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Fire radiative power (FRP) over a pixel area has been highlighted as a valuable parameter for quantitatively de-
riving smoke emissions. However, smoke plume rise forecasts and characterizations of fire intensity require ad-
ditional information, including the FRP over the fire area (FRPf) and per fire area (or fire radiative flux), both of
which can be calculated through a bi-spectral retrieval of sub-pixel fire area and temperature. This study, the sec-
ond in a two-part series, examines the sources of error and the corresponding uncertainties in a sub-pixel algo-
rithm that calculates FRPf for fire pixels identified at 1 km2 nominal spatial resolution by the MODerate
Resolution Imaging Spectroradiometer (MODIS) fire detection algorithm (collection 5). Radiative transfer simu-
lations are incorporated to account for atmospheric effects as a function of Earth-satellite geometry at 3.96 and
11 μm (MODIS fire detection channels), and show that the 11 μm channel is highly sensitive to variations in col-
umn water vapor amount. By investigating several fire events in California, considerable variations in retrieved
fire area, occasionally by more than 50%, are observed when comparing the mid-latitude summer climatology
and observation-based atmospheric profiles that are used in the sub-pixel retrieval algorithm. While regions of
dry, brown vegetation may also increase the potential for error via the surface emissivity assumption, the algo-
rithm is much more sensitive to errors in 11 μm background brightness temperature, where an error of only
1.0 K may alter the retrieved fire area by an order of magnitude or more. An independent application, using
the Texas wildfire event of September 2011, reveals that the sub-pixel retrieval can even become irrelevant for
17.6% of the available MODIS fire pixels as a result of noise in the background region causing the 11 μm back-
ground brightness temperature to becomewarmer than the fire pixel, especially during daytime scenes. The var-
ious sources of uncertainty in the estimates of FRPf and fire area can be reduced through the summation of
individual pixel-level retrievals for large clusters of fire pixels, which can be defined based on the resolution of
a mesoscale model grid. In comparison to the standard MODIS pixel-based FRP, the flux of FRPf, defined as
total FRPf divided by the retrieved fire area, is shown to have a stronger and statistically significant correlation
with surface (10-meter)wind speed and air temperature, especially for largefire pixel clusters,where the respec-
tive linear correlation coefficients are 0.55 and 0.77. These strong relationships suggest that, while additional
studies are warranted, the flux of FRPf may offer the potential for improved characterizations of the meteorolog-
ical effects on fire intensity compared to the standard pixel-based FRP.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Ignited by natural and anthropogenic causes (Koren et al., 2007;
Peterson et al., 2010; van der Werf et al., 2008), global wildfire activity
subsequently burns large tracts of land, releases aerosols and trace
gases into the atmosphere, and can even have impacts on the global cli-
mate (Jordan et al., 2008; Kopacz et al., 2011; Randerson et al., 2006;
Roy et al. 2008; Spracklen et al., 2007). Over the past three decades, sev-
eral satellite sensors have been developed to provide the locations of

these wildfires at various spatiotemporal frequencies. For example, the
MODerate Resolution Imaging Spectroradiometer (MODIS), located
aboard the Terra (launched in 1999) and Aqua (launched in 2002) satel-
lites, allows wildfires to be observed globally up to four times each day;
twice in the daytime and twice at night. In contrast to other satellite sen-
sors with fire monitoring capabilities, such as the NOAA Advanced Very
High Radiometer (AVHRR), Geostationary Orbiting Environmental Satel-
lite (GOES), and the Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER), the MODIS sensor has a higher saturation
temperature (~180 Khigher) of ~500 Kat its 4 μmfire detection channel
(Gao et al., 2007; Justice et al., 2002; Kelha et al., 2003), which allows the
retrieval of smaller fires and fire radiative power (FRP) — a quantitative
measure of fire intensity (Kaufman et al., 1998a).

In recent years, the FRPdata have provided a quantitative assessment
of fire intensity across the globe (Ichoku et al., 2008a). Several studies
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have also shown that FRP is proportional to the fire's fuel consumption
and smoke emission rates (e.g. Ichoku and Kaufman 2005; Ichoku et
al., 2008a, 2008b; Jordan et al., 2008; Roberts et al., 2005, 2009;
Wooster, 2002; Wooster et al., 2003, 2005). As a result, fires with a
high FRP may produce higher altitude smoke plumes and a greater
chance of smoke transport into the free troposphere (Val Martin et al.,
2010). Above the boundary layer, smoke particles can be transported
thousands of miles (e.g. Damoah et al., 2006; Duck et al., 2007;
Sapkota et al., 2005; Westphal and Toon, 1991) creating health con-
cerns and interacting with meteorological processes a great distance
from a fire (e.g. Wang et al., 2006; Wang et al., in press). As a result,
MODIS FRP data are being used for near real-time emission maps at a
global scale (Kaiser et al., 2009) and may prove valuable for modeling
smoke emissions at a relatively large model grid resolution (e.g. Wang
et al., 2006). The primary limitation of the current MODIS FRP data is
that they are estimates of fire radiative power released over a pixel
area (FRPp). In reality, any measurement of FRP is dependent on the
sub-pixel fire area and fire temperature (e.g. Kaufman et al., 1998a),
which can be highly variable from pixel-to-pixel (Peterson et al., in
press). Therefore, a sub-pixel-based FRP calculation (FRPf, derived
from the retrieved fire size and temperature) could be a valuable asset
to global fire monitoring (e.g. Peterson et al., in press; Zhukov et al.,
2006) by providing estimates of the radiant energy (over the retrieved
fire area) that in turn, produces the thermal buoyancy needed to inject
smoke into the free troposphere (Kahn et al., 2007; Lavoue et al., 2000).

Prior to the calculation of FRPf, the sub-pixelfire area and temperature
must be retrieved, which is commonly accomplished via a bi-spectral ap-
proach (Dozier, 1981; Matson and Dozier, 1981; Flannigan and Vonder
Haar, 1986; Prins and Menzel, 1992; Langaas, 1993; Peterson et al., in
press) or a multispectral approach (Dennison et al., 2006; Eckmann et
al., 2008, 2009, 2010). The bi-spectral approach takes advantage of the
spectral contrast between a sub-pixel fire hot spot and the surrounding
(presumably uniform) background of the pixel in the middle infrared
(MIR, 4 μm) and thermal infrared (TIR, 11 μm) channels while themulti-
spectral approach uses the radiances at multiple channels to disentangle
the area fraction of many sub-pixel features (called endmembers), pro-
vided the number of endmembers is finite. Regardless of themethodolo-
gy, a variety of variables may produce errors in the retrieved fire area
and temperature, such as band-to-band point-spread function (PSF)
coregistration issues, improper selection of background temperature
and atmospheric transmittance, instrument noise, varying sub-pixel
proportions of flaming, smoldering, and unburned areas, the solar con-
tribution to the MIR, and the variation of surface emissivity between
MIR and TIR (e.g. Giglio and Justice, 2003; Giglio and Kendall, 2001;
Shephard andKennelly, 2003). Validations of sub-pixel retrievals are dif-
ficult due to the need for high-resolution data that are coincident in time
and space with observation of the satellite sensor. As a result of these
limitations, sub-pixel retrievals have been used sparingly over the past
three decades, aside from those developed by Prins and Menzel (1992,
1994) for the Geostationary Operational Environmental Satellite
(GOES). However, the coarser resolution provided by the geostationary
satellite sensor reduces the sensitivity to wildfires, making it difficult
to use FRPf from GOES quantitatively.

In the first of this series of two papers (Peterson et al., in press), a
modified sub-pixel retrieval was developed to account for atmospheric
effects and variations in Earth-satellite geometry for MODIS fire pixels,
with the goal of application to future satellite sensors (e.g. VIIRS and
GOES-R). The near-coincident observations obtained from the Autono-
mousModular Sensor (AMS), flown aboard the NASA Ikhana unmanned
aircraft, allowed the retrieved MODIS fire areas to be assessed with un-
precedented accuracy (3–50 meter resolution). In addition, comparisons
between the AMS andMODIS fire areas revealed the impacts from sever-
al indirect effects on the retrieval that are difficult to characterize, such as
PSF effects, location relative to nadir (viewing zenith angle), and the
overall distribution of sub-pixel hot spotswithin thefire pixel. As a result,
it was suggested that a clustering methodology should be implemented

to reduce the error potential in retrieved fire area. These fire clusters,
along with the sub-pixel-based FRPf, allowed a large fire burning at a
low intensity to be separated from a small fire burning at a high intensity
and also facilitated calculations of FRPf flux over the retrieved fire area.

Since the algorithm development and initial assessment have been
presented by Peterson et al. (in press), this study focuses on the uncer-
tainty introduced to the sub-pixel retrieval algorithm from errors in the
estimated or assumed values of three primary direct input variables:
(1) background brightness temperature, (2) background emissivity, and
(3) the atmospheric column water vapor amount. Several earlier studies
(e.g. Giglio and Kendall, 2001; Zhukov et al., 2006) have shown that tem-
perature variations (noise) within the background region, especially at
11 μm, have the potential to dramatically affect the output of a sub-
pixel retrieval. However, the potential impact resulting from an improper
assumption of background emissivity or the atmospheric column water
vapor amount (used for atmospheric correction) has not been quantita-
tively analyzed, and is paramount to understanding the overall sensitivity
of this sub-pixel retrieval.With the recent aid of high-resolution AMS ob-
servations, deviations in retrieved fire area resulting from errors in these
direct input variables and the subsequent effects on FRPf and FRPfflux can
be assessed in great detail. Therefore, this paper builds upon earlier
sub-pixel sensitivity studies by providing a detailed quantitative assess-
ment of the current retrieval's sensitivity to error sources (1)–(3) via
the California test cases used in Peterson et al. (in press). To complete
the study, an operational version of ourMODIS sub-pixel algorithm is ap-
plied to an independent, large wildfire event, allowing the overall perfor-
mance, limitations, and utility of the retrieval to be further explored and
assessed.

2. Data, study region, and the MODIS sub-pixel retrieval algorithm

This study incorporates the same California test cases (displayed in
Fig. 1) and AMS data as Peterson et al. (in press), which also provides
a detailed description of the sub-pixel algorithm development and as-
sessment procedure, including a history of previous methodologies.
For completeness, the following sections provide only a brief summary
of this methodology. Section 7 describes the additional modifications
that are required for operational purposes in the context of an indepen-
dent case study of Texas and Oklahoma fire events during September
2011.

2.1. Data and study region

The MODIS sub-pixel retrieval requires the integrated use of the fol-
lowing three data products, either from MODIS/Terra or MODIS/Aqua,
at a spatial resolution of 1 km2 at nadir: (1) level 1B radiance data
(MOD021KM/MYD021KM), (2) geolocation data (MOD03/MYD03), and
(3) level 2, collection 5 fire product data (MOD14/MYD14). Data sources
(1) and (2) are used to provide the radiance of the entire pixel and all rel-
evant geometry information, such as solar zenith (SZA), relative azimuth
(RAZ) and viewing zenith (VZA) angles (e.g.Wolfe et al., 2002), while the
fire product (3) provides information onfire locations, 4 and 11 μmback-
ground temperatures, and FRPp (Giglio et al., 2003; Justice et al., 2002;
Kaufmanet al., 1998a). The sub-pixel retrieval is only applied to the pixels
that are flagged as fire pixels by the standard MODIS fire product, and is
therefore subject to any limitations from the MODIS fire detection algo-
rithm. For example, reasonable fire detections are only possible when
the sub-pixel fire size is greater than ~100 m2 (Giglio et al., 2003) and
the FRPp detection limits are about 9 and 11 MW for Terra and Aqua, re-
spectively (Schroeder et al., 2010).

TheAMS,flownaboard theNASA IkhanaUnmannedAirborne System
(UAS), provides the high-resolution assessment data, which can vary in
spatial resolution from 5 to 50 m due to changes in the platform altitude
and the user-selectablefield of view. TheAMShas 12 spectral channels in
the visible through thermal-infrared (Ambrosia and Wegener, 2009;
Ambrosia et al., 2011a, 2011b). While several studies provide the
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theoretical basis for a general AMS fire detection algorithm (Cahoon, et
al., 1992; Flasse and Ceccato, 1996; Li et al. 2000a, 2000b), Peterson et
al. (in press) developed a separate algorithm specifically designed to
use the AMS 3.75 μm and 10.76 μm channels to separate the regions of
actively burning fires from the remaining data points (including smol-
dering and cooling) within the boundaries of any MODIS fire pixel. The
AMS generally provides 4000 to 9000 data points per MODIS fire pixel,
thus producing a detailed representation ofMODIS sub-pixel fire proper-
ties. However, the smoldering region is largely neglected because the
AMS data used in this study were collected for very intense fire events
in California, and the sub-pixel calculation is likely weighted toward re-
trieving the flaming region (largest contribution to pixel MIR radiance).

Similar to MODIS, the AMS fire detection algorithm is threshold-
based. However, modifications are required to overcome the unique
challenges encountered from changes in the AMS flight altitude and sur-
face topography,which can affect the background temperature and cause
variations in the fire detection thresholds (Peterson et al., in press). As a
result, the background temperature selection criteria and fire detection
thresholds used in AMS fire assessment algorithm by Peterson et al. (in
press) are image-based, and allowed to vary within the boundaries of
each MODIS fire pixel. While the AMS reliably measures brightness

temperature at 11 μm, the 4 μm channel saturates at high brightness
temperatures (510–530 K). The AMS fire assessment algorithm assumes
that any data at the saturation level are hot enough to be considered as
fire, but the remainder of the data below the saturation level must also
be examined. Therefore, the AMS fire detection thresholds are set at a re-
gion of low density that separates the flaming region from the remaining
data in the 4 and 11 μmhistograms (Peterson et al., in press). The areas of
the individual AMS pixels with a temperature greater than the 4 and
11 μm fire thresholds are then summed to calculate the fire hot spot
area within the MODIS pixel under consideration (assessment data).
With the saturation limit in the 4 μmchannel precluding anyfire temper-
ature or FRP investigations, the AMS fire assessment algorithm is primar-
ily used for fire area and background temperature information.

The temporal difference betweenAMS andMODIS is limited to amax-
imumof 16 min before or after theMODIS overpass to ensure thatMODIS
andAMSare observing the samefire characteristics, near-simultaneously.
With this collocation criterion, a total of six AMS flight data scans from
August to October 2007, including single and multiple fires, are available
for a fire event in Northeastern California and a Santa Ana driven event in
Southern California (Peterson et al., in press). The Ikhana commonly flies
over the same fire event multiple times on adjacent, short-duration (3–

Fig. 1. Map showing the locations of the six California test cases as red circles (daytime) or a blue box (nighttime). The specifics of each MODIS and AMS collocation are provided in the side
panel, with the viewing zenith angle (VZA) corresponding to themean VZA for all MODIS fire pixels in each test case. Green shading indicates regionswhere evergreen, needle-leaf forest is the
dominant vegetation type and black contours indicate variations in topography, with a contour interval of 500 m. In addition, the locations of the two relevant radiosonde stations are displayed
as brown triangles (see Section 3.1 for details). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5 min) flight tracks, occasionally allowing a single MODIS scene to pro-
vide two collocations (e.g. test cases #3 and #4 in Fig. 1). In addition,
Fig. 1 shows that all six of these California test cases are located in forested
regions with complex topographic features.

2.2. MODIS sub-pixel retrieval algorithm

The FRPf calculation is based on a modified, bi-spectral retrieval of
sub-pixel fire area and temperature (Peterson et al., in press). Prior to
the calculation step, output from the Santa Barbara DISORT Atmo-
spheric Radiative Transfer (SBDART) model is used to correct the ob-
served radiances at 4 and 11 μm for atmospheric and solar effects.
SBDART calculates the radiative transfer from the ultraviolet through
the infrared wavelengths (Ricchiazzi et al., 1998), and can simulate
the top-of-atmosphere (TOA) radiance as a function of fire area frac-
tion (P, where 0bPb1) and fire temperature (Tf). When applying
SBDART to the MODIS sub-pixel retrieval, the observed radiances at
4 and 11 μm, denoted by L4 and L11, respectively, are

L4 ¼ τ4PB λ4;Tfð Þ þ 1−Pð ÞL4b ð1Þ

L11 ¼ τ11PB λ11;Tfð Þ þ 1−Pð ÞL11b ð2Þ

where B(λ,T) is the Planck function, τ4 and τ11, respectively denote
the upward MIR atmospheric transmittance and the upward TIR at-
mospheric transmittance, and the background radiances at the TOA,
denoted by L4b and L11b, are a function of several variables expressed
respectively, as

L4b ¼ τ4 e4bB λ4;Tbð Þ þ 1−e4bð ÞI4ref½ � ð3Þ

L11b ¼ τ11e11bB λ11;Tbð Þ ð4Þ

where e4b and e11b, respectively denote the assumed background
emissivity, I4ref is the reflected solar radiance in the 4 μm channel at
the surface (equal to zero at night), and Tb is the surface kinetic back-
ground temperature (Dozier, 1981; Peterson et al., in press; Prins and
Menzel, 1992). The emissivity of the fire is commonly assumed to be
equal to one (e.g. Giglio and Kendall, 2001), which has been shown to
be a reasonable assumption for most fire events with thick fire fronts.
Therefore, Eqs. (1) and (2) do not include emissivity in the fire term.

By combining Eqs. (1)–(4), SBDART is run repeatedly for various sets
of the possible geometry values, Tf, and P, and the output TOA radiances
are saved together with the input parameters as a lookup table for 4
and 11 μm. Additional key entries in the lookup tables include various
sets of L4b and L11b, which can be used in place of Tb, e4b and e11b
(Eqs. (3) and (4)) because the MODIS fire detection algorithm, under
the assumption of identical surface and atmospheric conditions, provides
an estimate of the TOA brightness temperature for the surrounding
fire-free (background) pixels that can be used to directly compute L4b
and L11b (Giglio, 2010; Giglio et al., 2003). Therefore, for any given
MODIS fire pixel, Tf and P can be extracted from the lookup tables by
matching the viewing geometries, incorporating L4b and L11b as entries,
and using L4 and L11 as constraints. The actual retrieval implements a
multistep, iterative process (e.g. Shephard and Kennelly, 2003) to aid in
solving Eqs. (1) and (2) for each MODIS fire pixel in any given scene
(Peterson et al., in press). It is worth noting that while the MODIS fire
product provides an estimate of L4b and L11b, the simulation of TOA radi-
ance in the lookup tables requires the consideration of emissivity and at-
mospheric effects (e.g. τ4 and τ11) to ensure physical consistence in
Eqs. (1)–(4). As a result, the retrievalmay be sensitive to these parameters.

Following the retrieval of fire area and temperature, FRPf is calculat-
ed (units of Megawatts, above the mean background) via the Stefan–
Boltzmann relationship in the 4 μm channel

FRPf ¼ σ T4
f −T4

4b

� �
Af ð5Þ

whereσ is the Stefan–Boltzmann constant (5.6704×10−8 W m−2 K−4),
Tf is the retrieved kinetic fire temperature at the surface (not the pixel
temperature), Af is the retrieved fire area, and T4b is the 4 μmbackground
brightness temperature, which can be used as an approximation of sur-
face kinetic background temperature because atmospheric effects, espe-
cially from the column water vapor amount, are minor at cool 4 μm
temperatures (see Section 3). In contrast, the current MODIS FRPp is
based on a best-fit curve for thousands of simulated sub-pixel fire scenar-
ios, given by

FRPp ¼ 4:34� 10−19 T8
4−T8

4b

� �
Ap ð6Þ

where T4 is the pixel brightness temperature and Ap is the area of the fire
pixel (Giglio, 2010; Giglio et al., 2003; Kaufman et al., 1998a, 1998b,
2003). Peterson et al. (in press) show that these two pixel-level methods
are strongly related. However, FRPf may provide improved results for
off-nadir pixels due to the consideration of atmospheric effects, Earth-
sensor geometry, and the characteristics of each individual fire (other
than using a best fit methodology, such as Eq. 6).

In addition to the pixel-level FRPf retrievals, a clusteringmethodology is
implemented to reduce the potential for large, somewhat random errors,
such as inter-channel PSF effects and instrument noise (e.g. Peterson et
al., in press;Wooster et al., 2003; Zhukov et al., 2005, 2006). For simplicity,
a general summation method can be used, where each individual (pixel-
level) retrieved fire area and FRPf is summed to obtain the area and FRPf
of an entire fire event. Fire pixel clustering also allows the FRP fluxes to
be calculated by

FRPf flux ¼

Xn

i¼1

FRPfi

Xn

i¼1

Afi

ð7Þ

FRPp flux ¼

Xn

i¼1

FRPpi

Xn

i¼1

Api

ð8Þ

where the output is provided in units of W m−2 per fire pixel cluster
(Peterson et al., in press). While the FRPp flux is limited to the total area
of the fire pixel cluster, the FRPf flux provides a fire size-based representa-
tion of FRP that can be used in combination with retrieved fire cluster area
to aid in discerning the fire characteristics of any given event (e.g. a large
fire burning at a low intensity).

When calculating FRPf flux per individual fire pixel, the large uncer-
tainty produced by indirect effects is further augmented by the cancel-
ation of the fire area term (Eq. 7) because the offset in error between
retrieved fire area and temperature no longer exists (e.g. Zhukov et al.,
2006, also described in the following section). Therefore, the utility of
FRPf flux in the fine-scalemodeling of individual fires and smoke plumes
may be compromised. In contrast,mesoscale andglobalmodeling, one of
the primary applications for MODIS fire data, uses a grid mesh to cover
several fires (e.g. Wang et al., 2006; Wang et al., in press), and requires
the averaged energy over the total fire area to estimate smoke plume
buoyancy. The calculation of FRPf flux (Eq. 7) meets this requirement,
and is therefore the primarymotivation for using the sub-pixel retrieval.
Whilefire pixel clustering alleviatesmany of the indirect sources of error,
such as PSF effects (Peterson et al., in press), the assumption of the atmo-
spheric profile and background emissivity (e.g. Eqs. (3) and (4)), as well
as inherent errors from the MODIS fire product background brightness
temperature undoubtedly impact the accuracy of the sub-pixel retrieval
and the subsequent calculation of FRPf flux. Therefore, Sections 3, 4, and
5 are respectively devoted to quantifying the sub-pixel retrieval's uncer-
tainty associated with these variables and assumptions.
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3. Atmospheric profile

Considering that the AMSfire data used in this study are for California
fire events occurring in the late summer or early fall (Fig. 1), the atmo-
spheric profile in SBDART is assumed to be a representative, climatolog-
ically based mid-latitude summer profile (default profile) for the
Continental United States, which includes 2.92 g/cm2 of water vapor
in the atmospheric column (McClatchey et al. 1972; Ricchiazzi et al.,
1998). However, the day-to-day relative change of water vapor will
likely have an effect on the retrieval. Therefore, the sensitivity of the 4
and 11 μm channels to water vapor amount must be examined.

3.1. Variations in water vapor amount and temperature

As shown by Kaufman et al. (1998a), water vapor absorption is min-
imal in the primary (3.96 μm)MODIS fire detection channel, but its im-
pact at 11 μm is less certain. Fig. 2a and b is based on the water vapor
amount and show comparisons between the surface kinetic tempera-
ture (Tsfc) and the top-of-atmosphere (TOA) brightness temperature
(BTTOA) for a test case near nadir (case #1, mean VZA=13°) and a test
case at the edge of a given scene (cases #5 and #6, mean VZA=64°).
From this display, it is immediately evident that an atmospheric correc-
tion is required for the 11 μmchannel, evidenced by 11 μmBTTOA values
that are at least 100 K cooler than Tsfc (when Tsfc>~700 K), especially
when the VZA is 64° (longer path length). At the 4 μm background
BTTOA range, commonly 290–315 K, the difference between Tsfc and
BTTOA is very small (b10 K), and is the primary reason for not correcting
the MODIS 4 μm background temperature (T4b) in Eq. (5). However, an
atmospheric correction does become necessary as the 4 μm surface
temperature increases (presumably from fire) because the relative
change between Tsfc and BTTOA remains approximately the same. For ex-
ample, a Tsfc of 400 Kwill produce a 4 μmBTTOA that is ~8 K (16 K) cool-
er when the VZA is 13° (64°), but this change grows to ~80 K (160 K)
when the surface temperature warms to 1400 K.

The deviations in BTTOA relative to the values obtained in Fig. 2a and b
are displayed in Fig. 2c–f as a function of Tsfc and several potential col-
umnwater vapor amounts. At 4 μm(Fig. 2c and e), a large increase or de-
crease in columnwater vapor (from themid-latitude summer value)will
produce small changes in BTTOA, falling within the ranges of ±14 K and
±26 Kwhen theVZA is respectively 13° and 64°, for any given Tsfc value.
In contrast, the steep slope and tight gradient of the contours in Fig. 2d
and f shows that the 11 μm BTTOA is much more sensitive to small
changes in column water vapor than 4 μm, especially when Tsfc is high
(e.g. >1000 K). In these cases, the 11 μm BTTOA can change by more
than±100 K. The impact of water vapor absorption is evenmore signif-
icant at the VZA of 64° (Fig. 2f), where deviations in BTTOA of more than
±200 K can occur for relatively small changes in column water vapor
amount, especially for high values of Tsfc.

The larger impact of columnwater vapor amount on the11 μmBTTOA
partially results from a relatively large reduction in atmospheric trans-
mission (as compared to the counterparts at 4 μm). For example, the
mid-latitude summer water vapor profile (2.92 g/cm2) produces a
transmissivity of about 0.96 and 0.87 at 4 and 11 μm, respectively. How-
ever, a modified profile, containing 1.1 g/cm2 of column water vapor,
produces 4 and 11 μm transmissivities of 0.98 (2% change) and 0.93
(7% change), respectively. In addition, the BTTOA of a fire pixel may in-
crease relatively less at 11 μm when compared to 4 μm because the
wavelength of peak emission shifts toward shorter wavelengths as the
temperature increases (e.g. Wein's Law). Therefore, the combination of
increased water vapor absorption and lower sensitivity to warm tem-
peratures likely explains the large surface to TOA temperature differ-
ences observed at 11 μm in Fig. 2d and f, which may ultimately affect
the accuracy of the bi-spectral, sub-pixel retrieval.

In many California fire events, the atmospheric water vapor amount
will be low, especially near the surface, ultimately resulting in a lower
column water vapor amount than the mid-latitude summer profile. In

fact, most of the test cases are associated with a Santa Ana synoptic pat-
tern and cloud cover effects are minor, even in the northern California
test cases (#5 and #6). MODIS level-2 water vapor data (MOD05_L2/
MYD05_L2, King et al., 2003) show that the column water vapor in the
vicinity of the six test cases ranges from about 0.75 to 1.70 g/cm2,
which is a considerable deviation from the mid-latitude summer value
of 2.92 g/cm2 and falls near the minimum value considered in Fig. 2c–
f. Any impacts from variations in the temperature profile are also
uncertain.

Based on the potential for large, regional deviations in the atmo-
spheric profiles, amean observed sounding fromall six test caseswas de-
rived and compared to themid-latitude summer SBDART profile. For the
southern California test cases (#1–4 in Fig. 1), observed soundings were
obtained fromSanDiego, California (station KNKX, #72293), while Reno,
Nevada (station KREV, #72489)was used for theNorthern California test
cases (#5–6 in Fig. 1).With theMODIS overpass occurring near themid-
point between the 12:00 Z (day 1) and 00:00 Z (day 2) sounding times
for test cases #1–4 (between 00:00 Z and 12:00 Z on day1 for test
cases #5–6), the sounding at the time of the MODIS overpass is simply
the mean of the a priori and a posteriori soundings. The observed atmo-
spheric profile (to be compared with the mid-latitude summer profile)
can then be produced by calculating median of the four mean water
vapor and temperature profiles coincident with the four MODIS over-
passes. Fig. 3a and b shows that the mid-latitude summer temperature
profile falls within the observed range of temperature at many levels,
but deviates by 2–5 K near the surface (inversion effects) and by10 K
near the tropopause.

The observed profile is computed using only themandatory pressure
levels, which are subsequently interpolated to the levels of the SBDART
input sounding. As a result, the columnwater vapor amount is fairly strict
and may change if more levels were considered or if the local sounding
observation timeswere closer to theMODIS overpass times. For example,
the total column water amount of the observed profile ranges from 0.59
to 1.35 g/cm2, which is lower than the range of 0.75 to 1.70 g/cm2 pro-
vided by MODIS water vapor data. However, both techniques show
there is a considerable deviation from the mid-latitude summer value,
resulting from reduced mixing ratios in the lowest 75% of the sounding
(Fig. 3c and d). A large range in mixing ratio values also exists below
5 km due to the potential for marine influences (e.g. afternoon sea
breeze), primarily from test cases #1–4, impinging on these otherwise
dry regions of the western United States. However, the observed range
commonly falls below the mid-latitude summer values and suggests
that uncertainty may be introduced in the sub-pixel retrieval, primarily
from the increased 11 μm transmissivity.

3.2. Retrieval uncertainty associated with the atmospheric profile

While earlier studies on sub-pixel retrievals did incorporate an at-
mospheric correction (e.g. Giglio and Kendall, 2001; Zhukov et al.,
2005, 2006), few, if any, of these studies show the effects originating
from an improper assumption of the atmospheric profile. In this study,
modified 4 and 11 μm lookup tables were produced using the observed
temperature andwater vapor profiles described in the previous section,
allowing the theoretical relationships between the 4 and 11 μm pixel
temperature to be examined for each atmospheric profile. Specific ex-
amples are presented in Fig. 4a–d, corresponding to the sub-pixel
retrieval's lookup table for a single fire pixel in test case #1 when the
VZA=14°, SZA=48°, and RAZ=165°. Each dashed curve represents
the pixel temperatures at 4 and 11 μm that result from specified values
of fire area fraction for varying fire temperatures. Each solid curve, on
the other hand, represents the pixel temperatures that result from spec-
ified values of fire temperature for varying fire area fractions. From this
display, it is immediately evident that the 4 μm channel is more sensi-
tive to changes in fire temperature and the 11 μm channel is more sen-
sitive to changes in fire area fraction. Therefore, drawing from thewater
vapor effects at 11 μm(Fig. 2d and f), changes in the atmospheric profile
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are likely to have the largest impact on retrieved fire area because for
the same fire area fraction and fire temperature, less water vapor will
greatly increase the brightness temperature at 11 μm.

When comparing the retrieval that uses themid-latitude summer at-
mospheric profile (Fig. 4a), with the retrieval that is modified for the

observed atmospheric profile (Fig. 4c), the reduced column water
vapor in the latter case renders a shift of the entire lookup table towards
higher 11 μm brightness temperatures, with little change based on the
4 μm channel. Consequently, the primary impact on the retrieval is a re-
duction in fire area fraction (between Fig. 4a and c) for any given set of

Fig. 2. Displays showing the sensitivity of the 4 and 11 μm channels to variations in atmospheric column water vapor amount for a case with a solar zenith angle of 48° and relative azimuth
angle of 165°. (a) and (b) Comparisons between Tsfc andBTTOA using themid-latitude summer columnwater vapor amount (2.92 g/cm2) for the 4 and 11 μmchannels, respectively. VZAs of 13°
and 64° are respectively denoted by the solid green and dashed red lines. (c)–(f) Contour plots showing the change in BTTOA relative to the values obtained using themid-latitude summer col-
umnwater vapor amount as a function of Tsfc and columnwater vapor amount. The 4 and 11 μmchannels are respectively displayed in (c) and (d) for the viewing zenith angle of 13°. Similarly,
(e) and (f) correspond to the viewing zenith angle of 64°. The solid, black contour indicates themid-latitude summer columnwater vapor amount and dotted blue, dashed green, and solid red
contours indicate a positive (or negative) change in BTTOA of b50 K (>−50 K), 50 to 149 K (−50 to−149 K), and≥150 K (≤−150 K), respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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pixel temperatures. However, the retrievedfire temperature concurrently
increases (to a lesser extent) due to the minimal atmospheric effects at
4 μm. The superimposed red dot displayed in Fig. 4b and d (correspond-
ing to the location in Fig. 4a and c) represents the actual retrieval result
(described in Section 2.2) andhighlights the effect causedby a change in
the atmospheric profile. This sample fire pixel has an observed 4 μm
pixel temperature of 366.8 K and 11 μm pixel temperature of 306.3 K,
which produces a retrieved fire area fraction of 0.012 and a fire temper-
ature of 660 K using themid-latitude summer lookup tables. In contrast,
the fire area fraction decreases to 0.007 and the fire temperature in-
creases to 720 K when using the modified lookup tables.

Similar to Fig. 4, the retrievedfire area for all 33 validfire pixels (from
test cases #1 to #6) is overestimated when using themid-latitude sum-
mer atmospheric profile (red data points in Fig. 5a) compared to the ob-
served profile (blue data points in Fig. 5a), with a mean difference of
69.1%. Fig. 5a also shows that this overestimation is slightly larger for
the fire pixels with large VZAs, which can be explained by the effect of
longer path lengths (displayed in Fig. 2e and f). Interestingly, the

modified retrieval for the observed atmospheric profile does not im-
prove the correlation between the retrievedfire area and the AMS obser-
vations (R=0.57) when compared to the counterparts from using the
mid-latitude summer profile (R=0.59, Table 1). In fact, the observed
profile seems to result in retrieved fire areas that may even be too low
compared to AMS, which likely stems from the low column water
vapor amount value of 1.06 g/cm2. Fig. 2c–f shows that a column water
vapor observation of less than ~1.5 g/cm2 falls in the region where the
BTTOA changes rapidly for small changes in water vapor amount. There-
fore, relatively small errors in the water vapor profile will result in a rel-
atively large change in retrieved fire area.

As a result of the offsetting changes in fire area fraction and temper-
ature (Fig. 4) from the observed profile, it can be expected that the effect
on FRPf (Eq. 5) will be relatively small in comparison to fire area. Fig. 5b
incorporates the current MODIS FRPp (Eq. 6) as a base for comparison,
and shows that the change in FRPf is indeed small, with a mean 20.7%
and many pixels less than 10%. As with fire area, the largest differences
occur with large VZAs, but also at high FRP values. In these cases, the

Fig. 3. Atmospheric profile comparisons. (a) Comparisonbetween the observed (dashed red) and thedefaultmid-latitude summer (solid black) temperature profiles. Red error bars indicate the
range of observed temperatures at each height AGL, with each red data point corresponding to themedian. (b) The observed temperature profile (interpolated tomatch the height levels of the
default mid-latitude summer profile) subtracted from the default profile (absolute change). (c) and (d) Same as (a) and (b), respectively, but for the moisture profiles (mixing ratio), with the
relative change (observed/default) in mixing ratio used in (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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surface fire temperature is likely larger, which would enhance the effect
of an atmospheric correction based on Fig. 2. The observed profile also
increases the correlation between FRPp and FRPf (R=0.98) and reduces
the RMSE by 59.4% (Table 1). However, caution must be used when
interpreting this result because FRPp itself is based on a best-fit method-
ologywith its own uncertainty (e.g. Kaufman et al., 1998a), and detailed
validations of FRP via the AMS (or any other sensor) are currently
unavailable. Therefore, comparisons between FRPf and FRPp should be
considered as an indirect quality check rather than a direct validation
(Peterson et al., in press).

Regardless of the atmospheric profile, Fig. 5c highlights the larger and
more realistic values of the FRPf flux (3000–15,000 W m−2, Eq. 7) in
comparison to the FRPpflux (20–80 W m−2, Eq. 8),which serves as a ref-
erence point for the standard MODIS fire product (Peterson et al., in
press). However, the FRPfflux values produced using the observed profile
are larger than their counterparts produced by the mid-latitude summer
profile, with a mean difference of 53.2% (Fig. 5c). This stems from the
large impact that variations in water vapor amount have on retrieved
fire area (Fig. 5a and Table 2). As displayed in Fig. 5a, the lower column

water vapor amount in the observed profile will significantly reduce
the retrieved fire area, which produces a smaller denominator in Eq. (7)
and concurrently increases the cluster FRPf flux. Therefore, an accurate
selection of the atmospheric profile is essential for an accurate retrieval
of cluster FRPf flux, especially when the atmospheric column water
vapor amount is very low. This study only provides one such example
and other locations with very low (or very high) column water vapor
amounts, as well as regions with large seasonal temperature variations
(e.g. winter fire events) may also require a modified atmospheric profile.
Therefore, if the retrieval is applied on a global-scale, a variety of atmo-
spheric profiles will be included with the lookup table calculations.

4. Background emissivity

The 4 and11 μmbackgroundemissivities (e4b and e11b in Eqs. (3) and
(4)) are assumed to be respectively equal to 0.95 and 0.97 (e.g. Giglio et
al., 1999; Petitcolin and Vermote, 2002; Tang et al., 2009), which is true
for relatively dense, green vegetation, such as the temperate evergreen
forests used in this study. However, vegetated surfaces with a higher

Fig. 4. Theoretical relationships between the 4 and 11 μmpixel temperature for various values of fire temperature and fire area fraction when using the input data for California test case #1
(displayed in Fig. 1). Panels (a) and (c) respectively show the lookup tables needed for the sub-pixel retrieval using the climatologically based mid-latitude summer water vapor profile
(2.92 g/cm2) and the observed water vapor profile (1.06 g/cm2). Each dashed curve represents the relationship between the 4 and 11 μm pixel brightness temperatures at specified values
offire area fraction for varyingfire temperatures. Each solid curve represents the relationship between the4 and11 μmpixel brightness temperatures at specifiedvalues offire temperature for
varying fire area fractions. Zoomed views of the lower-left portion of (a) and (c) are respectively displayed in (b) and (d), and correspond to the location of the superimposed red dot, which
indicates a sample fire pixel from California test case #1. The specific retrieval inputs and results are provided in the black boxes.
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reflectivity, such as dry grassland, may result in a large departure from
the assumed values andmay also result in a significant inter-channel dif-
ference. For example, Giglio et al. (1999) show that emissivities for dry
savannah or dry temperate grasslands are about 0.86 and 0.92 at 4 and
11 μm, respectively.

In order to study howeach region's background emissivitymay affect
the retrieval, the MODIS sub-pixel algorithm is run for each potential
emissivity situation provided in the literature, ranging from 0.75–1.0 at
4 μm and 0.91–1.0 at 11 μm. For most pixels, the difference in retrieved
fire area is between 6.2% and 25.3% with a mean of 11.3% (Table 2),

which corresponds to a change in fire area from less than 100 m2 to
over 1000 m2. In addition, the potential variability in retrieved fire area
is independent of the size of the fire event (based on AMS observations,
not displayed). However, if the dry grass situations are removed, then
the mean variability would decrease to ~3.4% and most pixels would
fall in the range of 1% to 7%.

The effect of background emissivity on FRPf and FRPf flux is also
small, but in contrast to the atmospheric profile sensitivity, FRPf is actu-
ally the most sensitive output variable (Fig. 5d and Table 2) due to the
larger range of potential emissivity values associated with the 4 μm
channel. As shown in Fig. 4, the 4 μm channel is highly sensitive to
changes in retrieved fire temperature, hence this dual channel emissiv-
ity simulation affects FRPf slightly more than retrieved fire area, with a
mean variability of 19.2%. Fig. 5d shows that this variability increases
with increasing FRPf, which is largely independent of the observed
VZA. However, aswith retrievedfire area, the sensitivity of FRPf to back-
ground emissivity becomes almost negligible if the dry, brown vegeta-
tion scenarios are removed. Therefore, with the six test cases located
in regions that are dominated by forest (Fig. 1), it is very likely that
the assumed emissivity values (0.95 at 4 μm and 0.97 at 11 μm) will
not result in large retrieval errors. In fact, regions that are completely
dominated by dry, brown vegetation are the only situation where the
emissivity impact would become significant. In these cases, emissivity

Fig. 5. Retrieval sensitivity to atmospheric columnwater vapor amount and background emissivity. (a) Pixel-level comparisons between retrievedMODIS fire area and AMS observed fire area,
with black error bars indicating the change in retrievedfire area using themid-latitude summer (red symbols) and the observed (blue symbols)water vapor profiles. (b) and (c) Sameas (a), but
respectively for pixel-level comparisons between FRPp (MODIS pixel-based FRP) and FRPf (sub-pixel-based FRP) and cluster-level comparisons between FRPp per cluster pixel area (FRPp flux)
and FRPf per fire area (FRPf flux) using the sum of pixel-level retrievals method. The California test case labels in (c) correspond to Fig. 1. The plot symbol type in (a–c) indicates the viewing
zenith angle of each pixel. (d) Same as (b), but gray error bars are used to indicate sensitivity to background emissivity selection for several green and brown vegetation scenarios, with the
color scheme indicating the viewing zenith angle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Statistics for the atmospheric effect on retrieved fire area and FRP.

Column water vapor amount (g/cm2) RMSE R R2

MODIS (retrieved) vs. AMS (observed) fire area (km2)
2.92 (mid-latitude summer) 0.03 0.59 0.35
1.06 (observed) 0.04 0.57 0.32

Sub-pixel FRPf vs. Current MODIS FRPp (MW)
2.92 (mid-latitude summer) 77.57 0.93 0.86
1.06 (observed) 31.5 0.98 0.96
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or NDVI data fromMODIS (or other sources) could be incorporated as a
direct input variable, which may prove valuable if the sub-pixel algo-
rithm is implemented on a global-scale.

5. Background temperature

For any sub-pixel calculation, the background TOA brightness
temperature (BTb) is defined as the non-burning portion of the pixel
(e.g. Dozier 1981), but this value is not currently obtainable using
MODIS data for that pixel. Therefore, the MODIS fire detection algorithm
approximates the BTb via a neighborhood searchwithin a squarewindow
that progressively widens as necessary around a potential fire pixel until
at least 25% of the pixels in the square are valid background pixels
(absence of fire) and the number of these valid pixels is at least eight
(Giglio et al., 2003; Kaufman et al., 1998a). Not surprisingly, this method
may result in a large difference between the in-pixel BTb and the back-
ground temperature estimated by MODIS (hereafter BTbm) especially
with large VZAs.

5.1. Mischaracterization of the MODIS 11 μm background temperature

The bi-spectral approach in the MODIS sub-pixel algorithm requires
an accurate estimation of both the 4 and 11 μm BTbm (Peterson et al.,
in press). While the MODIS fire detection algorithm uses the same fire-
free pixels to compute the BTbm for the 4 and 11 μm channels (Giglio
et al., 2003; Justice et al., 2002), few, if any, subsequent calculations
(e.g. FRPp) require the use of the 11 μm BTbm, thus any errors at 11 μm
may have gone unnoticed or have been disregarded. For example, 3
out of the 37MODIS fire pixels used in the test cases have a pixel bright-
ness temperature that is less than the BTbm at 11 μm, while the 4 μm
brightness temperatures display no such mischaracterization (Fig. 6).
The three pixels with an error also occur during the daytime, which
may increase the background noise due to unequal heating of the sur-
face. Regardless, any such error produces a major limiting factor on the
retrieval because sub-pixel calculations are not possible for any of
these pixels, unless an improved background characterization technique
is developed. Zhukov et al. (2006) described a similar issue with the
Bi-Spectral InfraredDetection (BIRD) small satellitemission (operational
from 2001 to 2004), but the spectral properties, pixel resolution, and
background temperature methodology were significantly different
from the MODIS sensor.

As described in Section 3, the MODIS 11 μm channel is much more
sensitive to the relative change of cooler temperatures than the 4 μm
channel, suggesting that the BTbm mischaracterization observed in the
three MODIS fire pixels is most likely to occur when the sub-pixel fire
area is very small (Zhukov et al., 2006). Therefore, to create a spatial per-
spective on the sub-pixel fire properties of these pixels, the AMS data
are incorporated (Fig. 7a–c) and show that all three fire pixels actually
contain fairly large sub-pixel fire area fractions (~0.01). However, two
of the pixels (Fig. 7a and b) contain very diffuse fire hot spots and the
remainingpixel (Fig. 7c) contains pixel edge hot spots, which can greatly
reduce the mean fire pixel temperature due to point spread function ef-
fects (Calle et al., 2009; Peterson et al., in press). Furthermore, the 11 μm
AMS data (free from saturation) can be averaged to provide a general
representation of the sub-pixel fire brightness temperature (FTAMS),
whichwill be considerably lower than at 4 μmdue to the reduced sensi-
tivity to higher temperatures, but will still be thewarmest portion of the

Table 2
Sensitivity summary for the MODIS sub-pixel retrieval.

Variable % change in variable

33 MODIS fire pixels Min. Max. Mean

Atmospheric profile (mid-latitude summer vs. observed)
Retrieved fire area 10.02 102.22 69.05
FRPf 1.85 42.1 20.68
Cluster FRPf flux 34.47 68.48 53.19

Background emissivity (0.75–1.00)
Retrieved fire area 6.22 25.27 11.29
FRPf 13.86 30.86 19.21
Cluster FRPf fluxa 10.9 16.43 9.06

4 μm background temperature (±5.0 K from observation)
Retrieved fire area 4.18 55.67 22.92
FRPf 2.92 43.03 13.71
Cluster FRPf fluxa 14.09 36.56 20.78

11 μm background temperature (±1.0 K from observation)b

Retrieved fire area 50.6 196.22 121.96
FRPf 5.29 79.03 37.61
Cluster FRPf fluxa 93.68 131.44 104.95

a FRPf flux sensitivity is based on the sensitivity to retrieved fire area.
b Background temperatures are not allowed to increase above the pixel temperature.

Fig. 6. Scatterplots showing thepixel andbackgroundbrightness temperatures at 4 μm(top)
and 11 μm (bottom) for each MODIS fire pixel from the California test cases. Day and night
observations are displayed as dots and triangles, respectively. The color scheme indicates
whether each day or night pixel is valid or has a background temperature mischaracteri-
zation error. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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pixel. This analysis shows that the three MODIS fire pixels displayed in
Fig. 7a–c have amean11 μmFTAMS less than430 K,which is low in com-
parison to highly concentrated sub-pixel fire fronts that can produce
mean 11 μm FTAMS greater than 460 K (Peterson et al., in press). There-
fore, the observed combination of diffuse or pixel edge hot spots, at rel-
atively low FTAMS values, likely reduces the mean MODIS 11 μm fire
pixel brightness temperature to the point where it cannot be distin-
guished from general background noise.

At 11 μm, background noise can result from large burn scars, smol-
dering regions, or a relatively warm, heterogeneous location (Schroeder
et al., 2010). Additional variations in BTbm may result from changes in
land cover (e.g. forest to exposed rock), topography, and aspect. The
test cases used in this analysis are in fairlymountainous terrain in Califor-
nia (Fig. 1), a situation that may produce variations in BTbm from high to
low elevations and from slopes that face the sun (south slopes) versus
slopes that face away from the sun (north), as well as vegetated to
non-vegetated regions. Fig. 8a and b highlights the 11 μm background
noise surrounding the three pixels with an 11 μm mischaracterization
using the MODIS and high-resolution AMS data. While there is an offset
of about 5 K between sensors (produced from differences in altitude
and scan method), both scans (Fig. 8a and b) show how complex topog-
raphy and changes in aspect produce variations in 11 μm temperature of
more than 10 K over very short distances in these daytime scenes. It is
also evident that all three non-valid fire pixels (white shading in Fig. 8)
are located in a relatively cool region of the scan with much warmer re-
gions in the immediate vicinity. Therefore, depending on how wide the
MODIS background pixel window becomes, the resulting mean 11 μm
BTbm has the potential to be warmer than the fire pixel temperature, es-
pecially since as many as 21 valid (non-fire) background pixels may be
included (e.g. Giglio et al., 2003; Kaufman et al., 1998a). With the pixel-
level retrieval rendered impossible, these background temperature

errors will affect the FRPf and effectively reduce the retrieved fire area
in the corresponding fire pixel cluster, thus a quality control flag is cur-
rently being considered.

5.2. Retrieval uncertainty associated with background temperature

WhileMODIS is limited to a backgroundwindow approximation, the
AMS data allow the true in-pixel background brightness temperature
(BTbp) to be calculated based on the distribution of AMS pixel tempera-
tures at 4 and 11 μmwithin theMODIS pixel footprint (Peterson et al., in
press). Fig. 9a and b shows that the BTbp and BTbm are strongly correlat-
ed (R4 μm=0.88 and R11 μm=0.92), but for many pixels, the BTbm is
cooler than the BTbp, which may result from differences in sensor char-
acteristics. For the daytime test cases, these deviations are reduced at
the smallest VZAs (blue data points), suggesting that off-nadir pixel
growth may influence the background temperature noise. However,
there is paucity of available data and the test cases with the largest
VZAs (64°) occur at night with no solar impact, which may explain the
stronger agreement between BTbp and BTbm in the largest VZA cases (or-
ange data points). Even still, Fig. 9a and b shows that there can be a con-
siderable difference between the MODIS fire product and the AMS-
derived in-pixel background brightness temperatures.

The incorporation of AMS data also allows the variability (±1.0
standard deviation) of the BTbp region (e.g. not flaming or smoldering)
to be visualized (gray error bars in Fig. 9a,b). From this illustration, it is
clear that the 4 μm BTbp region contains a larger range in temperature
(~10 K) than at 11 μm (~5 K), suggesting that solar reflectivity may
play a role. In general, the variability of the BTbp increases as the VZA
(pixel size) increases. However, the MODIS fire pixels at the largest
VZAs are nighttime test cases where the temperature variability in the
background region of the pixel should be reduced. At 4 μm (and to a

Fig. 7. Spatial displays of the AMS-derived fire locations (red shading) within the three MODIS fire pixels (a–c) that have a brightness temperature less than the background. Black polygons
indicate the boundaries of each MODIS fire pixel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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lesser extent at 11 μm), many of these nighttime, large VZA pixels have
the largest variability in the BTbp. In these cases, the large size of the
background region may outweigh the effect of nighttime observation
by allowing a wider variety of surface features, such as valleys and
ridges (complex topography), to be contained within the boundaries
of the MODIS fire pixel, greatly affecting the sub-pixel temperature dis-
tribution, even at night. Therefore, Fig. 9a and b also highlights the com-
plexities in obtaining an accurate background temperature in a
heterogeneous environment, where relatively large variations can
occur even within the boundaries of an individual MODIS fire pixel.

The impacts from these background brightness temperature errors on
the sub-pixel results are drastically different between the 4 and 11 μm
channels. Based on Fig. 9a, it is possible to observe a 4 μm BTbp error of
5 to 10 K. However, an error of 5 K produces a relatively small change
in retrieved fire area, averaging 23.0% (Fig. 9c, Table 2). The effect on
FRPf and the cluster FRPf flux is also small, with mean changes of 13.7%
and 20.8%, respectively (Table 2). The error bars in Fig. 9c display the
resulting fire area variability on a per pixel basis, produced by running
the sub-pixel retrieval with deviations of ±1.0 K from the observed
BTbmup to amaximumdeviation of±5.0 K. A closer examination reveals
that the resulting change in retrieved fire area is very small for large fires
with a high FRPf (~4%) and larger for smaller fires with lower FRPf values
(40–50%). This discrepancy can be explained by fires with a high FRPf co-
inciding with a much larger difference between the flaming and the
background regions than with low FRPf fires. Therefore, high FRPf fires
are not as susceptible to BTbm errors as low FRPf fires.

At 11 μm (Fig. 9d), the error bars were produced by running the
sub-pixel retrieval with deviations of ±0.5 K from the observed BTbm
up to amaximumdeviation of±1.0 K, provided that the BTbmwas cooler
than the fire pixel brightness temperature. In this case, the small 1.0 K
error in 11 μm BTbm produces in an enormous change in retrieved fire
area, occasionally reaching an order of magnitude or more. As with

4 μm, smaller fires with low FRPf are affected more than larger fires
with a high FRPf, but the smallest change in retrieved fire area is still at
least 50% (Table 2). The incomplete error bars in Fig. 9d show that this
simulation of a small BTbm error still resulted in several pixels that
reached themischaracterization threshold described in the previous sec-
tion, where the retrieval was rendered impossible because the BTbm be-
came warmer than the pixel brightness temperature. Not surprisingly,
the large errors observed in Fig. 9d also produce relatively large devia-
tions in FRPf, which increase with large VZAs (Fig. 9e). Similarly, the var-
iability in FRPf, along with the large effect on retrieved fire area, greatly
influences the cluster FRPf flux values, which change by more than 90%
for all six fire clusters (Fig. 9f). However, this variability of FRPf flux (at
both 4 and 11 μm) is based solely on the highly sensitive fire area com-
ponent (denominator in Eq. 7). Therefore, Fig. 9f represents a worst-
case scenario for an error of ±1.0 K, and any variations in FRPf
(shown in Fig. 9e) may mitigate the FRPf flux sensitivity. Similarly, a
cluster that is primarily comprised of fire pixels with high FRPf values
(e.g. >150 MW) will reduce the FRPf flux sensitivity via the fire area
component (Fig. 9d).

6. Discussion

The previous three sections clearly show that several potential direct
sources of error in the sub-pixel retrieval (summarized in Table 2), such
as the atmospheric profile and background emissivity assumptions, are
contained within the uncertainty range of small (±1.0 K) errors in the
11 μm BTbm. Furthermore, the BTbp displayed in Fig. 9b shows that var-
iations in the 11 μm BTbm may occasionally reach up to 5 K, greatly in-
creasing the uncertainty displayed in Fig. 9d. The sensitivity analysis of
Giglio and Kendall (2001) showed a similar results, where the retrieved
fire area was roughly 10 times more sensitive to errors in the 11 μm
background brightness temperature than at 4 μm. Therefore, this

Fig. 8.Maps showing the 11 μmbrightness temperature forMODIS (left) andAMS (right) using California test case#1 (a) and case#3 (b). Black polygons indicate the boundaries ofMODISfire
pixels and a white-filled polygon indicates a MODIS fire pixel with a brightness temperature that is less than the background.

242 D. Peterson, J. Wang / Remote Sensing of Environment 129 (2013) 231–249



Author's personal copy

analysis confirms the results of previous theoretical studies (e.g. Giglio
and Kendall, 2001; Zhukov et al., 2006), and suggests that the 11 μm
BTbm is the primary factor limiting the accuracy of sub-pixel calcula-
tions, especially for small fires with a low FRPf.

The results from this study suggest that the atmospheric profile as-
sumption is the second principle source of error (Table 2), and will
overestimate retrieved fire area for fire pixels observed in regions of

low columnwater vapor amount, when using the currentmethodology.
However, incorporating multiple profiles into the retrieval process and
matching the observed columnwater vapor amount to the closest atmo-
spheric profile can easily alleviate this problem. Therefore, the BTbm se-
lection methodology is the primary focus for improvement, especially
for future satellite missions, such as NPP VIIRS and GOES-R. Currently,
BTbm selection is heavily weighted on the 4 μm channel to ensure the

Fig. 9. Retrieval sensitivity to background brightness temperature. (a) and (b) Comparisons between the MODIS fire product BTbm and the AMS derived in-pixel BTbp at 4 and 11 μm, respec-
tively. The color scheme indicates theMODIS viewing zenith angle (distance fromnadir). Gray error bars indicate±1.0 standarddeviation of all AMSdata points considered for the calculationof
the BTbp. (c) and (d) Pixel-level comparisons between retrievedMODIS fire area and AMS observed fire area from the six California test cases. Gray error bars indicate the sensitivity of the re-
trieval to a±5.0 K error in the 4 μmBTbm and a±1.0 K error in the 11 μmBTbm, respectively. The color scheme indicates the FRPf value for each pixel. (e) Same as (d), but for pixel-level com-
parisons betweenMODIS FRPp and the sub-pixel FRPf. The color scheme indicates theMODIS viewing zenith angle. (f) Same as (e) and (d), but for cluster-level comparisons between FRPp per
cluster pixel area (FRPp flux) and FRPf per fire area (FRPf flux) using the sum of pixel-level retrievals method. The test case labels correspond to Fig. 1.
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region is free of smoldering or recently burned pixels (Giglio et al.,
2003), but a correction for noise caused by variations in surface features
is also required, especially at 11 μm. Any future 11 μm background
brightness temperature selectionmethodologywill likely require the in-
corporation of topography, land cover, and aspect data sets. The back-
ground region could then be defined as nearby pixels that are not only
free of fire, but also have similar characteristics as the fire pixel under
scrutiny.

The results in Table 2 show that fire area is typically the most sensi-
tive retrieved parameter to errors in the direct input variables, while
FRPf is much less susceptible due to offsetting effects from fire area frac-
tion and temperature. Peterson et al. (in press) also showed that FRPf, by
itself, can be used as an alternative methodology to the current MODIS
FRPp, at least for thefire pixels containedwithin these six Californiawild-
fire test cases. However, the primary reason for choosing the sub-pixel
based method is that it also allows the radiant energy released over the
area of the fire to be quantified via the FRPf flux (Eq. 7), which may be
useful for future fire weather and smoke modeling studies. The FRPf
flux is also the second most sensitive parameter in the retrieval. There-
fore, it is desirable to investigate its relationship to key meteorological
variables affecting smoke production, such as wind speed, over a broad
spatiotemporal domain with known variations in column water vapor
amount and background emissivity. Similarly, the total number and spa-
tial distribution of fire pixels with an 11 μm background temperature
error (described in Section 5.1) must also be investigated in greater de-
tail. To accomplish these goals, the sub-pixel retrieval was applied to a
recent independent case study, explained in the following section.

7. Case study of Texas and Oklahoma wildfires

As an independent test, the MODIS sub-pixel retrieval is applied to a
recent, largewildfire event, occurring between 4 September 2011 (00:00
Z) and 8 September 2011 (23:59 Z), where the utility of the FRPf flux and
the spatiotemporal distribution of background temperature errors can
easily be explored. The specific study region, located within the United
States and Mexico, is bounded by a range of 25–37 north latitude and
93–107 west longitude (Fig. 10), but the primary focus is on the states
of Texas and Oklahoma. Several months of persistent upper-level ridg-
ing, with 500 hPa heights averaging 5–20 m above the 1981–2010 cli-
matology (contours in Fig. 10), resulted in extreme drought conditions
over the majority of the study region. The five days of this case study
were also marked by low relative humidity values and stronger than av-
erage surface winds, following the passage of a surface cold front. Not
surprisingly, 890 MODIS fire pixels were observed (via Aqua and Terra)
within the study region during the temporal window of this study (red

and greed dots in Fig. 10), with the vast majority observed in northeast-
ern Texas and southeastern Oklahoma. This region is an ideal location for
testing the sub-pixel retrieval due to the combination of uniform,
post-frontal weather conditions and relatively homogeneous biomass
and terrain.

7.1. Comparisons to the California test cases

For this application, level-2 MODIS columnwater vapor data (King et
al., 2003) were saved along with the retrieval output for each fire pixel,
and show that the average atmospheric column water vapor amount
over the five days was 2.09 g/cm2, which is closer to the mid-latitude
summer column water vapor amount of 2.92 g/cm2 than the California
test cases. However a large rangeof 0.60 to 6.74 g/cm2was also observed,
due to the study domain stretching from desert regions to the Gulf of
Mexico. The majority of the fire pixels are located in northeastern Texas,
where the column water vapor amount likely falls much closer to the
mean, suggesting that any resulting retrieval errors will be minor, espe-
cially compared to the test cases (e.g. Fig. 5). The few fire pixels in the
western portion of the study region have column water vapor contents
that are much closer to the California test cases (e.g. b1.0 g/cm2), and
thus will suffer from an overestimation in retrieved fire area. However,
specific pixel-level validations of retrieved fire area, via AMS (or any
other method), were not possible. A detailed examination of the back-
ground emissivity was also not considered due to theminimal sensitivity
effect shown earlier (Table 2), but the extreme drought likely resulted in
regions of brown vegetation that may produce a minor effect on the re-
trieval output.

The retrieved FRPf in the study region, like the results from the Califor-
nia test cases (Peterson et al., in press), is strongly correlated (R=0.97) to
the current MODIS FRPp for the valid individual fire pixels (not shown).
However, this case study exposed a secondary limitation of the retrieval,
where 39 fire pixels (not considered in the correlation above) had re-
trieved fire temperatures of 1500 K— themaximumvalue currently con-
sidered in the sub-pixel retrieval based on earlier studies (Giglio and
Kendall, 2001; Zhukov et al., 2006). Many of these pixels have an FRPf
that compares nicely to the FRPp, but 11 pixels have an FRPf that is unre-
alistically high. One explanation is that retrieval limit of 1500 K may be
too low, which is evidenced by the questionable pixels corresponding to
large differences between the 11 μmpixel and background temperatures.
For example, Zhukov et al. (2006) allowed the retrieved fire temperature
to increase above 1500 K if the 11 μm (TIR) pixel brightness temperature
was greater than the background temperature plus four standard devia-
tions of the surrounding background noise. However, for this case
study, it is generally observed that many of the 1500 K fire temperatures
correspond to very low FRPp values (b140 MW), reduced MODIS confi-
dence levels, and small retrieved fire area fractions (b0.001). Therefore,
these are likely small fires, such as a fire front in a grassland or pasture
(e.g. Mell et al., 2007; Smith et al., 2005; Stephens et al., 2008), which
are also situations that greatly increase the uncertainty in the retrieval
output (e.g. Giglio and Kendall, 2001; Peterson et al., in press). As a result,
the retrieved fire temperature of 1500 K may simply be an artifact of an
underestimated 11 μm background temperature that produces an im-
proper fit (artificially large difference between fire and background) in
the observed radiances during the retrieval process (Peterson et al., in
press).

The 11 μm BTbm mischaracterization errors, highlighted in the Cali-
fornia test cases (background warmer than the fire pixel), are also pres-
ent in this case study, denoted by the green dots in Fig. 10. Specifically,
157 (17.6%) of the 890 MODIS fire pixels have this BTbm error, but
seem to be randomly distributed within the study region, suggesting
there is little spatial dependence on background noise. The vast majority
of these errors, including the largest magnitudes, occur with daytime
pixels (Fig. 11 and Table 3), where 26.4% of the pixels have an error.
The case study domain has minimal topographic influences compared
to the California test cases, suggesting that the 11 μm BTbm errors in

Fig. 10. Map of the case study region, as denoted by the black box. TheMODIS fire pixels ob-
served between 4 and 8 September 2011 are displayed as dots, with red indicating valid
pixels and green indicating an error in the 11 μmbackground temperature. Dashed contours
indicate themean 500 hPa height anomalies (based the 1981–2010 climatology) during the
preceding three months (June, July, and August), with red and blue respectively indicating
positive and negative anomalies.
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eastern Texas and Oklahoma likely stem from variations in local land
cover (http://gisdata.usgs.gov/website/mrlc/viewer.htm), which may
include forest (deciduous/evergreen), cropland, pasture land, and
urban or other non-vegetated regions. The major drought may also
have created localized cases of brown or de-vegetated regions (presum-
ably not irrigated) that are located nearby green, irrigated regions,which
will have a considerably lower 11 μm BTbm than the dry regions. There-
fore, similar to the California test cases, daytime background noise at
11 μm is the key factor limiting the sub-pixel retrieval in this case
study, further supporting the need for an improved BTbm selectionmeth-
odology. In stark contrast, the 4 μm background brightness tempera-
tures displayed in Fig. 11 are clearly free of any mischaracterization
errors due to the channel's reduced sensitivity to cooler temperatures.

7.2. Example application of FRPf flux: fire weather

When considering the very nature of fire events, FRP is an excellent
parameter to focus on because it is a direct measurement of fire intensity
(Ichoku et al., 2008a). However, since the advent of satellite-derived FRP
products, few, if any, studies have investigated the relationship between
FRP and meteorological variables. Peterson et al. (2010) did attempt to
investigate any such relationships (via MODIS FRPp) over broad spatial
domains located within the boreal forest of North America, but showed
that there is a very weak correlation between FRPp and most fire-
related weather variables, except for the overall synoptic environment
(e.g. 500 hPa heights). The lack of any significant correlation between
FRPp and the meteorological variables (e.g. wind speed), which are as-
sumed to greatly influence its intensity, likely stems from the lack of
fire size information in the current MODIS FRPp data. Therefore, im-
proved results are expectedwhen using FRPf flux, especially for large, in-
tense fire events.

For this case study,meteorological datawere obtained from theNorth
AmericanRegional Reanalysis (NARR),whichblends a variety of observa-
tional data into Eta model output containing 45 vertical layers across the
North American continent with ~32 km grid spacing every three hours
(Ebisuzaki, 2004; Mesinger et al., 2006). The NARR data were subse-
quently downscaled onto a 10 km grid with one-hour temporal resolu-
tion by the Weather Research and Forecasting (WRF) model (e.g. Grell
et al., 2005; Skamarock et al., 2005; Wang et al., in press), and the
MODIS fire observations, including the sub-pixel output, were geograph-
ically matched to the mesh of 10 km grid boxes and summed for each
day. This data integration step is essentially the same as the clustering
sum of pixel-level retrievals methodology (described in Section 2.2,
Peterson et al., in press), and acts to reduce the effects from several po-
tential sources of error (e.g. PSF effects). Therefore, the grid boxes with
a higher number of MODIS fire pixels will likely provide retrieved fire
area with a higher accuracy. However, the previously described sensitiv-
ity to direct sources of error (e.g. improper BTbm selection) may still be
present, especially when the average FRPf is low.

While the California test cases allowed for a simple creation of fire
clusters, composed of several, mostly contiguous MODIS fire pixels, the
case study domain described here (Fig. 10) includes many fire pixels
that may not be part of a contiguous cluster. In addition, the relatively
large MODIS pixel size, varying from 1 to 10 km (depending on VZA),
also limits the number of observed contiguous pixels. Therefore, investi-
gating FRPf flux for all fire pixels contained within a 10 km grid box (or
any similarmodel grid) is themost advantageous application of a cluster-
ingmethodology forMODIS data. Additional output includes the number
offire pixels, total fire area, total FRPf, and the total FRPp for each grid box,
as well as the total number of invalid pixels, currently produced from
11 μm BTbm errors and reaching the fire temperature threshold of
1500 K. These fire data can then be compared to the meteorological
data from each model grid box at each one-hour time step.

Drawing from the widely used Canadian Forest Fire Danger Rating
System (CFFDRS), surfacewind speed and temperature are key variables
affecting fire-spread potential (Van Wagner, 1987; Van Wagner and

Pickett, 1985), and should therefore be strongly correlated to the FRP
observations. However, Fig. 12a and c shows there is very little correla-
tion between MODIS FRPp and the surface (10-meter) wind speed or
temperature (Rwind=0.14 and Rtemp=0.18). When using the FRPf flux

Fig. 11. Scatterplots showing the pixel and background brightness temperatures at 4 μm
(top) and 11 μm (bottom) for each MODIS fire pixel from the case study application. Day
and night observations are respectively displayed as dots and triangles. The color scheme in-
dicates whether each day or night pixel is valid or has a background temperature error. The
corresponding statistical summary is provided in Table 3. (For interpretationof the references
to color in this figure legend, the reader is referred to the online version of this chapter.)

Table 3
Statistics for the MODIS 11 μm background brightness temperature.

Observation Number of pixels Pixels with error % error

California test cases (development)
All pixels 37 3 8.1
Day pixels 32 3 9.4
Night pixels 5 0 0.0

Case study (application)
All pixels 890 157 17.6
Day pixels 571 151 26.4
Night pixels 319 6 1.90
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(Fig. 12b and d), the correlations with surface wind speed and temper-
ature are significantly stronger (Rwind=0.55 and Rtemp=0.77). In addi-
tion, themean FRPf for 13 (57%) of these fire pixel clusters is greater than
100 MW (red triangles in Fig. 12), suggesting that the large sensitivity to
BTbm errors will be reduced via the fire area component (e.g. Fig. 9d).
While these results are very encouraging, it is important to note that
Fig. 12 only shows the 23 largest fire clusters, defined as a WRF grid
box with at least six valid fire pixels.

The effect of variations in cluster size threshold is examined in
Fig. 13 by computing the correlation between the FRP and meteorolog-
ical data for several fire pixel cluster size thresholds, ranging from 1 to
12 (a threshold of 12 indicates a cluster size≥12 fire pixels). As random
effects are averaged out, the correlations using FRPf flux increase rapid-
ly, become statistically significant, and begin to stabilize at a threshold
of ~6 pixels, which is used in Fig. 12. In contrast, the correlations
using theMODIS FRPp remain very low (Rb0.20), and are not statistical-
ly significant for nearly every cluster size. This suggests that FRPf flux
may be an improvement over FRPp for characterizing fire weather, es-
pecially for large fire pixel clusters. However, as described earlier, this
case study is an idealized fire eventwith generally uniformmeteorolog-
ical conditions within a region that is devoid of any major topography.
Therefore, attempting to identify relationships between meteorological
variables and FRPf flux in regions with complex topographic features,
and potentially large mesoscale variability, will be more challenging.

Fig. 12. Analysis ofmeteorological and satellite-retrievedparameters for the 23 largestfire clusters in the case studydomain (displayed in Fig. 10). (a)Relationship between theMODIS FRPp and
surface (10-meter) wind speed. (b) Relationship between the cluster FRPf flux and surface wind speed. (c) and (d) Same and (a) and (b) but for the surface (10-meter) temperature. The solid
black line corresponds to the linear fit equation. R, P, and N denote the linear correlation coefficient, P-value, and number of data points, respectively. Red triangles in (b) and (d) indicate a fire
pixel cluster with a mean FRPf>100 MW. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Correlations between the FRP data and themeteorological variables of surface wind
speed (solid) and temperature (dashed) as a functionoffire pixel cluster size and thenumber
of available data points. Red curves indicate FRPf flux and blue curves indicate FRPp. Triangles
are used to identify statistical significance, corresponding to a P-valueb0.05. The horizontal,
dotted line indicates the fire pixel threshold used in Fig. 12. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this article.)
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While this case study used a 10 kmmodel grid, the methodology can
easily be applied to any mesoscale model grid mesh. Increasing the grid
sizewill produce largerfire clusters and reduce theuncertainty associated
with the fire area component of the FRPf flux, especially when the mean
FRPf is high. However, larger grid spacing may concurrently decrease
the accuracy of the corresponding meteorological information, especially
for variables like surface wind speed that often vary over short distances.
As a result, caution must be used when integrating meteorological data
archives and the MODIS sub-pixel fire output. Future sensors, such as
NPP VIIRS (e.g. Csiszar et al., 2011), will have a higher spatial resolution
(~750 m), and may allow for clustering based solely on contiguous fire
pixel clusters, similar to the BIRD satellite (Zhukov et al., 2006). In these
cases, the accuracy of FRP-based fire weather analysis will improve be-
cause large fire clusters will be predefined and easily separated from
small fires.

8. Summary and conclusions

This study has provided a theoretical sensitivity analysis for the three
major outputs of a MODIS sub-pixel retrieval algorithm (fire area, FRPf,
and FRPf flux) based on direct input variables and assumptions, as well
as a case study application. The primary focus is on variations in the at-
mospheric profile, background emissivity, and background brightness
temperature, which were analyzed to varying levels of detail. Results in-
dicate that significant reductions in the retrieved pixel-levelfire areawill
occur if the observed columnwater vapor is very lowwith respect to the
mid-latitude summer, climatologically based profile. The effect on FRPf is
much smaller because the decrease in retrieved fire area is offset by an
increase in retrieved fire temperature. Therefore, the overall sensitivity
of the cluster FRPf flux falls between that of retrieved fire area and
FRPf, but is highly influenced by changes in fire area. In contrast, poten-
tial variations in the assumed values for the 4 and 11 μm background
emissivities have aminor effect on all retrieval output (e.g. b15% change
in fire area and FRPf), except when fire events are surrounded by large
regions of highly reflective, brown vegetation.

When considering all potential sources of direct error, small devia-
tions in the 11 μm BTbm (background noise) have the greatest affect
on all retrieval outputs. For example, a±1 K error can produce a change
in retrieved fire area of more than an order of magnitude, with the po-
tential for large impacts on FRPf and the cluster FRPf flux as well. For
someMODIS fire pixels, the sub-pixel retrieval can even become irrele-
vant when the 11 μm BTbm (provided by MODIS) is greater than the
pixel brightness temperature. The case study application showed that
17.6% of the 890 available fire pixels suffered from this BTbm error,
with the vast majority, especially the large magnitude errors, occurring
in daytime scenes. With this limitation, any future applications will re-
quire an improved background brightness temperature selectionmeth-
odology, based on land cover, topographic, and aspect data sets. In fact,
the impacts of any potential land cover variations or vegetation health
on background temperature noise can easily be explored using addi-
tional satellite data sets (e.g. NDVI).

The results of this study suggest that the large sensitivity of the
sub-pixel retrieval output can be reduced when investigating large fire
clusters (at least 6 MODIS fire pixels). This is especially true when the
cluster is comprised of fire pixels with a high FRPf (e.g. >150 MW),
which reduces the sensitivity to BTbm errors by producing a larger differ-
ence between the flaming and the background regions. As shown in the
case study, fire pixel clusters can be defined based on the resolution of a
mesoscale model grid. Subsequent comparisons with meteorological
data showed that the cluster FRPf flux, unlike the current MODIS FRPp,
has a statistically significant correlation with surface wind speed and
temperature, especially for large fire clusters. This encouraging result
suggests that the cluster FRPf flux may be useful for characterizing the
meteorological effects on fire intensity. However, future studies are
warranted to further investigate the utility of FRPf flux in fire weather

analysis using a variety of spatiotemporal domains with variations in
model grid spacing.

Perhaps the most desirable application of FRPf flux is improving
smoke emission estimates and transport forecasts. While earlier studies
(e.g. Val Martin et al., 2010) suggest that regions of high FRPp commonly
result in higher altitude smoke plumes, the FRPf flux provides an estima-
tion of the rate of energy release over the fire area itself, and is therefore
directly related to the thermal buoyancy of the smoke plume (Kahn et
al., 2007; Lavoue et al., 2000). However, the large sensitivity of FRPf
flux, especially due to BTbm errors, will likely constrain any future
smoke injection height analysis to the largest and most intense fire
events. Improved plume height estimates have the most value for
these large fire events due to the increased chance of injection above
the boundary layer. Therefore, despite the limitations, FRPf flux may
prove useful for identifying the cases where smoke is most likely to be
injected into the free troposphere and transported a great distance, es-
pecially when using the higher-resolution sensors (e.g. NPP VIIRS) that
will replace MODIS over the next decade (Csiszar et al., 2011).
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