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ABSTRACT

A time-lagged ensemble method is used to improve 6–15 day precipitation forecasts from the Beijing Climate Center
Atmospheric General Circulation Model, version 2.0.1. The approach averages the deterministic predictions of precipitation
from the most recent model run and from earlier runs, all at the same forecast valid time. This lagged average forecast (LAF)
method assigns equal weight to each ensemble member and produces a forecast by taking the ensemble mean. Our analyses of
the Equitable Threat Score, the Hanssen and Kuipers Score, and the frequency bias indicate that the LAF using five members
at time-lagged intervals of 6 h improves 6–15 day forecasts of precipitation frequency above 1 mm d−1 and 5 mm d−1 in
many regions of China, and is more effective than the LAF method with selection of the time-lagged interval of 12 or 24 h
between ensemble members. In particular, significant improvements are seen over regions where the frequencies of rainfall
days are higher than about 40%–50% in the summer season; these regions include northeastern and central to southern China,
and the southeastern Tibetan Plateau.
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1. Introduction

Numerical weather prediction (NWP) models have
demonstrated high levels of skill in terms of short-range (1–
6 day) forecasts of geopotential heights, temperature and
precipitation, but less accuracy for medium- to long-range
(6 days or longer) forecasts (Qin and van den Dool, 1996;
Schmeits and Kok, 2010). In order to address this problem,
ensemble forecasting methods have been proposed in many
studies and are routinely used in operational centers to im-
prove weather forecasts, subseasonal and seasonal prediction,
and even the long-range prediction of climate change (Sivillo
et al., 1997; Krishnamurti et al., 2000).

Can ensemble techniques be used to improve medium-
range forecasts of precipitation? It is a research topic that has
not been explored very well because the focus of most past
studies on precipitation prediction has been on short-range
(rather than medium-range) ensemble forecasting. Success
for improving short-range precipitation forecasts has been
demonstrated through the multi-model ensemble method
(Ebert, 2001), initial perturbations method (Walser et al.,
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2004) and the operational centers ensemble prediction system
(Schmeits and Kok, 2010). In contrast, Liu (2003) and Vitart
and Molteni (2009) showed the value of ensemble methods
for forecasting the mean of 30- and 5-day precipitation in
the medium- to long-term. Overall, attempts to improve 1–
2 week forecasts of daily precipitation using ensemble tech-
niques, so far, have been limited.

The purpose of the present paper is to demonstrate how
an ensemble-mean method based on a time-lagged ensem-
ble system (as described in section 2) can produce signif-
icantly better forecasts of daily precipitation than a deter-
ministic method for lead times of 6–15 days. The evalua-
tion is conducted through: (1) numerical experiments using
version 2.0.1 of the Beijing Climate Center’s Atmospheric
General Circulation Model (BCC AGCM2.0.1) for the sum-
mers of 1996–2005; and (2) comparisons of model results
with ground-based observations (section 2). While the time-
lagged ensemble forecast is not a new concept, it is com-
monly used to produce an ensemble mean or probability
for short-range and medium-range forecasts of geopotential
heights, temperature, relative humidity, and other fields (e.g.,
van den Dool and Rukhovets, 1994; Lu et al., 2007). To our
knowledge, this concept has not been applied to medium-
range forecasts of daily precipitation, although its value for
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short-range precipitation forecasts has been demonstrated,
such as in Yuan et al. (2009).

2. Model, data and ensemble method

The global spectral model, BCC AGCM2.0.1, is based
on the National Center for Atmospheric Research (NCAR)
Community Atmosphere Model, with subsequent develop-
ment by the National Climate Center (NCC) at the China
Meteorological Administration (CMA). New features of the
BCC AGCM2.0.1 include different numerical schemes for
atmospheric dynamics and several new physical parameter-
izations (e.g., a new convection scheme and dry adiabatic ad-
justment scheme). The model has a horizontal resolution of
T42 (approximately 2.8125◦×2.8125◦ transformed grid) and
26 levels in a hybrid sigma/pressure vertical coordinate sys-
tem (Wu et al., 2008, 2010). Previous studies have shown that
BCC AGCM2.0.1 reproduces the present-day climate fairly
well (Wu et al., 2010; Chen et al., 2011).

Owing to the lack of data assimilation systems for
BCC AGCM, an initial coordinated integration method
(ICIM) was applied to overcome the problems with the
BCC AGCM’s initial condition for the hindcast simulations
(Jie and Wu, 2010). In ICIM, the model requires a spin-up pe-
riod of 10 days (before forecast lead time) by using NCEP-II
reanalyses data with a horizontal resolution of 2.5◦×2.5◦ and
17 levels; the atmosphere temperature and wind fields at each
BCC AGCM grid box and level are interpolated respectively
from their counterparts in the reanalyses. During the spin-up,
the model boundary conditions of sea surface temperature
and sea ice are specified according to version 2 of the NCEP
optimal interpolation SST analysis (NCEP-OI2) data (hor-
izontal resolution of T42; 1981–2006; http://www-pcmdi.
llnl.gov/projects/amip/AMIP2EXPDSN/BCS/amipbc dwnld
files/T42/nc/).

The time-lagged ensemble forecast system used in the
present work is shown in Fig. 1. The ensemble forecast valid
for a particular time was constructed from individual fore-
casts initialized at different times, but valid for the same time.
The lagged average forecast (LAF) assigns equal weights to
all ensemble members, and then computes the mean as the
final forecast. The total number of ensemble members de-
pends on the time lagging interval, ΔT , between each ensem-
ble member. Thus, if all the model runs initialized during the
preceding day are used to construct the time-lagged ensem-
ble, a total of five members can be generated if ΔT is 6 h
(e.g., four runs per day), but only two members if ΔT is 24 h
(e.g., one run per day). To evaluate the impact of the length of
ΔT on forecast performance, we consider experiments using
ΔT = 24, 12 and 6 h, respectively, for precipitation forecasts.

Hindcasts were initially performed using BCC AGCM
2.0.1 with outputs every six h for June—July–August (JJA)
1998 (runs from nine days before 1 June were needed in
this work) when El Niño and the anomalous Western Pacific
Subtropical High resulted in the strongest persistent precip-
itation for a century in China (Ding and Hu, 2003). To further

Fig. 1. Diagram showing how a time-lagged ensemble forecast
system is constructed in this study.

evaluate the value of the ensemble method, similar simula-
tions were also conducted for cases that were respectively
forecasted from 1 June, 1 July and 1 August in other sum-
mers during 1996–97 and 1999–2005 (runs from three days
earlier in each case with outputs every six hours were needed,
as detailed in section 4.2). The forecast lead time for every
hindcast was 15 days.

The precipitation data used in this study are based on re-
ports from 2466 rain gauges. Before they are interpolated
to model grids [using the Cressman interpolation method
(Cressman, 1959)] for model evaluation, these precipitation
data undergo quality control processes, such as processing of
climate and gauge outliers and homogenization, conducted
by the Chinese National Meteorological Information Center.

3. Verification methods

For all numerical experiments, the skill of the daily pre-
cipitation forecasts is evaluated using the Equitable Threat
Score (ETS), frequency bias (BIA), and the Hanssen and
Kuipers Score (HK) (Hanssen and Kuipers, 1965; Schaefer,
1990; Wilks, 1995, respectively). These verification scores
are based on a categorical dichotomy between the rain fore-
casts and observations (e.g., a yes/no statement). For each
precipitation threshold, four categories of hits, false alarms,
misses, and correct no-rain forecasts are defined in a 2× 2
contingency table (Schaefer, 1990). The BIA score indicates
underestimation (overestimation) of rainfall frequency with
a value lower (higher) than 1.0. The ETS score is used to
assess the skill of the predicted rainfall location without ran-
dom forecast. The range of ETS is from −1/3 to 1. An ETS
equal to 1 indicates a perfect forecast, while an ETS close to
0.0 or negative indicates poor rain forecasting skill. The HK
score is a measure of the accuracy both for events and non-
events. A perfect forecast has an HK score equal to 1.0, while
a score of −1.0 means that the precipitation forecast capabil-
ity is worse than a random forecast that receives a score of
0.0.

Further, the reliability of ensemble forecasts is assessed
using Rank Histograms (RHs) (Hamill and Colucci, 1998;
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Fig. 2. The mean observed frequency of daily precipitation
amount averaged for all grid boxes over China with different
precipitation intensities (0.3+ mm, 0.5+ mm, 1+ mm, 2+ mm,
5+ mm and 10+ mm) during summer 1998.

Hamill, 2001), which are generated by computing the rank
of observed precipitation relative to values from an ensemble
sorted from lowest to highest for all grid boxes. Thus, the
number of possible ranks is the number of ensemble mem-
bers plus 1. A U-shaped rank indicates a lack of variability
in the ensemble, and a uniform rank shows the ensemble is
dispersed and reliable.

In this study, we mainly focus on forecasts for rainfall of
1 mm and above per day (hereafter 1+ mm) and 5 mm and
above per day (hereafter 5+ mm). As shown in Fig. 2, the oc-
currence frequencies of 1+ mm and 5+ mm rainfall in China
accounted for more than 73% and 33% of all rainfall days in
summer 1998, respectively. Thus, the 1+ mm rainfall is taken
as a relative high frequency event and the 5+ mm as a relative
low frequency event.

4. Results

4.1. Verification for summer 1998
4.1.1. Overall skill

To gain a first estimate of what is the longest time that
an ensemble member can be lagged (from the initial time) to
maintain its usefulness for improving the precipitation fore-
cast, we evaluate the LAF-based prediction of precipitation
by the selection of the time-lagged interval of 24 h. Fig-
ure 3a shows the ETS scores of the LAF method (including
the deterministic forecast) using members (with ΔT = 24 h)
for forecasting rainfall of 1+ mm over China during JJA as
a function of forecast time length for up to 15 days in 1998.
It supports a conclusion that the skill for forecasting 6–15
day 1+ mm precipitation can be improved by LAF. The ETS
score for the deterministic forecast (black line) decreases
from about 0.3 to 0.15 during the first six days, and thereafter
gradually declines for lead time beyond six days (Fig. 3a).
In comparison, the LAF method (dashed colored lines) using

ΔT = 24 h generally shows a significant enhancement of ETS
scores for forecasts beyond 5 days. The enhancement is es-
pecially noticeable for the LAF forecasts using four members
(time lagging of three days), and further inclusion of other en-
sembles that are lagged by more than 4×ΔT neither degrades
nor dramatically increases the ETS score. These results sug-
gest that an ensemble within four members is sufficient for an
improved forecast of precipitation location.

The conjecture that four ensemble members is sufficient
for improving precipitation forecasts is also supported by the
analysis of HK score, which accounts for the accuracy of both
events and non-events. Figure 3b shows that the HK score for
deterministic forecasts (black line) beyond five days is less
than 0.2 and continues to decrease with forecast lead time. In
contrast, the HK scores for LAF with four members or more
(dashed colored lines) are generally close to 0.2 during 6th–
15th days, again highlighting the value of lagged ensemble
members for medium-range forecasts of precipitation. Fur-
thermore, while the deterministic forecast has a persistent
underestimation with BIAs of 0.8–0.9, the LAF using four
members generally shows a smaller frequency bias (but over-
estimation), except beyond 10 days. However, in comparison,
an increasing overestimation (BIAs > 1) is presented as more
than two members are incorporated in LAF (Fig. 3c). A syn-
thesis of Figs. 3a–c suggests that LAF, using four members,
can significantly improve forecasts of daily precipitation for
lead times of 6–15 days.

In this work, we take more than 5+ mm rainfall as
medium-range heavier precipitation. As shown in Figs. 4a–
c, the 6–15 day forecast skill of 5+ mm rainfall is similar to
the prediction for 1+ mm rainfall, and the LAF method us-
ing four members or more also improves the 6–15 day fore-
casts of daily precipitation. The corresponding ETS scores
are generally higher than the deterministic forecast by about
0.025 (Fig. 4a) and the HK scores increase by about 0.05 be-
yond six days (Fig. 4b). However, BIA values are larger than
1.0 and increase (indicating more overestimation) when five
or more ensemble members at ΔT = 24 h are used (Fig. 4c).

The above results of LAF with ΔT = 24 h suggest that
time-lagged forecasts made within the last three days could
generally contain useful information for medium-range fore-
casting. Hence, three days was considered as the maximum
length for time lagging in the experiments described next.

To evaluate the sensitivity of the LAF-based prediction to
the use of different time-lagged intervals (ΔT ) for generating
ensemble members, we further analyze the LAF results us-
ing ΔT = 6 and 12 h within the maximum lagging length (3
days). Figures 3d and e and 3g and h show that the improve-
ments of 1+ mm rainfall from LAF with either ΔT = 6 or 12
h are similar to the improvements by LAF using ΔT = 24 h
(Figs. 3a and b); the corresponding ETS and HK scores are
generally higher than the deterministic forecast beyond five
days. This result also indicates that the time-lagged ensem-
ble members with lags less than or equal to three days are
sufficient for an improved medium-range forecast of precip-
itation. However, for lead times of 6–15 days, an increasing
overestimation (BIAs > 1) is also shown as more members
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Fig. 3. Evaluation of LAF-based prediction of 1+ mm rainfall with time-lagged intervals of 24 h (a–c), 12 h (d–f) and
6 h (g–i). The averaged ETS scores for prediction of 1+ mm and 5+ mm rainfall as a function of forecast length for up
to 15 days during Jun, Jul and Aug 1998 in China are respectively shown as panels (a), (d) and (g) in the first row. The
second and third rows are respectively the same as the first row, except that they show the HK (b, e, h) and BIA (c, f, i)
scores.

separated by ΔT = 6 or 12 h are included (Figs. 3f and i).
On the whole, LAF with five members at ΔT = 6 or 12 h can
significantly improve 6–15 day precipitation forecasts. For
predicting medium-range 5+ mm rainfall, the improvement
from ensembles members with ΔT = 6 or 12 h (Figs. 4d–i) is
virtually the same as the counterparts with ΔT = 24 h (Figs.
4a–c).

Figure 5 shows a careful comparison of the three best en-
sembles from LAF using different time-lagged intervals. The
analyses of the ETS, HK and BIA scores consistently indi-
cate that the LAF method using five ensemble members with
ΔT = 6 h (orange dashed line) generally shows a slight im-
provement for 1+ mm precipitation when compared with the
five-member ΔT = 12 h LAF (blue dashed line) and the four-

member ΔT = 24 h LAF (green dashed line) (Figs. 5a–c).
For heavier precipitation, the ETS and HK results indicate
that the improvement of 6–15 day precipitation forecasts is
relatively insensitive to LAF with different ΔT values (Figs.
5d and e), but the frequency biases from five-member ΔT = 6
h LAF are smallest (Fig. 5f). In addition, despite LAF show-
ing less credence for improving 1–2 day precipitation fore-
casts for both 1+ mm and 5+ mm, it nevertheless also shows
marginal improvement for 3–5 day forecasts of precipitation
using the LAF method (Fig. 5).

4.1.2. Spatial distribution of forecast accuracy rates

The above analyses of the ETS, HK and BIA scores con-
sistently indicate that the LAF method using five ensemble
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Fig. 4. The same as Fig. 3, but for 5+ mm rainfall.

members with ΔT = 6 h shows a significant improvement
over the deterministic forecast for 6–15 day precipitation
forecasts. To assess the geographical performance of five-
member ΔT = 6 h LAF, we carry out an evaluation of time
series of forecasts in each model grid box. Figures 6a–c show
the differences of forecast accuracy rates for 1+ mm precip-
itation between the LAF and deterministic forecast methods
at lead times of 8, 11 and 14 days, in which the accuracy rates
are computed as (rain day hits + correct no-rain days)/(total
days) × 100% for the ensemble forecasts in summer 1998,
and the rain day hits and correct no-rain days in each model
grid box for a given lead time are counted based on modeled
daily precipitation (valid at the corresponding lead time) in
that grid box during 1 June to 31 August. It features as an
extended area with positive values of difference located over
most regions in northeastern and central to southern China for
all the lead times, where the corresponding accuracy rates are
generally enhanced by up to 5%–15% higher than their coun-

terparts from the deterministic forecast. The results show
that the LAF method provides significant improvements in
the prediction of rainfall in these areas, especially the south-
eastern Tibetan Plateau and part of northeastern China. It
is interesting that these regions of significant improvement
are located exactly in the areas of 1+ mm precipitation fre-
quency with higher than about 40%–50% occurrence from
rain-gauge observations across China (Figs. 6d–f).

In Fig. 6, we can also see that there is a large region
of negative values in the northwest of China and middle
reaches of the Huanghe River that belong to arid and semi-
arid drought regions where there is a lower frequency of 1+
mm precipitation (< 40%) occurrence in summer 1998. This
implies no dramatic improvements and indeed a decrease in
accuracy rates in these drier areas, as the number of cor-
rect no-rain forecasts in less rainy areas are reduced by us-
ing the LAF method, although the hits are a little higher
(not shown). As for the ensemble forecasts of medium-range
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Fig. 5. The same as Fig. 3, but only for the LAF method using five members at 6-h and
12-h time-lagged intervals, and four members at 24-h time-lagged intervals.

heavier precipitation, the LAF accuracy rates, in comparison
with their counterparts using the deterministic method, do not
increase evidently, although some improvements for hits can
be found in the northeast of China, as well as the reaches of
the Huanghe and Yangtze rivers (not shown).

4.1.3. Case study

The five-member ΔT = 6 h LAF method was used to
predict the spatial distribution of daily precipitation during
a continuous heavy rain event beginning 23 June 1998 (Jie
and Wu, 2010). Figure 7a shows the observed northeast-to-
southwest rain belt on 30 June 1998 (the 8th day of forecast-
ing). The deterministic forecast lacks the skill to predict 1+
mm rainfall in the southeast of China, over the middle and

lower reaches of the Yangtze River, and slightly underesti-
mates the rainfall in the northeast of China and south of the
Tibetan Plateau (Fig. 7b). In contrast, the results from the
LAF method show: (1) the prediction of 1+ mm rainfall over
the southeast and middle and lower reaches of the Yangtze
River is significantly better; (2) the observed 5+ mm rainfall
in the southeast of the Tibetan Plateau is slightly better pre-
dicted; but (3) a false prediction of 5+ mm rainfall appears in
the northeast of China (Fig. 7c).

On 3 July 1998 (the 11th day of forecasting), the observed
1+ mm rainfall is distributed in the south, west and north-
east of China, and the 5+ mm main rain belt is located in the
south and northeast of China (Fig. 7d). Unfortunately, the
deterministic forecast dramatically underestimates rainfall in



MARCH 2014 JIE ET AL. 299

Fig. 6. Geographic distribution of the differences of forecast accuracy rates (a–c) for 1+ mm precipitation be-
tween the LAF method using five members at 6-h time-lagged intervals and the deterministic forecast at lead
times of 8 (a, d), 11 (b, e) and 14 (c, f) days during Jun to Aug 1998, and the frequency of occurrence for 1+
mm precipitation from observations on the corresponding date. See text for details.

these areas (Fig. 7e). However, the LAF method significantly
improves both 1+ mm and 5+ mm predicted rainfall, except
for a missed event in the northwest (Fig. 7f).

On the 14th day (6 July 1998), the observed rainfall is
concentrated in the south and the northeast of China, over
the upper and middle reaches of the Yangtze River, and over
the Tibetan Plateau (Fig. 7g). However, the missed event
from the deterministic forecast appears in the northeast and
over the Tibetan Plateau, and a false prediction occurs over
the lower reaches of the Yangtze River (Fig. 7h). By using
LAF, the results show the following: (1) the forecast skill of

1+ mm rainfall in the northeast and over the Tibetan Plateau
(despite the predicted rainfall coverage being large) is en-
hanced; (2) the 5+ mm rainfall begins to occur in the north-
east even though the predicted coverage is too small com-
pared to the observation; and (3) there is no dramatic im-
provement in rainfall prediction over the lower reaches of the
Yangtze River (Fig. 7i).

4.2. Verification for other years
Finally, to verify how LAF performs in “average” years

with more normal precipitation conditions, we applied the
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Fig. 7. Spatial distribution of daily precipitation over China on 30 Jun (top row), 3 Jul (middle row), and 6 Jul (bottom
row) 1998 from observations (a, d, and g in the left panel), and precipitation forecasts begun on 23 June 1998 from the
deterministic forecast method (b, e, and h in the middle panel) and the LAF method using five members at time-lagged
intervals of 6 h (c, f, and i in the right panel). Units: mm d−1.

five-member ΔT = 6 h LAF to the summers of 1996–2005.
Figure 8 shows the averaged ETS, HK and BIA scores for 30
cases that are from every prediction for 15-day lead times be-
ginning 1 June, 1 July and 1 August in 10 years (thick lines).
When compared with the deterministic forecast for lead times
of 6–15 days, the ETS and HK scores are increased by the
LAF (Figs. 8a and b), although the frequency biases are not
reduced as the corresponding BIAs are a little higher (Fig.
8c). This supports the conclusion that the LAF method yields
improvement for 6–15 day 1+ mm precipitation forecasting
that is consistent with the results described in section 4.1 for
the wet summer of 1998. For the prediction of 5+ mm rain-
fall, the improvements are concentrated only for lead times
of 4–9 days (Figs. 8d–f). Generally, they are not as signifi-
cant as that for the summer of 1998, suggesting that the LAF
improves the 5+ mm precipitation forecast more substantially
in wet years. We also note that, in Fig. 8, the ETS and HK
scores of the LAF method are still higher than those of the
deterministic forecast in the typical drier summer of 2004 in
most rainy areas of China (refer to http://cmdp.ncc.cma.gov.
cn/Monitoring/Bulletin/200408/monitoringc/schinarrc.gif).

Similar to Fig. 6, Figs. 9a–c show the spatial distribu-
tion of the differences of forecast accuracy rates for 1+ mm
precipitation for the 30 cases in 10 years. It also shows that
significant improvements in rainfall prediction for days 8, 11

and 14 are still located in northeastern and central to southern
China and over the southeastern Tibetan Plateau, where the
corresponding accuracy rates are generally about 5%–15%
higher than their counterparts of the deterministic forecast.
Consistent with results for the typical summer of 1998, there
are no improvements in arid and semi-arid regions (masked
by white color), such as the northwest of China and the mid-
dle reaches of the Huanghe River, where the frequencies of
occurrence for 1+ mm precipitation are generally lower than
40% (Figs. 9d–f). It is notable that there is a north-to-south
belt of decrease in the forecast accuracy rate in central China
at the lead time of the 14th forecast day (Fig. 9c). It is pos-
sibly related to the lower occurrence of precipitation in this
region at the lead time of the 14th day in these 30 cases (Fig.
9f). The partial improvements in the medium-range heavier
precipitation are primarily reflected in the hits for northeast-
ern China, and over the reaches of the Huanghe River and
Yangtze River, rather than in the correct no-rain forecasts (not
shown).

Finally, to examine the reliability of the time-lagged en-
semble system, we plotted rank histograms (RHs) for the
statistics of 30 cases (1996–2005) of ensemble forecasts with
different initial forecast time separately for 1 June, 1 July and
1 August for 10 years. Figure 10a shows the RHs of the five
ΔT = 6 h optimal ensemble members, for the lead time of
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Fig. 8. The same as Fig. 3, but for the LAF method using five members at 6-h time-
lagged intervals for 30 cases during 1996–2005. The thick lines are “average” years,
and the thin lines are the dry summer year of 2004. See text for details.

the 8th day. It presents a reverse L-shaped RH, suggesting
that the ensemble is slightly lacking of variability (Hamill,
2001) and has dry biases [dry biases often cause observations
to rank highest with a reversed L shape, while wet biases in
ensemble forecasts can lead to an L-shaped RH (Yuan et al.,
2009)]. As the lead time increases, the ensemble for the lead
times of the 11th and 14th days (Figs. 10b and c) tend to
be a uniform rank, but with slightly sloped distributions of
the RHs toward the right side, indicating that the ensemble
is more reliable in the longer lead time and tends to under-
predict precipitation amounts.

A few factors may contribute to this slightly insufficient
variability of the time-lagged ensemble system. First, the
time-lagged ensemble forecast system is only a single-model
ensemble system: it does not account well for model error.
Second, all of the initialization times are too close to each
other (Lu et al., 2007). It is interesting to note that the under-
dispersion and bias is common in many other ensemble fore-
cast systems as well, especially for precipitation forecasting,
such as the European Centre for Medium Range Weather
Forecasts (ECMWF) ensemble prediction system (Mullen
and Buizza, 2002), the NCEP regional spectral model ensem-
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Fig. 9. The same as Fig. 6, but only for the LAF method for 30 cases during 1996–2005. See text for details.

bles (Yuan et al., 2007), the NCEP multi-model short-range
ensemble forecast system (Stensrud and Yussouf, 2007), and
the Canadian ensemble forecast system (Peel and Wilson,
2008). For example, the RH diagram of the NCEP multi-
model short-range ensemble forecast system is similar to that
of our ensemble system. It is noted that such a kind of bias
is an indicator of the deficiency of the overall modeling sys-
tem, and hence does not necessarily occur for every single
forecast in each model grid box. An empirical correction of
such bias in the ensemble forecast, through an increase of the
model horizontal resolution (Mullen and Buizza, 2002), the
development of a multi-model ensemble method (Yuan et al.,
2009), or the improvement of model physical parameteriza-

tions, is an active area for research, and will be our focus in
future studies.

5. Summary and discussion

While the time-lagged ensemble technique has been in-
strumental in improving medium-range forecasts of geopo-
tential heights, this paper is among the first to demonstrate
its value for the improvement of 6–15 day precipitation fore-
casts. The LAF with ΔT = 24 h suggests that time-lagged
forecasts made within the last three days could generally
contain useful information valuable for improving medium-
range forecasts of precipitation. According to the sensitivity
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Fig. 10. Rank histograms of time-lagged ensemble forecasts
with 6-h time-lagged intervals for the (a) 8th; (b) 11th; and (c)
14th day precipitation forecasts. The histograms are based upon
the results of 30 cases in 10 years. The abscissa indicates the
rank of the observation among all ensemble members, while
the ordinate indicates the frequency of the total sample for each
rank. The red lines denote an averaged rank. See text for details.

analyses for the selection of the time-lagged intervals of 6, 12
and 24 h within a lagging of 3 days, the LAF method using
five members at ΔT = 6 h was found to be able to most signif-
icantly improve the 6–15 day forecasts of daily precipitation.
Meanwhile, the geographic distribution of the accuracy rates

for all daily forecasts during summer 1998 further supports
that the LAF method can enhance the forecast skill in rainy
areas where the frequencies of rainfall days are higher than
about 40%–50%, such as northeastern and central to south-
ern China, and over the southeastern Tibetan Plateau. The
application of LAF for “average” years further verifies that
the LAF is effective for 6–15 day precipitation, although the
improvement in 5+ mm precipitation forecasting is less sig-
nificant in “average” years than wet years (e.g., 1998).

The reason for the improvements by LAF relative to the
deterministic forecast method is very complicated. It is pos-
sibly attributed to the time-lagged ensemble method, which
is analogous to a method creating initial perturbation at the
forecast time. The ensemble for initial perturbations can, to
some extent, decrease the influence due to uncertainty of the
model initial state. However, this work also shows that the
LAF method still has its limitations in improving precipi-
tation forecasts in arid and semi-arid drought regions over
China in summer. This might be linked to the deficiency
of describing the precipitation process in the model, which
can be overcome by improving the model initial condition
Once there are some members of forecast precipitation occur-
rence in the period of no rainfall from observations, the aver-
aged precipitation for all ensemble members is easily overes-
timated in arid and semi-arid drought regions.

In this work, ensemble techniques for medium-range
forecasts were only tested for summer rainfall in eastern
Asia. Admittedly, care must be exercised, and further study
is needed to evaluate the LAF method for the prediction of
winter precipitation. Nevertheless, the encouraging results
shown in this study suggest the feasibility of developing en-
semble techniques for the medium-range prediction of pre-
cipitation. The LAF method developed in this study has the
potential to be used for other regions. In addition, to increase
the variability of the time-lagged system, further investiga-
tions into the design of the time-lagged multi-model ensem-
ble system, or improving its physical parameterizations, are
possibly needed. And finally, if under the constraint of prac-
tical limitations models can only run once or twice per day
(instead of four times per day), the LAF method using the
selection of the time-lagged interval (24 or 12 h) is also rec-
ommended.
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