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[1] We develop an optimal estimation (OE) algorithm based on top-of-atmosphere
reflectances observed by the MODIS satellite instrument to retrieve near-surface fine
particulate matter (PM2.5). The GEOS-Chem chemical transport model is used to provide prior
information for the Aerosol Optical Depth (AOD) retrieval and to relate total column AOD
to PM2.5. We adjust the shape of the GEOS-Chem relative vertical extinction profiles by
comparison with lidar retrievals from the CALIOP satellite instrument. Surface reflectance
relationships used in the OE algorithm are indexed by land type. Error quantities needed for
this OE algorithm are inferred by comparison with AOD observations taken by a worldwide
network of sun photometers (AERONET) and extended globally based upon aerosol
speciation and cross correlation for simulated values, and upon land type for observational
values. Significant agreement in PM2.5 is found over North America for 2005 (slope = 0.89;
r= 0.82; 1-s error = 1mg/m3 + 27%), with improved coverage and correlation relative to
previous work for the same region and time period, although certain subregions, such as the
San Joaquin Valley of California are better represented by previous estimates. Independently
derived error estimates of the OE PM2.5 values at in situ locations over North America
(of �(2.5mg/m3 + 31%) and Europe of �(3.5mg/m3 + 30%) are corroborated by comparison
with in situ observations, although globally (error estimates of �(3.0mg/m3 + 35%), may be
underestimated. Global population-weighted PM2.5 at 50% relative humidity is estimated as
27.8mg/m3 at 0.1� � 0.1� resolution.
Citation: van Donkelaar, A., R. V. Martin, R. J. D. Spurr, E. Drury, L. A. Remer, R. C. Levy, and J. Wang (2013),
Optimal estimation for global ground-level fine particulate matter concentrations, J. Geophys. Res. Atmos., 118, 5621–5636,
doi:10.1002/jgrd.50479.

1. Introduction

[2] Long-term exposure to fine particulate matter with
aerodynamic diameter less than 2.5 mm (PM2.5) is associated
with negative human health impacts, such as enhanced mor-
bidity and mortality rates [Dockery et al., 1993; Pope et al.,
2009]. Satellite-derived estimates of PM2.5 are increasingly

being incorporated into epidemiological studies [e.g.,
Villeneuve et al., 2011; Anderson et al., 2012; Crouse
et al., 2012] and more broadly into health impact assessments
[Lim et al., 2012]. A major strength of these satellite
estimates is global coverage; this allows PM2.5 exposure to
be evaluated in locations without nearby in situ monitors.
However, additional attention is needed to improving the
accuracy and precision of satellite-derived estimates of PM2.5.
[3] Top-of-atmosphere (TOA) reflectance (rTOA) observed

by passive satellite instrumentation such as the Moderate
Resolution Imaging Spectroradiometer (MODIS) [Levy et al.,
2007b] is affected by molecular (Rayleigh) scattering, by sur-
face reflectance, and by the total columnar extinction due to
the presence of aerosol, known as the Aerosol Optical Depth
(AOD). Satellite observations of rTOA are often used to
retrieve AOD using radiative transfer calculations. Retrieval
accuracy is dependent upon input parameter uncertainties, of
which surface reflectance dominates under low aerosol load-
ing conditions and aerosol optical properties dominate at high
aerosol loading conditions. The operational MODIS retrieval
algorithm assigns aerosol optical properties according to loca-
tion and season, and estimates surface reflectance using the
MODIS 2.12mm channel, at which the atmosphere is nearly
transparent to fine aerosol [Levy et al., 2007b]. Radiative
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transfer (RT) models can also be used to calculate the aerosol
optical and land-surface properties that best match observa-
tions, allowing for modified retrieval algorithms [Drury
et al., 2010; Wang et al., 2010].
[4] Passive nadir satellite observations, however, provide

little information about the vertical extinction profile and
about the relationship between extinction and mass. As a re-
sult, satellite-derived estimates of PM2.5 require a conversion
factor to relate retrieved AOD to PM2.5; this factor must
account for the local aerosol optical properties and the aero-
sol vertical profile, both of which are temporally and spatially
variable. This conversion factor can be calculated through
various empirical techniques [e.g., Zhang et al., 2009;
Kloog et al., 2011] or by means of a chemical transport
model (CTM) [e.g., Liu et al., 2004; van Donkelaar et al.,
2011]. The inference of PM2.5 from satellite observations
can benefit from using consistent aerosol optical properties
in both the AOD retrieval and in the conversion of AOD to
PM2.5 [Drury et al., 2010].
[5] CTMs solve for the temporal and spatial evolution of

aerosol using meteorological data sets, emissions invento-
ries, and equations that represent the physical and chemical
behavior of atmospheric constituents. CTMs offer estimates
of AOD and PM2.5 that are largely independent from many
of the error sources affecting satellite retrievals, such as sur-
face reflectivity, but are dependent upon the accuracy of
input parameters such as emissions and meteorology.
[6] Van Donkelaar et al. [2010] produced global 0.1�

� 0.1� satellite-derived PM2.5 estimates that combined AOD
from the Terra-satellite based MODIS and Multiangle
Imaging Spectroradiometer [Diner et al., 1998] instruments
with CTM-simulated AOD-PM2.5 relationships, and found
promising long-term mean agreement with in situ monitors
over North America (r=0.77, slope = 1.07) and globally
(r=0.83, slope = 0.86). Six years of PM2.5 estimates were
averaged to reduce the impact of random error. Surface
reflectance-based filters were used to reduce systematic
errors in the operational satellite retrievals, but these filters
also reduced sampling in some regions.
[7] In this paper, we improve on these previous global es-

timates of PM2.5 by developing an optimal estimation (OE)
framework that combines satellite observations of rTOA with
a CTM based upon the local relative uncertainties of PM2.5

derived from each source. OE is currently used for trace gas
retrievals from several satellite instruments, including the
Tropospheric Emission Spectrometer [Bowman et al.,
2006], and has been demonstrated to be effective for the
retrieval of aerosol properties [Hasekamp and Landgraf,
2005; Waquet et al., 2009; Dubovik et al., 2011]. It is also
used by the Oxford-RAL Aerosols and Clouds retrieval from
the Advanced Along Track Scanning Radiometer instrument
[Sayer et al., 2012]. OE using rTOA allows consistent optical
properties to be used for both the AOD retrieval and calcula-
tion of the AOD to PM2.5 conversion factors.
[8] Section 2 describes our algorithm, outlining our OE

approach, the GEOS-Chem CTM, the Linearized Discrete
Ordinate Radiative Transfer (LIDORT) RT model, and
the data sources (MODIS, Aerosol Robotic Network
(AERONET), and in situ PM2.5). Section 3 describes our rep-
resentation of surface reflectance, prior and observational error
as incorporated into the OE framework, and evaluates the
resulting AOD with AERONET measurements. Section 4

provides a detailed analysis of the simulated relative vertical
aerosol profile using the space-borne Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) lidar. Section 5 validates
our final OE-based PM2.5 values with available PM2.5

measurements.

2. Approach and Data Sources

2.1. Optimal Estimation

[9] Optimal estimation (OE) provides a mathematical
framework to combine observations and prior, or initial, esti-
mates, based upon the theoretical relationship between simu-
lated observations and retrieval quantities and the relative
uncertainties of those observations, relationships, and prior
estimates [Rodgers, 2000]. Vectors (denoted as bold) of
observed values y, treated as linearly related to retrieval
quantities, are combined with prior estimates xa to produce
an optimal solution x̂,

x̂ ¼ xa þG y�Kxað Þ (1)

using the Jacobian, K ¼ @y
@x . The gain matrix,

G = SaK
T(KSaK

T +S«)
� 1, describes the sensitivity of the

optimal solution to observation, based upon error in the prior
Sa and observational S« values.
[10] For our optimal estimation, y is provided by rTOA at

two wavelengths from MODIS (section 2.4). AOD from the
GEOS-Chem chemical transport model (section 2.2) is used
to provide xa. The LIDORT radiative transfer model (section
2.3) is used to calculateK. Sections 3.2 and 3.3 discuss deter-
mination of Sa and S«.
[11] For linear inversion with Gaussian statistics (assumed

in this work), the retrieved optimal estimate occurs at the
minimum of the scalar-valued cost function J(x):

J xð Þ ¼ x� xað ÞTS�1
a x� xað Þ þ y�Kxð ÞTS�1

« y�Kxð Þ (2)

[12] This minimum of the inverse error-weighted differ-
ence of the solution and observed with prior values can be
found analytically. In the case of a nonlinear forward-
model relationship, such as that between TOA reflectance
and AOD, the OE algorithm proceeds iteratively through a
sequence of linear inversion problems until convergence is
reached (relative change in optimal estimates between itera-
tions is less than a pre-specified small quantity).
[13] The averaging kernel matrix A represents the sensitiv-

ity of final solution x̂ to the true value:

A ¼ GK (3)

[14] The degrees of freedom for signal (DFS) is defined as
the trace of A and denotes the number of independent pieces
of information available in an observing system. Increased
DFS indicates a decreased dependence on prior values and
a more observationally constrained retrieval.

2.2. GEOS-Chem

[15] We use the GEOS-Chem Chemical Transport Model
(http://geos-chem.org) to provide prior estimates of aerosol
optical properties, AOD, and the AOD/PM2.5 relationship
using simulated aerosol throughout the entire atmospheric
column and those simulated within the lowest grid box.
The GEOS-Chem aerosol simulation (v8-03-01) includes
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the sulphate-ammonium-nitrate-water system [Park et al.,
2004], primary carbonaceous aerosols [Park et al., 2003],
secondary organic aerosols [Henze et al., 2008], sea salt
[Alexander et al., 2005], and mineral dust [Fairlie et al.,
2007]. Gas-aerosol equilibrium is computed using
ISORROPIA II [Pye et al., 2009]. The aerosol and oxidant
simulations are coupled through formation of sulphate and
nitrate [Park et al., 2004], heterogeneous chemistry [Jacob,
2000; Evans and Jacob, 2005; Thornton et al., 2008], and
aerosol effects on photolysis rates [Martin et al., 2003b;
Lee et al., 2009].
[16] Our global GEOS-Chem simulation uses assimilated

meteorology from the Goddard Earth Observing System
(GEOS-5), degraded to 2� � 2.5� horizontal resolution and
47 vertical levels. The GEOS-Chem nested capability uses
the native 1/2� � 2/3� GEOS-5 resolution over regions of
North America, Europe, and Asia [Chen et al., 2009; van
Donkelaar et al., 2012]. Nested simulation results are used
whenever a retrieval pixel falls within a nested domain.
[17] Global anthropogenic emissions are based upon

EDGAR 3.2FT2000 [Olivier et al., 2002]. Global anthropo-
genic emissions are overwritten in areas with regional inven-
tories, including NEI05 (United States; http://www.epa.gov/
ttnchie1/net/2005inventory.html), CAC05 (Canada; http://
www.ec.gc.ca/inrp-npri/), EMEP (Europe; http://www.
emep.int/), BRAVO (Mexico) [Kuhns et al., 2005], and for
East Asia [Streets et al., 2003; Streets et al., 2006].
Inventories are scaled from their base year up to a maximum
of 2007, as described in van Donkelaar et al. [2008]. Eight
day GFED2 emissions are used for biomass burning
[Nassar et al., 2009].

2.3. LIDORT

[18] We simulate rTOA using the Linearized Discrete
Ordinate Radiative Transfer (LIDORT) radiative transfer
model (version 3.4) [Spurr, 2008]. AOD Jacobians (partial
derivatives of rTOA with respect to AOD) may also be gener-
ated analytically from this RT model. LIDORT uses the
discrete ordinate method to solve the RT equation in each
layer, plus a linear boundary value technique to determine
the whole-atmosphere radiation field. LIDORT uses the
pseudo-spherical approximation (solar beam attenuation in
a curved atmosphere before plane-parallel scattering). The
model requires pre-computed inputs of vertically resolved at-
mospheric extinction, single scattering albedo, and phase
function Legendre expansion coefficients. These aerosol
optical properties are obtained from tabulated output from
Mie simulations [de Rooij and van der Stap, 1984;
Mishchenko et al., 1999] following Martin et al. [2003a]
with 64 moments and applied to GEOS-Chem relative hu-
midity dependent fields, sampled coincidently with MODIS
observations. T-matrix calculations were used to represent
nonspherical effects of dust [Wang et al., 2003]. Other inputs
are surface reflectance, solar zenith angle, and viewing zenith
angle. Surface reflectance is described in section 3.1.

2.4. MODIS

[19] TwoMODIS instruments presently orbit the Earth on-
board the Aqua and Terra satellites, with respective daytime
equator-crossing times of 10:30 A.M. and 1:30 P.M. Each
MODIS instrument provides near-daily global observation
at 36 wavelength bands, seven of which were specifically

designed for aerosol retrieval. The operational AOD product
from both MODIS instruments (MOD/MYD04) provides
global retrievals over dark surfaces free of snow, ice, and
cloud at a nadir resolution of 10 km� 10 km with an accu-
racy of� (0.05 + 15%) [Levy et al., 2007b]. The retrieval al-
gorithm assumes minimal optical influence of atmospheric
aerosol and gases at the 2.12 mm band and retrieves the
2.12 mm surface reflectance (rs,2.12 mm) during the inversion
procedure that uses TOA reflectances at 0.47 mm, 0.66 mm,
and 2.12mm as input. rs,2.12mm is related to surface reflectance
at the aerosol retrieval wavelengths of 0.47mm (rs,0.47mm) and
0.66mm (rs,0.66mm) using globally fixed relationships depen-
dent on values of the Normalized Difference Vegetation
Index constructed from the shortwave infrared (SWIR) bands
at wavelengths 1.24mm and 2.12mm. These relationships are
derived from a data base of atmospherically corrected
MODIS reflectances at AERONET AOD observations and
aerosol optical properties based on an AERONET climatology
[Levy et al., 2007a]. This approach has proven to be globally
effective, but regional bias does exist where local surface re-
flectance relationships vary from the assumed global norms
[Drury et al., 2008; Kahn et al., 2009; Levy et al., 2010].
[20] For our OE observational input, we use rTOA from

Collection 5 MOD/MYD04; this has been screened for cloud
and bright surfaces. We find that MODIS-Terra’s globally
averaged rTOA decreases relative to MODIS-Aqua values
by 0.24–0.35% per year between mid-2003 and 2009,
depending on wavelength. This suggests a slight loss of
MODIS-Terra’s sensitivity as similar trends should be ob-
served by both instruments. In order to ensure consistency
across platforms, we scale the global annual average
MODIS-Terra radiances for each wavelength to those ob-
served from MODIS-Aqua before to incorporation into the
OE framework. The recently available Collection 6 MODIS
radiances should remove the need for such an adjustment in
future retrievals [Levy et al., 2013; Remer et al., 2013].

2.5. AERONET

[21] The Aerosol Robotic Network (AERONET) is a glob-
ally distributed network of CIMEL Sun photometers [Holben
et al., 1998] that provide multi-wavelength AOD measure-
ments with a low uncertainty of< 0.02 [Holben et al.,
2001]. AERONET provides an invaluable validation data
set for AODs, whether simulated or retrieved from satellite
observations. AERONET observations are used to derive
surface reflectance properties (section 3.1), as well as prior
(section 3.2) and observational uncertainties (section 3.3)
for our MODIS AOD retrieval.

2.6. CALIOP

[22] The Cloud-Aerosol lidar with Orthogonal Polarization
(CALIOP) instrument has provided global aerosol profiles
from onboard the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observation satellite since 2006
[Winker et al., 2009]. CALIOP observes the backscattered
radiation from laser pulses it emits at 1064 nm and 532 nm
and retrieves extinction profiles at a resolution of 30m verti-
cal and 335m horizontal. The CALIOP retrieval relies on a
knowledge of the local particulate extinction-to-backscatter
ratio, known as the lidar ratio, Sp. Properties such as observed
polarization and geographic location are used to predict aero-
sol type [Omar et al., 2009]. A lookup table is then typically
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used to determine the values of Sp from an observationally
based data set. The impact of Sp on retrieved extinction pro-
files is discussed in section 4.

2.7. In Situ Observations

[23] Near-surface, in situ PM2.5 measurements are used
from a combination of the Canadian National Air Pollution
Surveillance Network (NAPS; http://www.etc.cte.ec.gc.ca/
NAPS/index_e.html), the Interagency Monitoring of
Protected Visual Environments (http://vista.cira.colostate.
edu/improve/Data/data.htm), and U.S. Environmental
Protection Agency Air Quality System Federal Reference
Method (http://www.epa.gov/air/data/index.html) sites. We
additionally include the global values described in van
Donkelaar et al. [2010], which use reported network data
from Europe, Australia, New Zealand, and South America,
as well as annually representative, published values from
the literature throughout the rest of the world. This compilation
of in situ PM2.5 data is used to validate our final satellite-derived
PM2.5 estimates. We note that in situ PM2.5 observations are
collected at either 35% or 50% relative humidity, according to
local national standards.

3. Optimal Estimation of Aerosol Optical Depth

[24] The OE algorithm in this work requires information
on surface reflectance, along with a knowledge of the prior

and observational errors. Each is discussed below. In brief,
we use AERONET observations of AOD to develop a sur-
face reflectance parameterization, as well as estimate prior
and observational errors. A global analysis is performed
using daily MODIS rTOA at 10 km� 10 km for 2005.

3.1. Estimation of Surface Reflectance

[25] Coarse aerosols can affect the top-of-atmosphere re-
flectance in the near-IR [Wang et al., 2010]. We calculate
the effect of these aerosols on rTOA,2.12 mm using simulated
aerosol fields from GEOS-Chem as input to LIDORT calcu-
lations of rTOA. We simulate and remove the contribution of
atmospheric aerosols from rTOA,2.12 mm to estimate the sur-
face value (rs,2.12 mm) and subsequently relate the isotropic
component to the other wavelengths (l) of 0.47 mm and
0.66 mm, assuming the following linear relationship:

rs;l ¼ υl

�
Ml

υ2:12 mm

�
rTOA;2:12 mm

� rTOA;2:12 mm � rNO AEROSOL
TOA;2:12 mm

� �
sim

�
þ Bl

�
ð4Þ

where rTOA,2.12 mm,sim andrNO AEROSOL
TOA;2:12 mm;sim are simulated rTOA

at 2.12 mm with and without aerosol present. υl and υ2.12 mm
are the ratios of isotropic and Ross-Li (isotropic + volumet-
ric + geometric) surface reflectance at wavelengths l and
2.12 mm as inferred from a monthly mean of the MODIS

Figure 1. Ratio of isotropic surface reflectance components at wavelength l to 2.12 mm (Ml) for July
2008. The insets are enlargements of the Central American region identified on the global plot; the circle
indicates the location of Mexico City.
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BRDF product (MOD43 V5) [Lucht et al., 2000]; these ratios
account for the effect of solar and viewing geometry on rs,l.
Ml, and Bl are the ratio and offset between the isotropic com-
ponents of rs,l and rs,2.12 mm. We initializeMl as the monthly
mean isotropic surface reflectance ratio from MOD43, and
initially set Bl to zero.
[26] The global collection of AERONET AOD measure-

ments encompass a variety of land types and provide an op-
portunity to evaluate and improve these surface reflectance
estimates. We calculate AOD at 550 nm from rTOA at each
wavelength, increasing the prior error (Sa!1) to remove
the influence of the prior. In addition to the MOD/MYD04 fil-
ters, we use the snow-cover estimates fromMOD43 to remove
any areas that have detected snow within a 16 day window.
[27] We compare AERONET AOD (tAERONET) with these

individual MODIS AOD (tMODIS) values that are within a
surrounding square of 5� 5 pixels (approximately 50 km
50 km) around each AERONET station and interpret their
difference to reduce bias in surface reflectance:

Δrs;l ¼
@rs;l
@t

tMODIS � tAERONETð Þ (5)

where Δrs,l is the change in rs,l equivalent to the difference
between observed and retrieved AOD. The derivative

@rs;l
@t is

determined from LIDORT. This approach assumes that dif-
ferences in AOD are strictly the result of surface reflectance
error. Error in the assumed aerosol microphysical properties
would also play a role and, if large, may compromise this
approach.
[28] This AOD comparison was carried out for the 5 year

period 2004–2008. We investigate variability of Δrs,l as a
function of rs,2.12 mm, month, and land cover type as defined
by theMODIS land cover product (MOD12C1) [Freidl et al.,
2010]. We group AERONET stations within continuous land
type regions, defined by 5% contours of each land type
percent coverage, and determine the changes to Ml and
Bl (ΔMl and ΔBl) needed to reduce bias between the calcu-
lated and observed AOD.
[29] We predict ΔMl and ΔBl for each land type region

based upon the inverse AOD-weighted median of the

highest decile of observed land type fraction. This method
infers the characteristics of each surface type over loca-
tions dominated by that surface type. Regions with less
than 50% land type coverage are excluded from the pre-
diction of ΔMl and ΔBl. We assume that changes deter-
mined for the surface reflectance relationship of each
land cover type at AERONET locations are representative
over large distances and use an inverse distance weighted
spatial interpolation to extend the land type-specific ΔMl
and ΔBl values to regions without collocated AERONET
observations. Average ΔMl and ΔBl, weighted by percent
land type coverage, are superimposed onto the relationships
calculated from the MODIS BRDF product and maintain
its initial fine scale variability. This process is iterated, with
each iteration capped at 80% of the previous change, until
ΔMl is less than 0.01 of the previously estimated value.
[30] Figure 1 shows our final estimates of Ml for July

2008. Red coloring denotes regions where surface reflec-
tance at 470 nm and 660 nm approach that at 2.1 mm; this
is characteristic of densely vegetated regions of low
2.1 mm surface reflectance such as in Brazil, the Congo,
eastern Asia, and the southeast United States. At 660 nm,
higher ratios are found in the western United States as
compared to the eastern United States, principally due to
bright, arid surfaces in the west. Surface reflectance over
desert regions decrease by about a factor of 2 between
660 nm and 470 nm, a result similar to that found by
Hsu et al. [2006].
[31] Table 1 gives the median and standard deviation of

Ml for July 2008 according to MOD/MYD04, MOD43,
and this work. The MOD43 values used for initial surface
reflectivity remain globally well correlated with our final
estimates at 0.1� � 0.1� for both wavelengths (r= 0.92 to
0.93). The correlation of our final Ml with MOD/
MYD04 values is low (r =�0.2 to 0.3) which show less
variability within each land cover type. Our final values
are generally higher than MOD/MYD04 at 470 nm, with
a median difference of 0.14, but are globally more similar
at 660 nm, with a median difference of 0.02. Some of
these differences at 470 nm require further investigation
in future work.

Table 1. Median and Standard Deviation of Isotropic Surface Reflectance Ratios (Ml) at 470 nm and 660 nm With Isotropic Surface
Reflectance at 2.12mm, Median Degrees of Freedom of Signal (DFS) and Relative Weight for Observational Constraint (Obs. Weight)

Land Cover Type

470 nm 660 nm

DFS Obs. WeightaMOD04 MOD43 This Work MOD04 MOD43 This Work

Evergreen needleleaf forest 0.29� 0.02 0.42� 0.12 0.62� 0.11 0.58� 0.04 0.62� 0.09 0.57� 0.09 0.46 35:65
Evergreen broadleaf forest 0.30� 0.01 0.57� 0.25 0.68� 0.25 0.60� 0.02 0.65� 0.17 0.57� 0.22 0.57 4:96
Deciduous needleleaf forest 0.30� 0.02 0.34� 0.05 0.46� 0.05 0.60� 0.02 0.53� 0.04 0.51� 0.04 0.34 2:98
Deciduous broadleaf forest 0.30� 0.02 0.30� 0.11 0.36� 0.13 0.61� 0.05 0.49� 0.07 0.30� 0.09 0.55 41:59
Mixed forests 0.29� 0.01 0.43� 0.11 0.53� 0.10 0.61� 0.01 0.56� 0.07 0.50� 0.08 0.67 11:89
Closed shrublands 0.24� 0.03 0.30� 0.17 0.36� 0.17 0.49� 0.05 0.58� 0.17 0.54� 0.17 0.24 17:83
Open shrublands 0.25� 0.03 0.33� 0.09 0.40� 0.10 0.51� 0.05 0.61� 0.09 0.61� 0.10 0.29 77:23
Woody savannas 0.29� 0.03 0.36� 0.11 0.42� 0.16 0.59� 0.05 0.58� 0.08 0.51� 0.10 0.47 71:29
Savannas 0.26� 0.02 0.26� 0.05 0.31� 0.05 0.53� 0.05 0.53� 0.05 0.51� 0.06 0.45 46:54
Grasslands 0.24� 0.02 0.29� 0.07 0.30� 0.07 0.49� 0.04 0.58� 0.09 0.54� 0.08 0.18 99:1
Permanent wetlands 0.28� 0.01 0.44� 0.16 0.81� 0.22 0.57� 0.02 0.75� 0.15 0.75� 0.15 0.32 46:54
Croplands 0.28� 0.02 0.30� 0.10 0.38� 0.12 0.58� 0.04 0.55� 0.13 0.51� 0.14 0.53 90:10
Urban and built-up 0.27� 0.02 0.37� 0.10 0.51� 0.12 0.55� 0.04 0.66� 0.11 0.64� 0.11 0.43 69:31
Cropland/natural vegetation mosaic 0.29� 0.01 0.33� 0.11 0.45� 0.18 0.60� 0.03 0.56� 0.12 0.55� 0.15 0.55 29:71
Barren or sparsely vegetated 0.25� 0.01 0.30� 0.13 0.32� 0.13 0.50� 0.01 0.68� 0.13 0.61� 0.13 0.20 97:3

aDefined as the ratio of median percentage error of M660 and median percentage of M470, normalized to 100.
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[32] Transitions from vegetative surfaces to urban sur-
faces have the potential to cause errors in AOD retrievals,
due to increased reflectance of urban surfaces [de Almeida
Castanho et al., 2007]. The insets in Figure 1 highlight
such a transition in Mexico, where M0.66 mm increases to
0.75 over Mexico City. De Almeida Castanho et al.
[2007] determined that a visible/SWIR surface reflectance
ratio for urban Mexico City of 0.73 significantly improved
MODIS retrievals during the Megacity Initiative: Local
and Global Research Observations campaign of March
2006, which is in agreement with our value during
that time.

3.2. Estimation of Prior Error

[33] OE relies on an accurate representation of error for
both the initial or prior quantities as well as observed
quantities. We estimate the prior error by comparing
GEOS-Chem AOD with daily coincident AERONET ob-
servations over 2004–2008 for each month. A knowledge
of this error as a function of aerosol species is helpful in
extending error estimates beyond AERONET locations,
since species-specific emissions and assumed aerosol mi-
crophysical properties are major sources of CTM error.
We estimate the role of different species in contributing
to CTM error by applying the relative simulated speciation
to AERONET AOD. The observations are subdivided by
species (sulphate-ammonium-nitrate, carbonaceous, dust,
and sea salt) and magnitude before comparison. We
exclude speciated fractions below 20% and combine
those stations within 1000 km. This regional grouping of

Figure 3. Average error in observational AOD for the
month of July. Intensity of color represents the median
speciated prior AOD during July 2004–2008. Observational
wavelengths used to calculate AOD at 550 nm are given in
the lower left corner of each panel.

Figure 2. Average speciated error in prior Aerosol Optical Depth (AOD) at 550 nm for the month of July.
Boxes indicate the domains of GEOS-Chem nested regions. Intensity of color represents the median speciated
simulated AOD during July 2004–2008. Speciated groupings are named in the lower left corner of each panel.
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Figure 4. (top three panels) Average of coincidently sampled AOD at 550 nm from the operational
MODIS retrieval (MOD/MYD04), from optimal estimation (this work), and from simulations (GEOS-
Chem) for January to December 2005. (bottom panel) Degrees of freedom for signal (DFS) for the optimal
estimation. Boxed regions denote those used for the scatterplots of Figure 5. Black dots indicate
AERONET locations. White areas denote lack of data (less than 10 values) or water.
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AERONET stations is used to improve the number of
comparisons available for each month and assumes a
regionally similar magnitude of error for each species.
We calculate the 1-s percentage and absolute error of each
species at each station as a function of magnitude. We
extend these errors globally using an inverse distance
and cross-correlation weighted average. Locations that
lack statistically significant cross correlations are not
included in the weighted average. Additionally, we use
this comparison to determine a minimum overall error
for simulated AOD using the absolute 1-s error at low
total AOD (<0.05).
[34] Figure 2 shows the average daily 1-s percentage

error in simulated AOD at 550 nm at overpass time by
species for July. Errors of 40%–60% in secondary inor-
ganic (sulphate, ammonium, and nitrate) AOD are found
in most regions of North America and Europe, where
these species can dominate AOD. Asian errors are typi-
cally higher for all species, particularly in India where
errors exceed 100% for all dominant species (carbonaceous
aerosol, secondary inorganic aerosol, and dust). Errors in
dust are typically 30%–100% near major source regions but
have limited influence elsewhere. The errors in sea salt have
a limited effect on AOD over land, where sea-salt concentra-
tions are low.

3.3. Estimation of Observational Error

[35] We use a “brute-force” technique to determine the
observational accuracy at both 0.47 mm and 0.66 mm as a
function of month, land cover type, and magnitude of
AOD. This observational error term includes uncertainty in
both the observed rTOA and the retrieval skill at relating
rTOA to AOD at 550 nm and is impacted by local accuracies
of the extinction profile, surface reflectivity, and aerosol mi-
crophysical properties. OE calculations are performed for
MODIS footprints within the surrounding square of 5� 5
pixels (approximately 50 km� 50 km) for each AERONET
location using a series of assumed errors and then compared
with AERONET. We separate comparison pairs according to
land cover and combine stations following our approach for
surface reflectance estimation.
[36] We determine the monthly absolute and percentage

observational error of each land type by evaluation at each
AERONET site using these land cover separated values.
We evaluate local agreement by considering the four metrics
slope (m), offset (b), root mean square difference (rmsd), and
correlation coefficient (r) versus AERONET observations.
We equally weight the importance of each metric, normalize
the individual terms such that a value of 1 denotes its
preferred condition, and then sum to create a ranking over
the range 0 to 4, where we define this rank as:

rank ¼ min m;m�1ð Þ þ 1� abs bð Þ=b75ð Þ
þr þ 1� abs rmsdð Þ=rmsd75ð Þ (6)

[37] Negative terms are set to zero. Here b75 and rmsd75 de-
note the 75th percentile of their respective values, beyond
which scores are set to zero for these metrics. An inverse dis-
tance weighted spatial interpolation is used to produce a
global map of error for each land cover type. Finally, these
land cover specific errors are combined based upon local per-
cent land type coverage to create a global error map.
[38] Figure 3 shows the resulting average daily percentage

error in AOD for July 2005 at both observational wave-
lengths. Errors at 470 nm tend to be less than 50%. Errors
at 660 nm are more variable and exceed 100% over most de-
serts. Errors in observed AOD tend to be lower than in the
simulated, prior, values with the exception of arid regions
at 660 nm. Errors at 470 nm are typically lower than at
660 nm over the western United States and other bright sur-
faces; this is likely indicative of darker surfaces at 470 nm
and the quality of surface reflectance relationships over these
regions. Observational errors below 20% over some heavily
polluted regions of India and China suggest that observa-
tional constraints may significantly improve upon prior
AOD in these regions. We again determine a minimum over-
all error using the absolute 1-s error at low AOD (<0.05).
[39] Table 1 gives the relative weight of each wavelength

on the observational constraint, as implied by the normalized
ratio of median percentage error at each wavelength.
Forested regions are dominated by the 660 nm wavelength,
suggesting a better surface characterization at this wave-
length. Urban and cropland surfaces, by contrast, appear to
be better represented by the 470 nm surface relationships.
The implication of low DFS, also given in Table 1, for certain
land cover types is discussed below.

3.4. Comparison of Operational, Simulated, and
OE AOD

[40] Given the errors calculated in sections 3.2 and 3.3, we
now proceed to calculate the optimal estimate by minimizing
the cost function in equation 2. Figure 4 (top three panels)
shows the average coincidently sampled AOD from the oper-
ational algorithm (MOD/MYD04), from our OE algorithm,
and from simulation. Differences between OE and opera-
tional values result from the influence of the prior and from
differences in assumed surface reflectance and aerosol opti-
cal properties. Strong AOD enhancements above global
mean values are seen over eastern China and northern
India, as well as biomass burning regions in Africa and
South America. OE AOD over western North America does
not show the same enhancement as seen in MOD/MYD04,
consistent with Drury et al. [2008]. Higher correlation is

Table 2. Lidar Ratio at 532 nm Calculated With GEOS-Chem
Aerosol Optical Properties, as a Function of Relative Humidity

Species

Relative Humidity (%)

0 50 70 80 90 95

Ammonium sulphate 54 66 71 75 83 90
Black carbon 108 108 108 96 80 73
Organic carbon 56 62 64 66 71 75
Sea salt (accumulation) 16 26 25 24 23 21
Sea salt (coarse) 14 15 18 19 19 19

Table 3. CALIOP Aerosol Types and Associated Lidar Ratios at
532 nm [From Winker et al., 2009]

Species Lidar Ratio

Dust 40
Smoke 70
Clean continental 35
Polluted continental 70
Clean marine 20
Polluted dust 65
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found between OE AOD and simulated values (r = 0.86)
compared to MOD/MYD04 (r= 0.72) but both show signifi-
cant agreement.
[41] The bottom panel of Figure 4 shows the average DFS,

as calculated from the trace of the averaging kernel matrix.
Values exceed 0.8 over India and eastern China, indicating
a regionally high sensitivity to aerosol loading. DFS less than
0.5 over bright surfaces indicates a stronger dependence on
the prior in regions such as the western United States and
central Asia. Table 1 summarizes median DFS by land cover
type. Low values (<0.25) are found over barren or sparsely
vegetated, grassland, and closed shrubland surfaces, indi-
cated a poor representation of surface reflectance at both
wavelength for these land cover types. Forested land cover
types typically show the greatest level of observational con-
straint (DFS = 0.34–0.67). Cropland-related land covers are
also relatively constrained (DFS = 0.53–0.57).
[42] Figure 5 compares MOD/MYD04, OE, and simulated

AOD with coincident observations from AERONET. OE
correlations and slopes typically perform as well as, or better,
than either MOD/MYD04 or simulation. The most promi-
nent exceptions are for eastern Asia and India where MOD/
MYD04 is biased high by 11–15%, while OE is biased low
by 25–29%. These regions have high prior error and rely
heavily on observational values, as represented by the high
DFS. Brighter surface reflectance is assumed in this region
by this work as compared to the MOD/MYD04 algorithm,
however, and therefore, AOD is decreased. An increase in
the density of AERONET observations in these regions
would allow better characterization of regional surface
properties. Africa shows a slight loss in performance

(slope = 0.84) relative to the MOD/MYD04 retrieval
(slope = 0.91), despite a slope of 1.04 for the prior. Further
improvements to surface reflectance would help here.
[43] Figure 5 also contains the number of coincident pairs

whose difference lie within the given error for each data set.
We find that at least 68% (1-s) of the operational, simulated,
and OE error estimates are within the expected values of
(15%+0.05) for MOD/MYD04 [Remer et al., 2005] and
those given in Figures 1 and 2, with the exception of the
Indian subcontinent, where operational and OE error estimates
are underestimated. Local OE error envelopes typically cap-
ture fewer values as the slope deviates further from unity,
suggesting that bias may be inadequately represented.

4. Effect of Relative Vertical Profile on PM2.5

[44] Here we discuss the aerosol vertical profiles used to
related total column AOD to ground-level concentrations.
Satellite observations of rTOA from a single nadir viewing
geometry are unable to resolve information on the aerosol
vertical profile needed to determine near-surface PM2.5. We
therefore rely on simulated vertical profile to relate total
column AOD to PM2.5. We evaluate the simulated relative
profile using CALIOP. Following Ford and Heald [2012],
we remove simulated values below the CALIOP detection
limit, exclude cloud aerosol detection scores below 20, and
limit total column optical depths to less than 2.0.
[45] Consistent aerosol optical properties in both the

CALIOP retrieval and the aerosol simulation are necessary
to isolate the information from CALIOP observations about
bias in simulated profiles. Table 2 gives the lidar ratio, Sp,

Figure 5. Scatterplots of coincident operational (MOD/MYD04), optimal estimation (this work), and
simulated (GEOS-Chem) AODs compared against AERONET values at 550 nm. Simulated and optimal
estimation error estimates are given in Figures 2 and 3. Regions are defined in Figure 4. In err. indicates
the percentage of AOD pairs within the expected error bound of each dataset.
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determined with Mie calculations [de Rooij and van der Stap,
1984; Mishchenko et al., 1999] based on the optical proper-
ties used in our GEOS-Chem simulation as a function of rel-
ative humidity and species. The lidar ratio for ammonium
sulphate increases by 50% from dry conditions (RH= 50%)
to moist conditions (RH= 95%). The Mie lidar ratio for dust
is not used due to non-sphericity. Table 3 gives the lidar
ratios used by the CALIOP retrieval. Direct comparison of
species-specific lidar ratios is inhibited by aerosol classifica-
tions that are unique to each source. Nonetheless, the values
used by GEOS-Chem at mid-level relative humidity are
broadly consistent with those from the CALIOP retrieval.
Lidar ratios from both the CALIOP retrieval and the
GEOS-Chem simulation are about 3–4 times larger for pol-
luted continental (ammonium sulphate and organic carbon)
than for clean marine (sea salt). Simulated values, however,
indicate variation with relative humidity that could lead to
significant differences in Sp under atmospheric conditions.
[46] Figure 6 compares the coincidently sampled lidar

ratios from CALIOP with those based upon GEOS-Chem
speciation for June, July, and August 2006–2011. A lidar
ratio of 40 is used for simulated dust as in the CALIOP
retrieval. Retrieval and simulation features are similar; how-
ever, simulated lidar ratios are 10–20% higher in polluted re-
gions such as eastern North America, which may arise from
elevated regional relative humidity. The impact of these lidar

ratio differences must be accounted for during evaluation of
the simulated profile.
[47] Equation 2.1 of Part 4 of the CALIOP Algorithm

Theoretical Basis Document [Young et al., 2008] gives the
lidar equation as:

P rð Þ ¼ 1

r2
E0x bM rð Þ þ bP rð Þ½ �T2

M 0; rð ÞT2
O3

0; rð ÞT2
P 0; rð Þ (7)

where
[48] 1. P(r) is the detected backscattered signal from range

r from the lidar;
[49] 2. E0 is the average laser energy for the single shot or

composite profile;
[50] 3. x is the lidar system parameter;
[51] 4. bM and bP are the molecular and particulate volume

backscatter coefficients;
[52] 5. T 2

M , T
2
O3
, and T 2

P are the two-way molecular, ozone,
and particulate transmittances.
[53] A change in the lidar ratio to a new value, S

0
P , will

impact both the particulate volume backscatter coefficient,
b

0
P, and particulate transmittance, T

0
P:

P rð Þ ¼ 1

r2
E0x bM rð Þ þ b

0
P rð Þ

h i
T2
M 0; rð ÞT2

O3
0; rð ÞT 02

P 0; rð Þ (8)

Figure 6. Effect of lidar ratio onCALIOP retrieval for June, July, andAugust 2006–2011. The upper plots show
the extinction coefficient (EXT) and lidar ratio (LR) profiles of the (blue) original CALIOP retrieval and (red)
simulation-consistent values, corresponding to the crosshair locations shown in the lower panel. Horizontal lines
indicate one standard deviation. The lower row shows vertical extinction-weighted averaged, coincident lidar ratios
(top) from GEOS-Chem optical properties and (bottom) from the CALIOP retrieval for the same time period.
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Figure 7. Comparison of simulated (SIM) and CALIOP (CAL) relative-to-surface extinction profiles for
June–August. Figures 7a and 7c show the ratio of mean coincidently sampled relative CALIOP and simu-
lated extinction profiles for 2006–2011, normalized to a value of 1 at the surface (dark grey line).
Horizontal lines contain one standard deviation of the averaged ratios. Figures 7b and 7d show the mean
simulated relative profiles for 2004–2006 at two locations identified by the crosshairs in Figure 7e.
Figure 7e shows the global impact of this adjustment on the relationship between AOD at 550 nm and
PM2.5 (Z). Boxes denote nested simulated regions.

Figure 8. Source-specific error estimate in annual mean PM2.5 at a relative humidity of 50%. Error in the
aerosol column (AOD) is represented as the sum of absolute and relative terms.
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[54] Dividing (7) by (8), and substituting T 2
P 0; rð Þ ¼

exp �2a rð Þtp 0; rð Þ� �
, where a(r) is the multiple scattering

factor and tp(0,r) is the particulate optical depth, gives

1 ¼ bM rð Þ þ bP rð Þ½ �exp �2a rð Þtp 0; rð Þ� �
bM rð Þ þ b’P rð Þ� �

exp �2a’ rð Þt’p 0; rð Þ
h i (9)

[55] Substituting the lidar ratio,

Sp ¼ sp
bp

(10)

where sp is the particulate volume extinction coefficient, and
solving with a(r) and a

0
(r) treated as unity by assuming thick

aerosol layers [Young et al., 2008], gives

1 ¼ bM rð Þ þ bP rð Þ½ �
bM rð Þ þ b’P rð Þ� � exp 2

Z r

0
S

0
P rð Þb0

P rð Þ � SP rð ÞbP rð Þ
� �

dr

� 	
(11)

[56] The extinction coefficients in the top panels of
Figure 6 show the effect of iteratively solving equation (11)
for b

0
P from the top of the atmosphere using simulation-

consistent values for S’P, and CALIOP v3-01 retrieval values
for SP and bP for June, July, and August 2006–2011. The

effect is cumulative, with increasing impact on approach to
the surface and indicates an effect on the relative profile used
when relating AOD to PM2.5.
[57] Figure 7 further examines the effect of using the CALIOP

observations to inform the AOD to PM2.5 calculation. Figures 7a
and 7c show the ratio of the average relative extinction profile
from CALIOP to the simulated aerosol extinction using consis-
tent lidar ratios, for June to August of 2006 to 2011, for the two
locations indicated. Figures 7b and 7d show the relative simulated
profile and the effect of imposing the CALIOP-to-simulation
ratio. The selected locations over eastern North America and
eastern China have noteworthy deviations from modeled peak
elevation and relative magnitude. Ford and Heald [2013] simi-
larly found that GEOS-Chem underestimates aerosol in the lower
free troposphere of the southeast United States.
[58] Figure 7e shows the impact of the CALIOP-based pro-

file on the relation between AOD and PM2.5, (whereZ� PM2.5/
AOD). The ratio of the simulated Z to the CALIOP-adjusted
value, ZCAL, suggests profile-related errors are often less than
25%, but in some locations can approach a factor of 2. We
therefore scale the simulated aerosol profile according to a
monthly, 3month running mean, CALIOP-based climatology.
We multiply each simulated level by the ratio of its mean nor-
malized extinction profile to that retrieved by CALIOP and
subsequently scale the adjusted aerosol column to maintain
the original simulated total mass. The adjustment is smoothed
by averaging neighboring cells thereby reducing noise and

Figure 9. Comparison of satellite-derived OE PM2.5 from this work with the previous estimates from
van Donkelaar et al. [2010] for 2005. The left panels show coincidently sampled averages at locations
with at least 10 coincident in situ satellite-derived PM2.5 pairs. The right panels show average satellite-
derived PM2.5. Boxed regions are enlarged within the subpanel plots. Black dots indicate stations
included in both scatterplots, and black text provides statistics based upon these locations alone. Grey dots
indicate those additional stations that also meet minimum comparison criteria for the OE estimates.
Grey text provides statistics based upon all stations available to the OE estimates. PM2.5 estimates are at
35% relative humidity.

VAN DONKELAAR ET AL.: OPTIMAL ESTIMATION FOR PM2.5

5632



providing continuous global coverage. This corrected profile
is used to infer PM2.5 from AOD.

5. PM2.5: Estimation of Errors and Validation
With In Situ Data

[59] Three of the major error sources for annual mean
satellite-derived PM2.5 estimates are AOD accuracy, relative

aerosol profile accuracy, and the impact of discontinuous
sampling. We estimate AOD error as the sum of an absolute
and relative term that contains one standard deviation of the
differences between coincidently sampled AERONET and
OE AOD over each land type. We extend globally these error
estimates from individual stations using land-type percentage
cover following the method in section 3.1 used for surface
reflectance relationships and observational error. We apply

Figure 10. (upper panel) Global OE PM2.5 map and (lower panel) combined error at 50% relative humid-
ity for 2005. Markers denote locations of in situ monitors used for validation and indicate whether the
location is within ( ), biased high above ( ) or biased low beneath ( ) the predicted error. Boxes denote
designated regions of Table 4.

Table 4. Regional Statistics of PM2.5 Concentrations at 50% Relative Humidity

Region

Statistics (mg/m3) Population-Weighted Statistics (mg/m3)

Mean SDb Nc Mean SDb Nc

World 10.7 12.3 104 27.8 20.5 159
Eastern North America 7.0 4.3 123 11.2 3.3 160
Western North America 3.9 2.7 138 6.5 3.5 203
South America 8.2 5.9 145 7.1 4.2 141
North Africa 27.5 15.3 50 27.4 14.0 162
South Africa 16.4 15.6 172 22.9 21.8 166
Eastern Asia 17.1 16.8 96 37.9 19.9 140
Central Asia 17.8 15.0 107 38.9 19.5 208
South Asia/Australia 3.8 5.1 131 10.9 6.7 127
Eastern Europe 13.5 4.4 121 15.3 4.2 131
Western Europe 10.0 3.6 118 12.0 3.9 108
High North 3.5 3.0 47 4.2 1.8 63

aRegions are defined in Figure 10.
bStandard deviation.
cAverage number of daily values for a 0.1� � 0.1� grid with the region for 2005.
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our simulated AOD-PM2.5 relationship to relate error in
AOD to that in PM2.5. We represent error in the relative pro-
file by the standard deviation of the relative ratio in between
CALIOP and GEOS-Chem (as shown in the profile compar-
isons of Figure 7) divided by the square root of number of
values from MODIS. The relative effect of sampling is ap-
proximated using the ratio of coincidently sampled and full
annual mean simulated PM2.5 values.
[60] Figure 8 shows each of these error sources. AOD col-

umn error has the largest impact over parts of Asia, although
South America and Africa also show large regional errors.
Profile errors are typically less than 20%; however, enhanced
profile error is found in regions affected by major biomass
burning events, such as central Africa and Brazil, reflecting
the uncertainties in smoke injection height. Parts of Canada
and northern Europe also show larger profile errors, possibly
due to a combined effect of limited sampling with seasonal
profile variation. Profile error over northern India is predicted
to be relatively low (<15%) despite an adjustment of nearly
50% (shown in Figure 7), due to low variability in the differ-
ence between the CALIOP and simulated relative extinction
profile. Sampling bias is typically less than 20%, with the ex-
ception of some desert, boreal, and biomass burning-affected
regions, where biases can exceed 50%.
[61] Figure 9 compares the performance of our OE-based

PM2.5 values with those of van Donkelaar et al. [2010] for
2005 over North America. Our OE algorithm improves cov-
erage (1309 stations versus 1145 stations) and correlation
(0.82 versus 0.77) as compared with the earlier work.
Error is similar for both data sets ((1 mg/m3 + 27%) versus
(1 mg/m3 + 25%)), while slope is slightly degraded (0.89 ver-
sus 1.06). PM2.5 artifacts in southwestern Canada are reduced
compared to previous estimates, due to regionally brighter
surface reflectance and increased sampling. The extent of
local PM2.5 enhancements around urban locations is dimin-
ished, as is seen in Figure 9 insets. These effects likely result
from a combination of less summer-dominated sampling
and improved representation of the urban surface reflectance
used in the AOD retrieval. Overcompensation for urban,
and other, bright surfaces in the OE AOD is possible due to
the removal of the brightest 50% of TOA reflectances
used from the MOD/MYD04 algorithm. This would be
consistent with the overall underestimate of OE PM2.5 as
compared to in situ values.
[62] Figure 10 (upper panel) shows our global OE PM2.5

estimates at 50% relative humidity. Peak concentrations are
approximately 90 mg/m3 over eastern China and 80 mg/m3

over northern India. High PM2.5 concentrations are found
in regions heavily influenced by desert dust and seasonal
biomass burning.
[63] Figure 10 (lower panel) shows total predicted error,

calculated by combining in quadrature the error components
from Figure 8. The average predicted error at monitor loca-
tions in North America at 35% relative humidity (RH) is
(2.5 mg/m3 + 31%), which exceeds the observed 1-s error
level of� (1.0 mg/m3 + 28%). The predicted 1-s error con-
tains 75% of the differences with in situ monitors and implies
that the true error is slightly lower. The majority of sites with
errors that exceed our predicted estimates are in the western
half of the continent, suggesting that for some regions, such
as the San Joaquin Valley in California, USA, the higher
satellite-derived PM2.5 values estimated in the previous work

better characterize local concentrations than our present
OE values. Error estimates at European monitoring sites
perform similarly to North America, with 74% of the OE
values within the mean co-located 50% RH error estimate of
(3.5 mg/m3 + 30%). Error outside Canada, USA, and Europe
appears to be underestimated, however, with only 40% of
differences falling within the mean 50% RH co-located error
of� (3.0 mg/m3 + 35%). It is unclear whether this lower accu-
racy in error prediction reflects a decrease in representativity
of the available in situ data due to variability within the
pixel’s approximately 10 km� 10 km [e.g., Brauer, 2010;
Lindén et al., 2012] or a decrease in the quality of the OE
error estimates.
[64] Table 4 provides regional statistics of PM2.5 at 50%

RH, as well as sampling. Population-weighted PM2.5 exceeds
unweighted spatial averages for all regions except South
America and North Africa, where enhancements due to bio-
mass burning and Saharan dust dominate. A global
population-weighted mean PM2.5 for 2005 of 27.8 mg/m3 is
estimated, with population-weighted regional values
reaching nearly 40 mg/m3 over Eastern and Central Asia.

6. Conclusions

[65] We develop an optimal estimation (OE) based
approach to global PM2.5 estimation that combines satellite
observations of top-of-atmosphere (TOA) reflectance from
the MODIS instrument with prior PM2.5 concentrations from
the GEOS-Chem chemical transport model. Simulated TOA
reflectances and associated AOD Jacobians are calculated with
the LIDORT radiative transfer model. Surface reflectance rela-
tionships are indexed by land type. Error estimates of both
simulated and observed values needed for OE calculations
are determined by comparison with AERONET measure-
ments of AOD. These error estimates are extended globally
using cross correlation and speciation for GEOS-Chem error
and land type coverage for satellite-based observational error.
Final OE-based AOD values generally perform as well as, or
better than, either simulated or satellite-retrieval values alone.
India and East Asia are exceptions. Regional daily compari-
sons with coincident AERONET measurements yield slopes
of 0.7–1.1 and correlations of 0.67–0.89.
[66] We evaluate and improve the GEOS-Chem AOD

to PM2.5 relationship by comparing simulated relative extinc-
tion profiles with those retrieved by the CALIOP space-borne
lidar. The comparison used consistent optical properties
for the CALIOP retrieval and GEOS-Chem. The simulated
and measured profiles often agree to within 25%; however,
differences vary by up to a factor of 2 in some regions.
We therefore incorporate a monthly, 3month running mean,
adjustment to the GEOS-Chem profile to match CALIOP
mean values.
[67] We predict the error of our final OE PM2.5 estimates

based upon uncertainties in the sampling, the relative extinc-
tion profile, and the AOD itself. Our predicted error estimates
capture at least 68% of values over Canada, USA, and
Europe when compared with available in situ PM2.5 moni-
tors. The accuracy of the error is less clear outside of these lo-
cations, likely due to a combination of decreased
representativity of the in situ data itself and increased uncer-
tainty in the OE error values.
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[68] We find good agreement between our OE PM2.5 values
over North America (slope = 0.89; r=0.82), with increased
coverage and correlation relative to earlier work. We find
observationally a 1-s error of� (1mg/m3 + 28%), which
implies that our predicted error of� (2.5mg/m3 + 31%) is
slightly overestimated over this region as a whole.
Subregions, such as the western United States, can contain
clusters of sites with error beyond the estimated range,
and whose measured values are closer to those estimated in
previous work [e.g., van Donkelaar et al., 2010]. Overall,
OE agreement is comparable to the previous work, with
OE providing improved sampling (1309 sites versus 1145
sites) and correlation (0.82 versus 0.77), but lower slope
(0.89 versus 1.06) and similar error (1mg/m3 + 27% versus
1mg/m3 + 25%). Global population-weighted PM2.5 at 50%
RH is estimated as 27.8mg/m3.
[69] OE provides a framework within which improvements

to both simulated and retrieved aerosol can be incorporated.
A greater understanding of the magnitude and impact of error
sources will lead to improved estimates. Specific future work
should develop the aerosol simulation to reduce the bias in
the extinction vertical profile. Additional in situ PM2.5 mon-
itors outside of Canada, the United States, and Europe would
provide valuable information for global comparisons.
Collocation of AOD and PM2.5 measurements (e.g., www.
spartan-network.org) would characterize errors in simulating
that quantity. Incorporation of additional wavelengths into
the OE framework, such as those deployed by the MODIS
Deep Blue retrieval [Hsu et al., 2006], could improve aerosol
estimates over bright surfaces.
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