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A short-term predictor of satellite-observed fire activity in the North
American boreal forest: Toward improving the prediction of smoke
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< Statistical model predicts daily growth or decay of satellite-observed fires in central Alaska.
< Inputs include MODIS and GOES fire data and NWP-calculated fire weather indices.
< Reduces RMSE compared to a persistence forecast used by smoke emission inventories.
< Improvements are strongest for cases with observed decay or extinction of fires.
< Critical step toward improving operational smoke emission and transport forecasts.
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a b s t r a c t

A statistical model, based on numerical weather prediction (NWP), is developed to predict the subse-
quent day’s satellite observations of fire activity in the North American boreal forest during the fire
season (24-h forecast). In conjunction with the six components of the Canadian Forest Fire Danger Rating
System and other NWP outputs, fire data from the MODerate Resolution Imaging Spectroradiometer
(MODIS) and the Geostationary Operational Environmental Satellites (GOES) are used to examine the
meteorological separability between the largest fire growth and decay events, with a focus on central
Alaska during the large fire season of 2004. This combined information is analyzed in three steps
including a maximum likelihood classification, multiple regression, and empirical correction, fromwhich
the meteorological effects on fire growth and decay are statistically established to construct the fire
prediction model. Both MODIS and GOES fire observations show that the NWP-based fire prediction
model is an improvement over the forecast of persistence commonly used by near-real-time fire emis-
sion inventories. Results from an independent test (2005 fire season) show that the root-mean-square
error (RMSE) of predicted MODIS fire observations is reduced by 5.2% compared with a persistence
forecast. Improvements are strongest (RMSE reduction of 11.4%) for cases with observed decay or
extinction of fires. Similar results are obtained from additional independent tests using the 2004 and
2005 GOES satellite fire observations. This study uniquely demonstrates the value and importance of
combining NWP data and satellite fire observations to predict biomass-burning emissions, which is a
critical step toward producing a global short-term fire prediction model and improving operational
forecasts of smoke transport at large spatial scales.

! 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Smoke produced by global biomass burning is a key source of
aerosol particles, greenhouse gases, and other trace constituents in
the atmosphere, which affect the global climate system by altering
atmospheric composition and radiative processes (e.g. Randerson
et al., 2006; Spracklen et al., 2007; Jordan et al., 2008; Kopacz
et al., 2011). The combination of an intense fire event with
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suitable atmospheric conditions (Kahn et al., 2007, 2008; Val
Martin et al., 2010) can allow smoke particles to be injected
above the boundary layer, and transported thousands of miles (e.g.
Westphal and Toon,1991; Damoah et al., 2006; Sapkota et al., 2005;
Duck et al., 2007). These intense fire events, common in the boreal
forest of North America, affect air quality and visibility, create
health concerns, and may interact with meteorological processes at
a great distance from a fire (e.g. Wang and Christopher, 2006;Wang
et al., 2006, 2013). Several global and regional inventories of
biomass burning emissions have been developed over the past
decade in an effort to quantify sources and transport of aerosol
particles and trace gases. Examples include the Fire Locating and
Monitoring of Burning Emissions (FLAMBÉ), produced by the Naval
Research Laboratory (Reid et al., 2009), the Fire Inventory from
NCAR (FINN), produced by the National Center for Atmospheric
Research (Wiedinmyer et al., 2011), the Global Fire Emissions
Database (GFED) (van der Werf et al., 2010; Mu et al., 2011), the
Global Fire Assimilation System (GFAS) (Kaiser et al., 2011), and the
emissions inventory produced by the National Oceanic and Atmo-
spheric Administration (Zhang et al., 2008, 2012). While the
methodology of these emissions inventories varies, the first step for
systems operating in near real time is always dependent on ob-
servations of active fires, because they are the only consistent
source of data over continental scales available in near real time.
The observed spatial and temporal patterns of satellite fire obser-
vations drive the patterns of estimated smoke emissions from these
systems.

Across the globe, biomass-burning activity is highly sensitive to
the local climate, including variations in the synoptic weather
pattern (e.g. Brotak andReifsnyder,1977). In theboreal forest, thefire
season is short relative to other ecosystems, and a large majority of
fire activity is often concentrated in just a few days of active burning
(Hyer et al., 2007). Active fire seasons have been linked to positive
500 hPa geopotential height anomalies (Skinner et al., 1999, 2002),
which must persist for approximately 10 days (Fauria and Johnson,
2006). This synoptic environment is conducive to active fire
weather conditions at the surface, such aswarmer temperatures and
suppressed precipitation. The duration of dry conditions typically
has a much stronger relation to burned area observations than the
total seasonal precipitation (e.g. Flannigan and Harrington, 1988),
and therefore sets the stage for active fire weather conditions
(Peterson et al., 2010). In addition, low-level instability has been
linked to intense fire activity (e.g. Haines, 1988; Potter et al., 2008),
and may increase the potential for fire ignition via dry lightning
strikes, provided the synoptic environment is favorable (Peterson
et al., 2010). Unstable conditions may also result in higher smoke
plumes, stronger entrainment of the air near the fires, and faster
spread rate, all of which can lead to “extreme fire behavior” and
pyroconvection (e.g. Werth and Ochoa, 1993; Fromm et al., 2010).

While the synoptic environment is a useful first step, additional
information is required to characterize variations in localized,
short-term meteorological conditions and their effect on fire ob-
servations, especially when managing active fires that may
threaten life and property. As a result, over 30 years of research has
focused the development of several fire weather indices that are
currently used operationally in boreal North America. The most
well-known of these, the Canadian Forest Fire Danger Rating Sys-
tem (CFFDRS), uses surface temperature, relative humidity, rainfall,
and wind speed to derive the biomass moisture content used for
assessing daily fire potential and spread in the unique boreal
ecosystem (Van Wagner and Pickett, 1985; Van Wagner, 1987;
Amiro et al., 2004). The CFFDRS is typically calculated using ob-
servations from nearby weather stations, however large regions
within the boreal forest are sparsely populated, limiting the avail-
able observations. Therefore, a continuous source of weather data

via Numerical Weather Prediction (NWP) is highly desirable,
especially when trying to develop an automated fire weather
forecast in the boreal regions. Mölders (2008) showed that the
Weather Research and Forecasting (WRF) model, at a fairly coarse
spatiotemporal resolution of 1.0" and 6-h, can successfully calculate
fire weather indices in interior Alaska, assuming the corresponding
meteorological variables are accurately predicted. Therefore, the
current study explores the potential for using NWP data to capture
day-to-day changes in fire activity.

This study is furthermotivated by the fact that all near-real-time
fire emission inventories, including FLAMBÉ, which is used opera-
tionallyby theNavyAerosolAnalysis andPredictionSystem(NAAPS)
at the Fleet Numerical Meteorological and Oceanographic Center
(the US Navy’s forecast center), use observations of fire pixels
(known as fire counts) from geostationary and polar-orbiting sat-
ellite sensors (e.g. Reid et al., 2009). For numerical forecasting of
smoke, however, FLAMBÉ and other models typically assume that
the number of observed fire counts does not change throughout the
forecast period e a forecast of persistence. This may result in large
errors in the final smoke emissions forecast, especially due to
changes in local meteorological conditions, which undoubtedly
affect fire activity. Therefore, drawing from continued improve-
ments inNWPaccuracy, the current studymakes thefirst attempt at
developing an automated, NWP-based statistical model that can be
used to characterize the effect of a given set of meteorological con-
ditions on the following day’s satellite-observed fire counts,
including ignition and spread potential, with the ultimate goal of
enhancing the estimation and forecast of smoke emissions at large
spatial scales.

2. Study region and data

Drawing from a copious base of previous research and the po-
tential for very large, intense fire events, the North American boreal
forest is an ideal location for developing a fire count prediction
model. The specific study region, located primarily in Alaska, is
based on Peterson et al. (2010) and includes the core of the
mountainous western boreal forest (Fig. 1a). Within the study re-
gion, the fire season typically falls between May and September
(Skinner et al., 1999; Stocks et al., 2002; Fauria and Johnson, 2006),
and the fire seasons of 2004 and 2005 were two of the three largest
in the 73-year observational record (Kasischke et al., 2002). The
MODIS sensors aboard the Terra (launched in 1999) and Aqua
(launched in 2002) satellites are the primary source of fire count
data (MOD14) in this study (Giglio et al., 2003; Giglio, 2010), and
the GOES Wildfire Automated Biomass Burning Algorithm
(WF_ABBA) fire product (Prins and Menzel, 1994; Prins et al., 1998)
is used for independent testing of the algorithm.

As a polar-orbiting sensor, the MODIS fire detections are not a
perfect indicatoroffireactivity, andhaveknownbiases including the
inability todetectfiresbeneathopaqueclouds and largevariations in
pixel size depending on the satellite viewing zenith angle (Masuoka
et al., 1998; Gomez-Landesa et al., 2004). However, MODIS data are
best suited for developing a fire prediction model for the study re-
gion because: (a) MODIS observed fire counts are a primary source
for estimates of fire emissions in FLAMBÉ and FINN, (b) MODIS has
theability todetect smallerfires relative toGOES, and (c)MODISmay
be better suited for high-latitude locations than GOES.

For the meteorological component of this study, data are ob-
tained from the North American Regional Reanalysis (NARR), which
blends a variety of observational data into Eta model output con-
taining 45 vertical layers across the North American continent with
w32 km grid spacing every 3 h (Ebisuzaki, 2004; Mesinger et al.,
2006). The NARR data are also used to produce three modified
components of the CFFDRS that are relevant to short-term changes
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in fire activity, including (1) the fine fuel moisture code (FFMC)
describing the moisture content of the fine plant litter in a thin
layer on the forest floor, (2) the initial spread index (ISI) created
from the combination of the FFMC and surface wind speed, and (3)
the fire weather index (FWI), which is created from all six CFFDRS
components and describes the overall fire weather situation for the
next 24 h (Van Wagner and Pickett, 1985; Van Wagner, 1987).
Drawing from the fire weather relationships identified by Peterson
et al. (2010), additional indices are also computed to describe the
ignition potential, synoptic influence, and the moisture deficit
affecting boreal wildfire activity. Therefore, a large suite of mete-
orological information, including both single variables and fire
weather indices for day 1 (observation) and day 2 (forecast), are
available to this study. To facilitate the analysis, the MODIS (or
GOES) fire counts are geographically matched onto the mesh of
NARR grid boxes. All fire counts observations are then summed
over each individual NARR grid box per day, based on the temporal
requirements of the CFFDRS (18:00Z to 18:00Z). The CFFDRS are
calculated at 10 AM local time (18:00Z) rather than at noon
(operational standard) in an effort to define a single observation

time that can be used across the boreal forest of North America and
to match the daytime MODIS observations (w10:30 AM and 1:30
PM local time), which typically contain the maximum daily fire
activity (Ichoku et al., 2008).

3. Statistical prediction of fire growth and decay

The primary goal of the prediction model is to establish an
empirical relationship between weather, fire ignition, and fire
evolution, expressed in terms of the change in MODIS fire counts
(day 1 vs. day 2) as a function of meteorological variables and fire
weather indices. The specific methodology is largely based on a
Maximum Likelihood Classification (MLC) score, which is given by

MLCiðxÞ ¼ &ln
!!!
X

i

!!!&
"
xinput &mi

#tX&1
i

"
xinput &mi

#
(1)

where mi and Si are the mean vector and covariance matrix for a
predetermined number (i) of training classes (Richards and Jia,
2006). This method is widely used in satellite remote sensing for

Fig. 1. (a) Map highlighting the boreal study region as a blue box. The color scheme is based on the dominant vegetation types located within and surrounding the study region.
Dashed black contours indicate variations in topography, with a contour interval of 500 m. (b) and (c) Output of MLCgrow and MLCdecay from the 2004 development test and the 2005
independent test, respectively. Small circles indicate where the number of MODIS fire counts on day 1 are <10 and large triangles indicate where the day 1 fire counts are at least 10.
The color scheme indicates the observed relative change in fire counts (or DFCobs). Red and blue contours indicate the prediction score (or DFCp) obtained from a multiple regression
as a function of MLCgrow and MLCdecay. The black contour indicates no change or a forecast of persistence (DFCp ¼ 1).
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the classification of images (into vegetation, water, clouds, etc.),
where mi and Si are computed from training data (a pre-selected
vector of radiometric data xtraining at various spectral channels)
corresponding to each class i. For any given vector of input data
(xinput), its MLC score, or the likelihood for xinput to be in class i, is
computed via Equation (1), and xinput is assigned to the class that
provides the largest MLC score.

In an analogy to image classification, the MLC technique can be
applied to classify the day-to-day change in fire counts based on a
variety of meteorological factors that form the elements of the
vector xinput in Equation (1). To begin, the change in observedMODIS
fire counts betweenday 1 andday 2 are stratified intofive classes for
each w32 km grid cell of the NARR: (1) ignition, (2) extinction, (3)
growth, (4) decay, and (5) no change. Limitations in satellitefire data
(e.g. cloud cover and scan-to-scan variations) can create false igni-
tion and extinction events, so the current version of the MLC is
largely based on classes (3) and (4). The primary goal is to capture
large changes in the number of fire counts (either growth or decay
per grid box) because these are the cases where the total smoke
emissions are likely to change significantly. Therefore, training data
are defined from the largest cases, defined by the 75th percentile,
within the growth anddecayfire count classes, fromwhichmi andSi
are computed. Finally, the xinput corresponding to each individual
event is compared tomi and Si via Equation (1), thus producing the
MLC growth (MLCgrow) and decay (MLCdecay) scores. The complete
list of inputs used to create xinput is provided in Table 1, and includes
the fire weather indices and other single variables, such as relative
humidity and convective available potential energy (CAPE), that
display the largest separability between cases of fire growth and
decay. Therefore, the modified MLC output determines whether a
given fire event best fits the growth or decay fire class.

While the MLC training data are only derived from fire classes
(3) and (4), the MLCgrow and MLCdecay scores can be computed for
all five classes. Fig. 1b shows an example MLC output for the large
2004 fire season, with 3192 NARR grid boxes containing fire pixels
in central Alaska. The output is provided in a log scale, and cases of
observed growth and decay are evidently concentrated in distinct
clusters. However, it is also evident that many NARR grid boxes,
especially those with <10 MODIS fire counts on day 1 (small circles
in Fig. 1b), are misclassified, which likely results from the uncer-
tainty introduced by scan-to-scan variations of the MODIS sensor.
Therefore, emphasis is placed on grid boxes with at least 10 fire
counts on day 1 (large triangles in Fig. 1b), ensuring the fire is large
in size and likely to appear in a subsequent scan.

The MLCgrow and MLCdecay scores for the large symbols in Fig. 1b
indicate that the training data, which are drawn from limited data
samples (e.g. 75th percentile), generally capture the statistics that
needed to separate the growth and decay of the fires. In a real at-
mosphere, meteorological variables generally co-vary, and there-
fore the observed relative change in fire counts (DFCobs) will relate
to both the magnitude and relative values of MLCgrow andMLCdecay:
a larger growth score and small decay score may indicate larger
DFCobs. As a result, the MLC output is further refined via a linear
regression of MLCgrow and MLCdecay against DFCobs to produce a fire
count prediction score (DFCp)

DFCp ¼ a1ln
"
MLCgrow

#
þ a2ln

$
MLCdecay

%
þ a0 (2)

where a1 and a2 respectively equal the slopes for growth and decay
(calculated from only the large day 1 cases, triangles in Fig. 1b) and
a0 is a constant. The resulting contour lines of DFCp for all data
points are also overlaid on Fig. 1b, c (blue and red parallel lines).

As described above, Equations (1) and (2) are the two key steps
in the fire prediction methodology for the meteorological input
vector (xinput). First, MLCgrow and MLCdecay are computed using
Equation (1), and the regression Equation (2) is subsequently used
to compute DFCp. As shown in Fig. 2a, this DFCp score can then be
evaluated against the true DFCobs (here the absolute change in fire
counts) for all the cases in 2004. It is found that while the DFCp
score and DFCobs are consistent in terms of sign, there are consid-
erable deviations from the 1:1 line. In order to transform DFCp into
a quantitative predictor, the extinction and ignition cases are
removed, as well as cases with small day 1 fire counts, and a
running mean and median are applied to the remaining cases (blue
curves in Fig. 2b). Based on the running mean and median curves,
four parameters are empirically estimated to derive the three-zone
quantitative predictor (displayed as a brown curve in Fig. 2b): (1)
the slope of the growth zone (Mgrow), which relates DFCobs to the
predicted growth in fire counts, (2) the slope of the decay zone
(Mdecay), which relates DFCobs to the predicted decay in fire counts,
(3e4) the lower and upper bounds of the persistence zone (Pmin
and Pmax), where no change will be forecast. When DFCp is above
Pmax, growth is forecast as (DFCp & Pmax)*Mgrow, and when DFCp is
below Pmin, decay is forecast as (DFCp & Pmin)*Mdecay. This quanti-
tative predictor is analogous to a step commonly used in the Model
Output Statistics (MOS) for a weather forecast, where NWP output,
(here the regression model) is further corrected/adjusted to pro-
duce a final forecast (Wilks, 2006). Parameters (1e4) are derived
using only the 2004MODIS fire counts, and subsequently applied to
all tests using MODIS and GOES fire count data for 2004 and 2005.

4. Evaluating the fire count prediction model

When applying the fire count prediction model to all available
data, including ignition and extinction cases, the results from the
2004MODIS test (used to develop themodel) suggest the RMSE can
be reduced by 13.1% compared to a forecast of persistence e the
method currently employed in FLAMBÉ and other operational
emission products (Table 2). A larger reduction in error is obtained
for cases where decay or extinction occurred (reduction in
RMSE¼ 24.3%), partly because decay/extinction processes are often
abrupt, driven by precipitation.When comparing these results to an
independent test, conducted by applying the prediction model to
the fire season of 2005, a smaller but still significant 11.4% reduction
in RMSE is observed for cases where decay/extinction occurred, as
well as an overall reduction in RMSE. However, the growth/ignition
predictions do not seem to offer an improvement over a forecast of
persistence. The reason for this is clear from the 2005 MLC scores,

Table 1
Input variables for the MLC.

Input variable

Ratios (Day 2/Day 1)
1 Fire Weather Index (FWI)
2 Initial Spread Index (ISI)
3 Fine Fuel Moisture Content (FFMC)
4 Synoptic Index (500 hPa Heights, ISI, & Dry Days)a

5 Moisture Index (Consecutive Dry Days & FFMC)a

6 Relative Humidity

Daily variables
7 Day 1 Initial Spread Index (ISI)
8 Day 1 Fine Fuel Moisture Content (FFMC)
9 Day 1 Ignition Index (CAPE & 500 hPa Heights)a

10 Day 1 Moisture Index (Consecutive Dry Days & FFMC)a

11 Day 1 Conv. Available Pot. Energy (CAPE)
12 Day 2 Conv. Available Pot. Energy (CAPE)

Other
13 Observed Fire Count Tendency (Previous 3 Days)

a Additional fire weather indices developed specifically for this study.
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displayed in Fig. 1c, where decay/extinction cases are found in a
distinct cluster while many growth/ignition cases are misclassified.

While the fire count prediction methodology was developed
using MODIS, the same MLC output (mi and Si in Equation (1)) can
also be applied to GOES observations, or any other satellite sensor.
The resulting independent tests for GOES (Table 2) yield similar
results to MODIS, with an overall reduction in RMSE for both 2004

and 2005, due in part to large RMSE reductions in cases of decay/
extinction. The agreement between the MODIS and GOES tests
shows that the fire count prediction is a robust fire count prediction
for the western boreal forest of North America. In addition, Table 2
shows that experimenting with various combinations of the day 1
and day 2 components of the CFFDRS alone (e.g. FWI, ISI, and FFMC)
does not produce better results than the larger combination of

Fig. 2. Results of the multiple regression function displayed as red and blue contours in Fig. 1b. (a) Comparison between the prediction score (DFCp) and the observed absolute
change in fire counts (day 2 e day 1, DFCobs) for all data points. Small symbols indicate where the number of fire counts on day 1 are <10 and large symbols indicate where the day 1
fire counts are at least 10. (b) Comparison between the prediction score (DFCp) and the observed relative change in fire counts (day 2/day 1, DFCobs) with the ignition, extinction, and
small day 1 cases (small symbols) removed. The brown line indicates the three-zone quantitative predictor curve that is based on the running mean and median, which are
respectively displayed as solid and dashed blue curves.
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variables displayed in Table 1, suggesting that the additional con-
siderations of low-level instability (e.g. CAPE), ignition potential,
and general synoptic conditions are necessary for xinput and the
resulting fire count prediction.

5. Discussion and conclusions

This study has taken the first step toward linking day-to-day
changes in satellite fire counts to variations in meteorological
variables obtained from NWP using an MLC-based prediction
model in the North American boreal forest. While MODIS fire
counts are affected by the daily variation of several unavoidable
factors, including the location within the scan (viewing angle)
and cloud cover, the 2005 independent tests (for both MODIS
and GOES) indicate that the decay/extinction prediction alone
can be incorporated as an improvement over persistence, thus
yielding a forecast of either persistence or decay/extinction. The
results also show that the current suite of fire weather indices
(e.g. the CFFDRS) must be supplemented with additional vari-
ables (e.g. CAPE) to improve prediction accuracy at the daily
regional scale.

As shown in this study, forecasting the decay of a fire event is
often a simpler problem compared with fire growth, primarily due
to the impact from precipitation events. However, several mete-
orological variables that greatly impact fire ignition and growth,
such as lightning strikes, are either unreliable or unavailable in the
current NWP output. Therefore, the prediction methodology must
be further refined to improve growth/ignition predictions, perhaps
by accounting for holdover effects from previous lightning strikes
or incorporating additional satellite fire products. In the near
future, higher resolution (and spatially uniform) fire data from
NPP VIIRS (Csiszar et al., 2011) and improved lightning data from
GOES-R (http://www.goes-r.gov), can be used in combination with
a modified measure of fire radiative power, scaled by the retrieved,
instantaneous fire area (Peterson et al., 2013; Peterson and Wang,
2013), as additional inputs for the fire prediction model. These
potential improvements warrant future studies in an effort to

achieve the ultimate goal of producing a global fire prediction
model (with similar NWP input variables) that can be ingested
into the smoke emissions modeling process (e.g. FLAMBÉ),
allowing a 24-h or longer forecast of smoke emissions to be
calculated based on the predicted change in fire activity.
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