC, likely reflecting the co-variation of the
systematic positive AOT bias with τ0.65MDC5. Overall, the statistics of
comparing time averages supports the finding in the instantaneous
comparison, indicating a better agreement of τ0.65MDGC (than τ0.65MDC5) with
τ0.67AERT.

The implication of improved AOT retrieval for the estimate of
surface particulate matter concentration was studied by comparing
PM10 data collected by the Chinese EPA at 62 cities in the study domain
with those estimated from three different methods based upon: (i)
GEOS-Chem simulation only (hereafter PMGC), (ii) GEOS-Chem
simulation scaled by τ0.65MDC5/ τ0.65GC (hereafter PMMDC5), and (iii) GEOS-
Chem simulations constrained by MODIS reflectance (i.e., scaled by
τ0.65MDGC/ τ0.65GC , hereafter PMMDGC). While many cities in China have more
than one site to routinely measure PM10 mass concentration, only the
24-h mean PM10 air quality index averaged over each city is available
to this study. We convert the index to the PM10 mass concentration
based upon the Chinese national ambient air quality standards,
admitting that the large yet hard-to-be quantified errors can occur in
using this dataset to represent the daily mean PM10 in each city
(hereafter PMCEPA). Hence, only the comparison of 2-month averages
for each city is conducted here. Geographically (Fig. 4a–c),
PMMDGCclearly shows a better agreement than PMMDC5and PMGC with
PMCEPA in China at 33°N–45°Nzonewheremost dust particles fromGobi
and Taklamakan deserts are transported. Quantitatively (Fig. 3d–f),
PMMDGC, PMMDC5, and PMCEPA are found to have similar correlationswith
thePMCEPA, but PMMDGC shows smaller negative bias (−0.5 μg m−3) and
RMSE (46.6 μg m−3) than PMMDC5 (bias 56.7, RMSE 86.7), and PMGC

(bias −37.5, RMSE 53.1). The large negative bias in GEOS-Chem
simulation (presumably due to the uncertainty in emissions used in the
model) is largely compensated when using the constraint of MODIS
reflectance.

4.2. Discussion

In the results above, the derivation of the surface visible/near
infrared reflectance ratio for a particular day uses theMODIS data over
the 40-day period centered on that day. We have used MODIS data
compilations for various values of the time window length (hereafter
L) in our “dynamical envelope approach”, and we found that a 40-day
time period is optimal to meet the following two criteria. First, L
should be long enough so that sufficient low-aerosol scenarios are
present to ensure that the linear regression for deriving ξ is
statistically significant. Second, L should be short enough and should
center on the day for which ξ is to be derived in order that the
temporal variation of ξ from the daily derivation can capture the
gradual change of surface greenness. The derived value of ξwill not be
temporally representative and indeed will have a time lag (or
advance) to describe the evolution of surface phenological evolution
if we use only the MODIS data before (or after) the day for which ξ is
derived.

image of Fig.�3


Fig. 4. Distribution of averages of surface PM10 mass concentration in April–May 2008, estimated respectively from (a) GEOS-Chem simulation, (b) GEOS-Chem simulation
constrained by the MODIS Collection 5 AOT product, and (c) GEOS-Chem simulation constrained by MODIS reflectance (this work). Circles denote locations of 62 Chinese EPA
stations, and are color-coded based upon their corresponding averages of measured PM10 mass concentration in April–May 2008. (d), (e), and (f) are respectively similar as (a), (b),
and (c) but show the scatter plot of the 2-month averages of measured and estimated PM10 mass concentration at the 62 cities. Also shown in (d)–(f) are comparison statistics for a
total number of data comparison pairs (N): mean bias, root mean square error (RMSE), correlation coefficient (R), and the slope and intercept of the linear regression line (in solid
black). The one-to-one fit line is shown in dotted black.

Fig. 5. Top panel: derived surface reflectance ratio (ξ) between the 0.65 μm and 2.1 μm at the AERONET station Xionglong during April 1–May 31, 2008; the derivation is conducted
by using “dynamical lower envelope” approach in which the regression is made based upon the MODIS data collected in 20 days (black line), 30 days (red line), 40 days (green line),
or 50 days (blue line) center on the day for which ξ is derived. Bottom panel: same as the top panel but shows the regression coefficient R. See the text in Section 3 and the caption for
Fig. 2(a) for details.
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In Fig. 5, we give one example showing the variation of ξ with
different L during April 1–May 31, 2008 over the Xionglong
AERONET station. It is clear that the regression for deriving ξ
becomes more statistically robust (values of linear regression
coefficient R increases) as L changes from 20 to 50 days. However,
when L is 40 days or larger, the R values are all greater than 0.95. On
any particular day, the changes of R and ξ are both small (b±3%) as
L increases from 40 days to 50 days, thus indicating that 40 days is
an optimal duration for using the lower envelope approach to
derive ξ. Knapp et al. (2005) applied the composite clear reflectance
technique (that also searches to find low-aerosol conditions) to the
geostationary satellite data to estimate the surface reflectance, and
they found the optimal time period for their technique is 20 days
for both spring and summer. Given that the MODIS sensor is
installed on polar-orbiting satellites with revisit frequency only
once per day at most, our time period of 40 days appears consistent
with that used by Knapp et al. (2005).

Another issue that may affect our retrieval and deserves discussion
is the assumptionof spherical dust particles and Lorenz–Mie scattering
calculations of phase functions. Previous studies have shown that non-
Fig. 6. (a) Relative retrieval error of aerosol optical thickness at 0.65 μm in this work (AOTth
scattering angles. (b) same as (a) but for retrieval error of AOT fromMODIS C5 (AOTmodis-C5).
0.3, respectively.
spherical dust particles have very different phase functions at various
backscattering angles when compared to those for spherical particles
(Mishchenko et al., 1995). Further investigation of the effect of particle
shape on our retrieval accuracy is needed; this will be a major focus in
our next study because of the following reasons:

(a) For regions downwind of dust sources (such as over Eastern
China in the dusty season), the phase functions of spherical and
non-spherical particles are both important for the accurate
retrieval of AOT (Wang et al., 2003a,b). Unfortunately, MODIS
lacks themulti-angle observations that MISR possesses in order
to separate AOT contributions from spherical particle extinc-
tion as opposed to non-spherical particle extinction (Kalashni-
kova et al., 2005).

(b) While GEOS-Chem offers information on the relative mass
abundance of dust and fine-mode particles, challenges remain
in characterizing the spatio-temporal variability of the particle
shape with respect to the particle size of non-spherical
particles. Admittedly, the phase function of spheroids or
other symmetric convex particles can be computed with
is-work) with respect to the AOT measured from AEROENT (AOTAEROENT) as a function of
Solid and open circles represent the data points with AOTAEROENT larger and smaller than
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existing techniques (such as T-matrix, (Mishchenko and Travis,
1998)) for high accuracy and used in the satellite retrieval
algorithm. However, not all dust particles are spheroidal; the
phase function differences for spherical particles and concave
aggregated non-spherical particles is an active area for research
(Mishchenko et al., 2000).

(c) We show in Fig. 6a that our AOT retrievals in either weak
(τ0.67AERTb0.3) or strong dusty conditions have no systematic bias
with respect to the scattering angle especially at 150° where a
transition from positive to negative bias would be expected if
dust particles are oblate spheriods but the retrieval uses the
spherical particle phase function (Wang et al., 2003a,b).
Indeed, the MODIS C5 AOT retrievals show a similar retrieval
error pattern with the scattering angle to our AOT retrievals,
except the former have a clear positive bias (Fig. 6b). We argue
that the lack of a distinct effect due to dust non-spherical
particle phase functions on our retrieval (as shown in Fig. 6)
appears consistent with the findings by Li and Osada (2007),
who showed that only spherical dust particles are persistent
downwind of desert regions, because of the preferential
settling of elongated dust particles.
5. Summary

This study reinforces previous studies by Weaver et al. (2007) and
Drury et al. (2008) on the use the satellite reflectances to constrain
CTM simulation of aerosols, and benefits from the use of cloud-
screened reflectance over dark pixels saved in the MODIS C5 aerosol
product (Levy et al., 2007). However, our algorithm differs from
previous approaches in the following aspects: (1) the use of a
“dynamic lower envelope” regression to derive locally the surface
visible/NIR reflectance ratios on a daily basis, (2) the removal of
atmospheric dust effects when applying the NIR reflectance at the
top-of-atmosphere to derive surface reflectance, and (3) the use of the
Jacobian of reflectance with respect to aerosol optical thickness to
update the retrieved AOT and to fasten the convergence between the
modeled and MODIS measured reflectance. Because our dynamical
lower envelope approach for deriving surface visible/near infrared
reflectance ratio uses the MODIS data over a 40-day period centered
on the day of the retrieval, our algorithm is not suitable for operational
purposes. However, the promising results shown in this study
certainly make the approach an attractive option for re-analysis of
AOT and surface aerosol concentration, particularly at a regional scale.

Key assumptions in our approach of retrieving aerosol optical
thickness and surface aerosol concentration are: (1) GEOS-Chem
simulated vertical shape of mass mixing ratio of different aerosol
component are kept constant in the retrieval; (2) a generic database
of the single scattering properties of each aerosol component (Koepke
et al., 1997) with update from Drury et al. (2010) is used in the
retrieval; (3) the shape of surface bidirectional reflectance in the
visible and near infrared are assumed to be the similar and so that the
relationship between visible and near infrared surface reflectance is
linear; this assumption has been used in various aerosol retrieval
algorithms including those designed for MODIS (Levy et al., 2007;
Lyapustin and Wang, 2009) and MISR (Diner et al., 2005), although
the methods used in these studies for deriving the ratio between
surface visible and near infrared reflectance are different from our
“dynamical lower envelope” approach. Hence, the challenges for next
steps include the retrieval of aerosol size and aerosol composition
from the multi-spectral multi-angle satellite data, as well as the
improved estimate of surface reflectance. However, the large RMSEs
in all three estimates of PM10 (using model only, model with MODIS
C5 AOT, and model with MODIS reflectance) shown in Fig. 4d–f
certainly highlights the critical need of constraint for aerosol profile, at
least for the GEOS-Chem modeling in the region of this study.
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