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Abstract A new research algorithm is presented here as the second part of a two-part study to retrieve
aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements
taken by Aerosol Robotic Network’s (AERONET’s) new-generation Sun photometer. The algorithm uses an
advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical optimization
approach. While the new algorithm has heritage fromAERONET operational inversion algorithm in constraining
a priori and retrieval smoothness, it has two new features. First, the new algorithm retrieves the effective radius,
effective variance, and total volume of aerosols associated with a continuous bimodal particle size distribution
(PSD) function, while the AERONET operational algorithm retrieves aerosol volume over 22 size bins. Second,
our algorithm retrieves complex refractive indices for both fine and coarsemodes, while the AERONET operational
algorithm assumes a size-independent aerosol refractive index. Mode-resolved refractive indices can improve
the estimate of the single-scattering albedo (SSA) for each aerosol mode and thus facilitate the validation of
satellite products and chemistry transport models. We applied the algorithm to a suite of real cases over
Beijing_RADI site and found that our retrievals are overall consistent with AERONET operational inversions
but can offer mode-resolved refractive index and SSA with acceptable accuracy for the aerosol composed
by spherical particles. Along with the retrieval using both radiance and polarization, we also performed
radiance-only retrieval to demonstrate the improvements by adding polarization in the inversion. Contrast
analysis indicates that with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10–30%
in the refractive index, and 10–40% in SSA, which is consistent with theoretical analysis presented in the
companion paper of this two-part study.

1. Introduction

The present study, as the second paper in a two-part study, aims at developing an inversion algorithm
that retrieves microphysical properties of atmospheric aerosols using multispectral and multiangular
photopolarimetric observations, such as those collected as part of the new research development for the
Aerosol Robotic Network (AERONET). With over 400 locations around the word, most AERONET sites are
equipped with an automatic Sun and sky scanning spectral radiometer, or the CIMEL-318 type Sun
photometer, to measure direct and diffuse solar radiation in various atmospheric window channels [Holben
et al., 1998]. The direct Sun radiance data are used to infer the spectral aerosol optical depth (AOD), with
an uncertainty of ~0.01 [Holben et al., 1998; Smirnov et al., 2000]. By performing observations at dozens of
viewing geometries in the solar aureole and the principal plane, AERONET also measures the diffuse solar
radiation for a wide range of scattering angles. These sky radiance data are used in the current AERONET
operational inversion algorithm [Dubovik and King, 2000; Dubovik et al., 2006, hereafter Dubovik00&06] to
derive (1) the aerosol particle size distribution (PSD) in terms of the aerosol volume (in the atmospheric
column) at 22 size bins, (2) the fractional volume of nonspherical particles, and (3) the complex refractive
index (mr�mii) assumed to be independent of particle size. From those microphysical parameters, the
Dubovik00&06 algorithm computes the aerosol single-scattering albedo (SSA or ωA) and the phase
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function. Uncertainties in the AERONET inversion products are 15–100% for the bin-based PSD parameters,
0.025–0.05 for mr and ~ 0.03 for ωA [Dubovik et al., 2000].

While the AERONET AOD and other inversion products have been widely used to study the climatology of
aerosol optical properties [Dubovik et al., 2002; Levy et al., 2007a] and for the development and validation
of aerosol retrieval algorithms for satellite sensors such as the Moderate Resolution Imaging Spectrometer
(MODIS) [Kaufman et al., 1997; Remer et al., 2005; Levy et al., 2007b, 2010; Wang et al., 2010] and the Multi-
angle Imaging Spectroradiometer [Diner et al., 1998; Kahn et al., 2010], the AERONET operational algorithm
also faces (a) challenges in evaluation of aerosol data either retrieved from newer-generation satellite
sensors or simulated from chemistry transport models and (b) opportunities to improve the retrieval
through the use of multispectral polarization measurements that are now available at a few sites and will
be made available at more sites as part of the AERONET future research development (http://aeronet.gsfc.
nasa.gov). These challenges and opportunities, as further described below, are also the motivation for us
to develop a new research algorithm.

The first challenge is that newer-generation satellite sensors are expected to offer aerosol microphysical
products with accuracy that is equivalent to, if not higher than, that of the current AERONET microphysical
products. For instance, the Aerosol Polarimetry Sensor (APS) for the NASA Glory mission, through
measuring the first three Stokes vector elements simultaneously from 250 viewing angles at nine spectral
bands (410, 443, 556, 670, 865, 910, 1370, 1610, and 2200 nm), was designed to retrieve aerosol effective
radius (reff), effective variance (veff), and spectral complex index of refraction for both fine and coarse
modes [Mishchenko et al., 2007]. While no actual product is available because of the failure of Glory launch,
several case studies with the APS’s prototype airborne sensor, RSP (the Remote Sensing Polarimeter),
demonstrated feasibility of APS algorithm [Chowdhary et al., 2002, 2005; Mishchenko et al., 2004; Waquet
et al., 2009]. At least in the case of spherical particles, the accuracy of APS’s bimodal aerosol products was
expected to be 10% for reff, 40% for veff, 0.02 for mr, and 0.03 for the SSA (ωA) [Mishchenko et al., 2007].
Some of these accuracy expectations are unlikely to be matched by existing ground-based and in situ
instruments, including those at the AERONET sites. Moreover, the current AERONET retrieval of the
refractive index and the ωA are not recommended to use when the 440 nm AOD is lower than 0.4 [Holben
et al., 2006] due to expected limited accuracy identified in the detailed sensitivity study by Dubovik
et al. [2000].

The second challenge is associated with the inconsistency in assumptions of PSD that exists between current
AERONET inversion products and satellite retrievals on the one hand, as well as the aerosol models used by
climate models on the other hand. Specifically, the Dubovik00&06 algorithm retrieves the aerosol PSD on in
22 discrete size bins. In contrast, a continuous PSD function (e.g., lognormal) is usually assumed in satellite
retrieval algorithms, such as those for APS/RSP [Mishchenko et al., 2007; Waquet et al., 2009] and the
POLDER/PARASOL algorithm [Hasekamp et al., 2011]. Also, aerosol microphysical properties are usually
calculated with continuous PSD assumptions in many chemistry transport models, such as GEOS-Chem
[Drury et al., 2010; Wang et al., 2010] and the Goddard Chemistry Aerosol Radiation and Transport model
[Chin et al., 2002]. Clearly, the actual aerosol PSD is never a perfect lognormal distribution, but neither is it
discrete. At least from the scattering perspective, the aerosol PSD can be well characterized with an
effective radius reff and an effective variance veff, while the specific function of the PSD is shown to be
much less important [Hansen and Travis, 1974]. In other words, since the retrieval is based on the
information content in the particle optical scattering, the most relevant size parameters, regardless of the
PSD shape, should be reff and veff, at least for spherical particles.

The third challenge is that the assumption of a size-independent refractive index (and SSA) in Dubovik00&06
is not in line with the majority of counterpart satellite retrieval algorithms [e.g., Mishchenko et al., 2007;
Hasekamp et al., 2011; Martonchik et al., 2009], which often uses different refractive indices for various
individual aerosol modes. In many cases, tropospheric aerosol is a mixture of modes with substantially
different refractive indices. For example, smoke from biomass burning can be mixed with mineral dust
over western coastal North Africa [Yang et al., 2013]. Furthermore, the assumption of size-independent
refractive index can lead to errors in the retrieval of the size distributions when the refractive indices for
fine- and coarse-mode aerosols differ substantially [Dubovik et al., 2000; Chowdhary et al., 2001]. Thus, a
mode-resolved parameterization of the refractive index in an aerosol retrieval algorithm not only can
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facilitate the validation of satellite products and chemistry transport models but also is expected to improve
the accuracy of PSD and SSA retrievals for each mode. Dubovik et al. [2000] have tested the possibility of
retrieving separated refractive indices of fine and coarse modes; however, they concluded that the
retrieval of bimodal refractive indices is essentially nonunique due to limited information in the AERONET
radiance-only observations.

The retrieval algorithm proposed here embraces the future opportunities of deploying polarization
measurements through AERONET and ameliorates the aforementioned limitations in the Dubovik00&06
algorithm by incorporating both radiance and polarization data. Polarization measurements contain
valuable information on aerosol microphysical properties [Mishchenko and Travis, 1997], as the polarization
of the scattered light is highly sensitive to aerosol size and refractive index [Hansen and Travis, 1974;
Mishchenko et al., 2002]. As suggested by the information content analysis in the companion paper [Xu
and Wang, 2015], adding polarization data into the AERONET inversion will enable the retrieval of bimodal
refractive index and SSA even for 440 nm AOD as low as 0.2 when the Ångström exponents (AE) is
between 0.7 and 1.6. We also found that the uncertainty in the retrieval can be reduced by up to 76%
(49%), 69% (52%), 66% (46%), and 49% (20%) for the fine mode (coarse mode) reff, veff, mr, and SSA,
respectively. We note, however, the conclusions of above mentioned studies [Hansen and Travis, 1974;
Mishchenko and Travis, 1997; Xu and Wang, 2015] were based on consideration of spherical aerosol
particles and were primarily from a theoretical point of view. In contrast, the studies by Dubovik et al.
[2006] and Deuzé et al. [1993, 2001] revealed serious limitation of polarimetric retrieval of the properties
for the coarse mode, especially nonspherical aerosols. Moreover, Dubovik et al. [2006] have shown that
while the polarimetic observation of fine particles and large spheres are highly sensitive to the real part of
refractive index, even they have nonnegligible sensitivity to particle shape. Therefore, adding polarization
measurements to the inversion has great potential to improve the accuracy of AERONET microphysical
retrievals, provided that the difficulty of representing aerosol particle shapes is recognized or adequately
addressed. In these regards, most of the past efforts seem to suggest clear improvements in
characterization of fine-mode aerosol using polarimetric observations. For example, Li et al. [2009], based
upon the Dubovik00&06 algorithm, demonstrated the possibility to reduce errors in the fine-mode size
distribution, real part of the refractive index, and particle shape parameters.

Section 2 of this paper gives an overview of the algorithm, while sections 3 and 4, respectively, describe in
detail the forward modeling of AERONET photopolarimetric measurements and the inversion strategies.
Retrieval results for a collection of real cases are presented and discussed in section 5, followed by a brief
conclusion in section 6. It should be noted that our focus is on the development of core components for a
new research algorithm that can be used for the next-generation AERONET, although also considered are
the practical aspects of implementing this algorithm, including quality assurance, dynamical surface
polarimetric reflectance, and dynamic gas absorption. Our future work will address other aspects needed
to transition this research algorithm into operational form, including the code efficiency and performance.

2. General Structure of the Algorithm

Figure 1 gives an overview of the retrieval algorithm specifically designed for the analysis and inversion of
photopolarimetric remote sensing observations, such as those from AERONET. The algorithm builds upon
the UNified and Linearized Vector Radiative Transfer Model (UNL-VRTM), which consists of seven
component modules for the forward simulation of observations and a module for optimal inversion [Wang
et al., 2014]. The forward modeling includes the linearized vector radiative transfer model (VLIDORT)
developed by Spurr [2006], a linearized Mie code and a linearized T-Matrix code calculating aerosol single-
scattering properties [Spurr et al., 2012], a module calculating Rayleigh scattering and a module for gas
absorption, plus a surface model computing bidirectional reflectance/polarization distribution function
(BRDF/BPDF) [Spurr, 2004]. The required input parameters for the algorithm are the relevant atmospheric
profiles (of pressure, temperature, and gaseous mixing ratio), aerosol loading in terms of AOD or aerosol
columnar volume, aerosol vertical profiles, aerosol microphysical and chemical parameters (size
distribution and complex refractive index), and surface reflection parameters. The users can specify up to
two modes of the aerosol population. Each mode is characterized by the total particle number (or volume),
the vertical profile, size distribution, and refractive index. The aerosol-related modules—Mie, T-matrix, and
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VLIDORT—are analytically linearized and fully coupled. Thus, the forward model not only simulates radiance
and/or polarization for a given spectrum but also computes the Jacobians of these radiation fields with
respect to input aerosol microphysical parameters. Our inversion-oriented framework supplies these
Jacobians together with observation error characterizations and a priori constraints to the statistical
optimization procedure for the retrieval. Information content and error analysis are also included in the
procedure along with the inversion. Although our algorithm is tailored to measurements from the
AERONET Sun photometer, its modularized framework enables the simulation and inversion of
observations from various platforms, including satellite sensors.

Development of the inversion component in our algorithm was built upon our experience with optimization
of aerosol emissions using the adjoint chemistry transport model (CTM) [Wang et al., 2012; Xu et al., 2013]. In
essence, the optimization method is consistent with the adjoint modeling that constrains aerosol emissions
from measurements through inverting a CTM, although different physical processes are involved for
inversion of AERONET observation. Both inversions seek the optimal solutions for a state vector that
minimizes the differences between the model simulation and observation. In addition, our algorithm
inherits the inversion strategy from the Dubovik00&06 algorithm, in particular with regard to the
smoothness constraint on the spectral dependence of the complex refractive index.

3. Forward Modeling of AERONET Observations

The aerosol retrieval algorithm is designed to invert photopolarimetric measurements of the direct and
diffuse solar radiation measurements obtained with the ground-based CIMEL Dual-Polar Sun/sky
radiometer, or the CE318-DP Sun photometer, operated at the Beijing_RADI site since 2009; it also served
as part of the UAE2 (abbreviation for the Unified Aerosol Experiment-United Arab Emirates) field
campaigns [Reid et al., 2008; Eck et al., 2008]. This new-generation instrument performs programmed
scanning sequences similar to those of the older-generation CE318 radiometer but now has the capability
to measure polarization over an extended spectrum with central wavelengths ranging from 340 to
1640 nm [Li et al., 2013, 2014]. Table 1 summarizes the currently available measurements. Briefly, the
instrument performs direct Sun observations in various spectral bands between 340 and 1640 nm at
standard 15min or 0.25 air mass intervals, from which the AOD is derived. Basic sky measurements of
diffuse radiances are made in 340, 380, 440, 500, 675, 870, 1020, and 1640 nm bands via two observational
sequences: in the solar almucantar (ALM) and in the solar principal plane (PPL). More than eight ALM
sequences are made daily at optical air masses of 4, 3, 2, and 1.7 both in the morning and in the
afternoon; each sequence is performed at constant solar elevation for up to 72 specified azimuth angles
relative to the position of the Sun. The PPL sequence includes the measurements of diffuse radiances for a

Table 1. AERONET Observation Characteristics

Symbol Parameter Instrumental Uncertainty Other Uncertainties

y1 Direct Sun AOD 0.01–0.02 ~0.02 spatial/temporal variation
y2 Sky radiance in solar almucantar 5% Surface BRDF and BPDF
y3 Sky radiance in principal plane 5% Surface BRDF and BPDF
y4 DOLP in principal plane 0.01 Surface BRDF and BPDF

Figure 1. Overview of our inversion algorithm.
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set of 42 scattering angles, and observations are made hourly when the optical air mass is less than 2.
Polarization measurements (PPP) are taken at the same wavelengths, and the scan sequence is made in
the principal plane at 5° increments between viewing zenith angles of �85° and 85°. A full observation set
thus consists of about 20min of scans: 30 s direct Sun, followed by 5min for ALM sky radiances, then the
5min PPL sky radiances, and finally, the 8min PPP sky polarization measurements. Given the AERONET
instrumental characteristics, we require an accurate and comprehensive vector radiative transfer model
that treats the gaseous absorption, aerosol scattering, and surface reflection in order to simulate a
complete set of such observations.

The radiance and polarization of light at any wavelength can be represented by a Stokes column vector I
having four elements [Hansen and Travis, 1974]

I ¼ I;Q;U; V½ �T ; (1)

where I is the total intensity (radiance), Q and U describe the state of linear polarization, V describes the state
of circular polarization, and T indicates a transposed matrix. It should be noted that all radiation fields and
optical parameters used in this paper are functions of the light wavelength λ. For simplicity, however, we omit
λ in all formulas. The degree of linear polarization (DOLP) is defined by

DOLP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ U2

p
I

: (2)

In the solar principal plane, U is negligibly small for a homogeneous atmosphere and the above formula
becomes DOLP=�Q/I. Its deviation from zero is an indicator of a lack of homogeneity or instrumental
issues [Li et al., 2014]. Let I0 = [I0, 0, 0, 0]

T denote the Stokes vector for incident solar radiation at the top of
the atmosphere (TOA) from the direction (θ0, ϕ0), where θ0 and ϕ0 are the solar zenith and azimuth
angles, respectively. For a plane-parallel atmosphere bounded below by a reflective surface, the vector
radiative transfer equation in the medium for the specific intensity column vector I of light propagating in
the viewing direction (θ, ϕ) can be written [Hovenier et al., 2004; Mishchenko et al., 2002]

μ
∂I τ;μ;ϕð Þ

∂τ
¼ I τ;μ;ϕð Þ � J τ;μ;ϕ;μ0;ϕ0ð Þ; (3)

J τ;μ;ϕ;μ0;ϕ0ð Þ ¼ ω
4π ∫

1

�1
∫
2π

0

P τ;μ;μ0;ϕ � ϕ0ð ÞI τ;μ0;ϕ0ð Þdϕ0dμ0

þ ω
4π

P τ;μ;μ0;ϕ � ϕ0ð ÞI0 exp �τ=μ0ð Þ:
(4)

Here τ is the extinction optical depth measured from TOA, μ and μ0 are cosines of θ and θ0, respectively, ω is
the SSA, and P is the phase matrix. The first term in equation (4) represents multiple scattering contributions,
while the second indicates scattered light from the direct solar beam.

Parameters required to solve the above radiative transfer equation are τ,ω, and P(Θ) for the atmosphere, and
the reflectance matrix Rs(μ,ϕ;μ0,ϕ0) of the underlying surface. Considering a cloud-free atmosphere, the
solar radiation is attenuated by molecular scattering, gaseous absorption, and aerosol scattering and
absorption. For a given layer, we have

τ ¼ τA þ τR þ τG (5)

ω ¼ τAωA þ τR
τ

(6)

P Θð Þ ¼ PA Θð Þ τAωA

τAωA þ τR
þ PR Θð Þ τR

τAωA þ τR
(7)

where τA, τR, and τG are optical depth, respectively, by aerosol extinction, Rayleigh scattering of air density
fluctuations, and gaseous absorption. ωA is the SSA of aerosol, and PA(Θ) and PR(Θ) are, respectively, the
aerosol and Rayleigh phase matrices as functions of the scattering angle Θ. The forward modeling of
radiance/polarization measurements thus requires knowledge of single-scattering properties for aerosols
and air density fluctuations, absorption of trace gases, and reflectance/polarization by surface. Modules to
deal with these requirements are described in detail by Wang et al. [2014]. Here we briefly summarize those
components that are particularly important for our algorithm in this study.
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3.1. Surface Representation

Although surface reflectance has in general a low influence on downwelling sky radiances and polarization, a
state-of-the-art representation of the surface reflectivity potentially reduces model uncertainties, especially
for measurements taken at low-elevation angles that could be affected by surface diffusion. The
reflectance calculation in the UNL-VRTM uses a linearized BRDF package from Spurr [2004], in which
the BRDF is a linear combination of up to three semiempirical kernel functions. Specifically, we utilize the
spectral BRDF parameters from the MODIS surface products that are operationally reported every 16 days
at a 1 km resolution [Lucht et al., 2000]. The MODIS BRDF product supplies three weighting parameters
(fiso, fvol, and fgeo) for the first seven MODIS bands, respectively, corresponding to three kernel types:
isotropic, Ross-Thick (Kvol), and Li-Sparse (Kgeo):

ρR μ;ϕ;μ0;ϕ0ð Þ ¼ f iso þ f volKvol μ;ϕ;μ0;ϕ0ð Þ þ f geoKgeo μ;ϕ;μ0;ϕ0ð Þ (8)

Expanded expressions for Kvol and Kgeo appear in Wanner et al. [1995] and Lucht et al. [2000]. Here we use
time-matched MODIS BRDF products at wavelengths of 464 nm, 650 nm, 865 nm, and 1240 nm to
reconstruct the bidirectional reflectance over AERONET stations at wavelengths of 440 nm, 675 nm,
870 nm, and 1020 nm.

Studies have shown that the BPDF for land surfaces is generally rather small and is “spectrally neutral” [Nadal
and Breon, 1999; Maignan et al., 2004, 2009; Waquet et al., 2007; Litvinov et al., 2011]. Most empirical BPDF
models are based on Fresnel coefficients of light reflectance from the surface. Here we have incorporated
the one-parameter model developed by Maignan et al. [2009], which was derived from analyses of several
years of POLDER/PARASOL measurements. This model describes the polarized reflectance at any viewing
geometry (μ, ϕ) from the given incident geometry (μ0,ϕ0) as

ρP μ;ϕ;μ0;ϕ0ð Þ ¼ C0exp �tanαð Þexp �NDVIð Þ
μ0 þ μ

Fp α; nvð Þ (9)

where C0 is a constant parameter chosen for a certain surface type, α is half of the phase angle of reflectance,
nv is the refractive index of vegetation (the value 1.5 is used here), and Fp is the Fresnel reflection matrix. We
chose a spectrally independent value for C0 based on the recommendations by Maignan et al. [2009] for
relevant surface types.

The combination of the BRDF and BPDF for land surface follows the discussion by Dubovik et al. [2011]. The
surface reflectance matrix Rs(μ,ϕ;μ0,ϕ0) is represented as a sum of diffuse unpolarized reflectance and
specular reflectance; the former is modeled using the MODIS BRDF in equation (8), and the latter using the
BPDF formula in equation (9). It should be noted that, however, these BRDF and BPDF specifications in our
algorithm have limited accuracy. To mitigate this effect, our inversion algorithm has an option to quantify
the impacts of uncertainties in assumed BRDF/BPDF parameters on simulated radiances, and to include
these model parameter errors the inversion, this is discussed in more detail in the companion paper [Xu
and Wang, 2015].

3.2. Molecular Scattering and Absorption

The Rayleigh scattering optical depth in any atmospheric layer (τR) is based on the Rayleigh cross-section
computation following Bodhaine et al. [1999]. The Rayleigh phase matrix depends upon molecular
anisotropy through the depolarization factor, also computed from the same source. We use the line-
by-line approach [Liou, 2002] by accumulating each individual absorption line to simulate molecular
absorption spectra. While the UNL-VRTM can account for as many as 22 trace gases, we consider only
the most influential trace species for the AERONET spectral bands: H2O (vapor), O3, NO2, O2 (O2-O2

collision), and CO2. Calculation of their absorption optical depth (τG) utilizes the line-spectroscopic
absorption parameters (for H2O and CO2) and a UV cross-section library (for O3, NO2, and O2-O2)
archived in the HITRAN database [Orphal and Chance, 2003; Rothman et al., 2009]. In our algorithm, the
columnar amounts of O3 and NO2 are dynamically adjusted with retrievals from the Ozone Monitoring
Instrument (OMI) [Levelt et al., 2006] on board the AURA satellite. We apply the columnar water vapor
amount retrieved from the 940 nm radiances measured by the same Sun photometer [Halthore
et al., 1997].
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3.3. Aerosol Single-Scattering Properties

Aerosol single-scattering properties can be calculated either with aMie code [de Rooij and van der Stap, 1984] or a
T-matrix code [Mishchenko et al., 1996,Mishchenko and Travis, 1998]; both codes have been linearized [Spurr et al.,
2012] and integrated in the UNL-VRTM [Wang et al., 2014]. However, we use the linearized Mie code alone for
both fine- and coarse-aerosol modes, since the linearized T-matrix program has computational difficulty for
nonspherical aerosols of the coarse-mode size levels considered in this study and given the shape of
nonspherical particles is unknown. This assumption applies to stations dominated by spherical aerosols like
smoke, sulfate, and sea salt, whereas it may mischaracterize the aerosol microphysical properties if substantial
amount of nonspherical particles (like mineral dust) present. However, it is hard to tell quantitatively how
much of an error could be incurred by our spherical assumption given the shapes of nonspherical particles
are not unique and difficult to characterize. Wang et al. [2003] showed that even in dust-dominated cases,
spherical particles also contribute significantly to the scattering of radiation in the atmosphere.

The required inputs for the Mie code are the PSD function parameters and complex refractive index
(mr�mii). In agreement with many studies [e.g., Schuster et al., 2006; Waquet et al., 2009], we assume that
the aerosol volume distribution follows a bimodal lognormal function

dV
dln r

¼
X2
i¼1

Vi
0ffiffiffiffiffiffi

2π
p

ln σig
exp � ln r � ln riv

� �2
2 ln2σig

" #
(10)

where V0, rv, and σg are the total volume concentration, volume median radius, and geometric standard
deviation, respectively. The superscript i indicates the size mode and later will be replaced by “f” for fine
mode and “c” for coarse mode. We assume that particle size ranges from 0.01 to 10 nm for the fine mode and
from 0.05 to 20 nm for the coarse mode, both covering> 99.9% of the total volume of an idealistic size range
(0, +∞). An advantage of the lognormal distribution is that standard deviations for the number, area, and
volume PSD functions are identical, and therefore allowing that the median radii for these PSD functions can
be converted from one to another [Seinfeld and Pandis, 2006]. For instance, the volume median radius rv
relates to the number geometric median radius rg by rv = rg exp(3ln

2σg). The reff and veff are related to the
geometric parameters through:

reff ¼ rv exp �1
2
ln2σg

� �
veff ¼ exp ln2σg

� �� 1

8><
>: (11)

The linearized Mie code computes the aerosol extinction efficiency factor Qext, single-scattering albedo ωA,
and phase matrix Paer(Θ), as well as Jacobians of these quantities with respect to input parameters
including reff, veff, mr, and mi. The phase matrix and its Jacobians are expressed in terms of the coefficients
Bl(Θ) for each moment l in terms of the generalized spherical function expansions for each nonzero phase
matrix element. Let Λ denotes the vector of aerosol microphysical parameters, Λ= [V0, reff, veff,mr, mi]

T,

and M the vector of aerosol optical parameters, M= [τA,ωA, Bl(Θ)]T, where τA is related to Qext by τA

¼ 3V0Qext
4reff

. The Mie code acts as an operator that maps vector Λ to M. The Jacobian matrix of M with respect

to Λ, or ∂M
∂Λ, is calculated by means of the Mie code’s linearization feature.

3.4. Radiative Transfer

The radiative transfer equation (3) is solved with the Vector Linearized Discrete Ordinate Radiative Transfer
(VLIDORT) model, which is a core part of the UNL-VRTM. VLIDORT, developed by Spurr [2006], is a linearized
pseudospherical vector discrete ordinate radiative transfer model for multiple scattering of diffuse radiation
in a stratified multilayer atmosphere. It computes four elements of the Stokes vector I for downwelling
and upwelling radiation at any desired atmospheric level. The VLIDORT includes the pseudospherical
approximation to calculate solar beam attenuation in a curved medium. It also uses the delta-M
approximation for dealing with sharply peaked forward scattering. The calculated Stokes vector has been
fully verified against other radiative transfer models for various scattering atmospheres [Wang et al., 2014].
Specifically for the AERONET inversion, we consider 16 discrete ordinate streams in the radiative transfer
calculation and retain 180 terms in the spherical function expansion of the scattering matrix to ensure
accurate calculation of diffuse radiation.
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Along with the Stokes vector I, VLIDORT also computes the Jacobianmatrix of Iwith respect to aerosol optical
vector M, ∂I

∂M. Therefore, the combination of the VLIDORT and the Linearized Mie codes allows for a direct

calculation of the Jacobian matrix of the Stokes vector with respect to aerosol microphysics Λ by

∂I
∂Λ

¼ ∂I
∂M

∂M
∂Λ

(12)

Essentially, the above equation can yield the derivatives of the radiance I and DOLP with respect to any

aerosol microphysical parameter, i.e., ∂I
∂Λ and ∂DOLP

∂Λ . While obtaining ∂I
∂Λ is straightforward, ∂DOLP

∂Λ can be

derived from equation (2) as follows:

∂DOLP
∂Λ

¼ �DOLP ∂I
∂Λ

I
þ Q ∂Q

∂Λ þ U ∂U
∂Λ

I
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ U2

p (13)

In addition, VLIDORT also calculates the Jacobians of I and DOLP with respect to surface property parameters
characterizing the BRDF/BPDF kernels from equations (8) and (9). All of these Jacobians from the UNL-VRTM
are required for the inversion algorithm, and all of them have been fully validated against partial derivatives
calculated by finite differences [Wang et al., 2014].

4. Inversion Strategies
4.1. Basic Formulation of the Inverse Problem

Let x denote a state vector of n parameters to be retrieved and y an observation vector assembled by m
measurements, and let F indicate a forward model that describes the physics of the measurement process.
Then, we can express the relationship between the observation vector and the state vector as

y ¼ F xð Þ þ ϵ; (14)

where ϵ is an experimental error term that includes observation noise and forward modeling uncertainty.

For this study, the observation vector y comprises components from different sources. As listed in Table 1,
there are up to four categories of observations, i.e., the direct -Sun AOD, the sky radiance around the solar
aureole, the sky radiance in the solar principal plane, and the DOLP in the solar principal plane, with all
measurements performed at 440, 675, 870, and 1020 nm. Also indicated in Table 1 are the calibration
errors and other measurement uncertainties that make of the term ϵ. The state vector x comprises aerosol
microphysical parameters associated with the bimodal lognormal PSD function, including reff, veff, V0, and
mr�mii at 440, 675, 870, and 1020 nm (Table 2). All parameters include both the fine and coarse modes
and account for a total of 22 elements (n= 22). The forward modeling of AERONET observations is a
complex process with a large number of internal parameters. The inversion of the state vector from these
measurements is an ill-posed problem due to the nonlinearity and limited sensitivity of the observed
radiative quantities to retrieval parameters. We need to add constraints to make the problem amenable
to inversion.

4.2. Combining A Priori and Smoothness Constraints

A priori information describes our knowledge of the state vector before measurements are applied, and an a
priori constraint is commonly used to achieve a well-defined stable and physically reasonable solution to an
ill-posed problem. Usually, a priori knowledge comprises both a mean state xa and its error ϵa:

x ¼ xa þ ϵa: (15)

Table 2. State Vector Elements and Associated Constraints for Inversiona

Symbol Parameter A Priori Constraint? Smoothness Constraint?

V f
0; V

c
0 Columnar volume (μm3 μm�2) √

rfeff ; r
c
eff Effective radius (μm) √

vfeff ; v
c
eff Effective variance √

mf
r;m

c
r Real part refractive index √ √

mf
i ;m

c
i Imaginary refractive index √ √

aThe superscripts, c and f, respectively, denote fine- and coarse-aerosol modes. Refractive indices are for spectral
wavelengths of 440, 675, 870, and 1020 nm.
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One of the satisfactory sources for the a priori knowledge is a climatology based on historical measurements.
For a given AERONET site, we use the available inversion products that have been obtained with the
Dubovik00&06 algorithm, for which the a priori can be well characterized by the mean values and
standard deviations of each component in the state vector. At the same time, the a priori can also be
determined from other sources if a historical AERONET retrieval is not available. For example, we could
extract aerosol microphysical climatology from chemistry transport model simulations [e.g., Wang et al.,
2010] or from measurements of in situ and/or even satellite sensors.

Among those retrieved parameters, the aerosol volumes—V f
0 and Vc

0—are the most variable or uncertain
quantities. A reasonable initial guess for these quantities could speed up the iterative inversion. As
presented in the following, we obtain their initial guesses from the AOD measurements at two spectral
wavelengths. Given the a priori information on the aerosol PSD and refractive indices, the aerosol
extinction efficiency Qext can be obtained for each fine mode and coarse mode with the Mie code. Then
the AOD (τA) is related to the aerosol volumes via

τA ¼ τfA þ τcA ¼ 3V f
0Q

f
ext

4rfeff
þ 3Vc

0Q
c
ext

4rceff
: (16)

Clearly, applying the above equation to the AODs at any two spectral wavelengths, we can easily solve V f
0

and Vc
0 . Considering the component fraction is more sensitive to the wavelength dependency of AOD at

longer wavelengths (Figure 2b), we choose AODs at 870 nm 1020 nm to determine the initial guesses of

V f
0 and Vc

0.

For some parameters, the a priori estimates may be poorly known, but these parameters behave smoothly
with no sharp oscillations. For example, the aerosol refractive index usually does not vary rapidly over the
visible to near-infrared spectral range. In this regard, a smoothness constraint could be a preferable
addition. The technique of constraining a smooth solution was pioneered by Philips [1962] and Twomey
[1963] and has been successfully used to retrieve coherent aerosol size distributions [Dubovik and
King, 2000] and atmospheric vertical profiles [Twomey, 1977]. The principle of the smoothness constraint
is to restrain the degree of nonlinearity of a certain physical parameter by limiting the values of its
dth derivatives:

Gdxþ ϵΔ ¼ 0; (17)

where Gd is a differential matrix composed of coefficients for calculating the dth derivatives of xwith respect
to the dependent variable and the vector ϵΔ indicates uncertainties in these derivatives.

In particular, for constraining the dependence of the spectral refractive index with wavelength, the matrix Gd

calculates the dth difference of the refractive index at four wavelengths (440, 675, 870, and 1020 nm). As
discussed by Dubovik and King [2000], we assume a linear relationship between the logarithm of the
refractive index and the logarithm of the wavelength: mr ~ λ� α and mi ~ λ� β. Further, the matrix G1 for
the first difference (of either mr or mi of one mode) can be expressed as

G1 ¼

1=Δλ1 0 0

0 1=Δλ2

0 0 1=Δλ3

2
6664

3
7775

�1 1 0 0

0 �1 1 0

0 0 �1 0

2
6664

3
7775

¼

�1=Δλ1 1=Δλ1 0 0

0 �1=Δλ2 1=Δλ2 0

0 0 �1=Δλ3 1=Δλ3

2
6664

3
7775

(18)

Here Δλ1, Δλ2, and Δλ3 are the denominators for the first-order differences in the logarithm, e.g., Δλ1 ¼ ln 675
440.

As to ϵΔ, we assume errors in first differences of the refractive index followingDubovik and King [2000], i.e., 0.2
for mr and 1.5 for mi.
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Similar to the approach suggested by Dubovik and King [2000], we use multiple a priori constrains in the
retrieval. Specifically, we combine the a priori constraint of equation (15) and the smoothness constraint of
equation (17); our inverse problem is equivalent to solving the following equation set:

yj ¼ Fj xð Þ þ ϵj; for j ¼ 1; 2; …J

x ¼ xa þ ϵa

0 ¼ Gdxþ ϵΔ

;

8><
>: (19)

where j indicates any observation category as listed in Table 1.

4.3. Statistical Optimized Inversion

Under the assumption of Gaussian-distributed errors, the optimized solution of equation (19) according to
the Maximum Likelihood method corresponds to the state vector that minimizes the quadratic cost
function consisting of multiple terms [Dubovik and King, 2000; Dubovik, 2004],

Ψ xð Þ ¼ 1
2

XJ

j¼1

γj Fj xð Þ � yj
h iT

Sϵ�1j Fj xð Þ � yj
h i

þ 1
2
γa x� xað ÞTS�1a x� xað Þ þ 1

2
γΔ xTΩ x; (20)

Figure 2. Climatology of aerosol properties over the Beijing_RADI site derived from AERONET daily inversion products
during 2011–2013. The variables are shown as functions of the fine-mode fraction in terms of the aerosol volume, or fmfV.
Eight bins are applied for fmfV from 0 to 0.8 with an increment of 0.1. Quantities in each box-whisker include themedian (dash
in the box), themean (dot), the 25th to 75th percentiles (box), and theminimum tomaximum (whiskers) for each fmfV bin. The
six panels are (a) histogram of used data; (b) the Ångström exponents (AE) derived from 870 to 1020 nm (red) and from 440 to
870 nm (green) wavelength pairs; (c) the effective radius for aerosols in the fine (red) and coarse (green)mode; (d) the effective
variance in the fine (red) and coarse (green) mode (green); (e) the real part of the refractive index at 440, 675, 870, and
1020 nm; and (f) the imaginary part of the refractive index and aerosol SSA at the same wavelengths.
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where T indicates the transpose operation, Sϵj is the error covariance matrix of the measurements yj, Sa is the
error covariancematrix of the a priori estimate,Ω is a smoothingmatrix related toGd and the error covariance
matrix SΔ (of the dth derivatives of x) by Ω ¼ GT

d S
�1
Δ Gd. γj, γa, and γΔ are regularization parameters. Here we

assume that error is independent between measurements and that a priori error is also independent
between retrieved parameters, which results in zero off-diagonal elements for matrices Sϵj and Sa. In
principle, the minimization of three-term cost function given by the equation (20) is conceptually analogous
to the minimization of bicomponent cost functions generally considered in the Bayesian approach [Rodgers,
2000]. These three terms on the right-hand side of equation (20) represent, respectively, (1) the total squared
fitting error incurred owing to departures of the model predictions from the observations, (2) the penalty
error incurred owing to departures of the estimates from the a priori, and (3) the penalty error incurred owing
to departures from the defined smoothness feature. Overall, the minimization of Ψ (x) achieves the objective
of improving the agreement between the model and the measurements while ensuring that the solution
remains within a reasonable range and degree of smoothness.

The regularization parameters in the calculation of Ψ (x) act as weights to balance the fitting error and the
penalty errors. Clearly, a good assignment of these regularization parameters is of crucial importance for
the statistical optimal solution. High values of γa and γΔ can lead to oversmoothing of the solution with
little improvement to the fitting residuals, while low values minimize the error term at the cost of greatly
increasing the parameter penalty terms. In this study, we assume equal weights for observational
constraint term and combined a priori constrain terms in the cost function following Dubovik [2004]:

γa ¼
1
2
n�1; γΔ ¼ 1

2
nΔ � dð Þ�1; and γj ¼ J�1m�1

j for j ¼ 1; …; J: (21)

Here n is the number of retrieved parameters, d is the order of difference, and nΔ is the number of state elements
that are supplied with smoothness constraints. Values for γj are chosen to control the fitting residuals for used
observations from four different groups as listed in Table 1. Each group comprises the number of mj

observations for j from 1 to the number of used groups (J ). The value of γj for the jth group is γj ¼ J�1m�1
j ,

which means the observation quadratic term is normalized by the observation count of each category.

In principle, solving this inverse problem is tantamount to a pure mathematical minimization procedure.
Considering the nonlinearity of the forward modeling, we perform the minimization of Ψ (x) with an
iterative quasi-Newton approach using the L-BFGS-B algorithm [Byrd et al., 1995; Zhu et al., 1994; Xiao and
Zhang, 2008], which offers bounded minimization to ensure the solution stays within a physically
reasonable range. The L-BFGS-B algorithm requires knowledge of x and Ψ (x), as well as the gradient of

Ψ (x) with respect to x, ∂Ψ∂x . By linearizing the forward model F(x), we can determine ∂Ψ
∂x by

∂Ψ
∂x

¼
XJ

j¼1

γjKj
TSϵ�1j Fj xð Þ � yj

h i
þ γaS

�1
a x� xað Þ þ γΔΩ x; (22)

where Kj is the Jacobianmatrix of Fj(x) with respect to x, which is computed analytically by equations (12) and
(13). At each iteration, improved estimates of the state vector are implemented and the forward simulation is
recalculated. The convergence criterion to determine the optimal solution is the smallness of the Ψ (x)
reduction and the norm of ∂Ψ

∂x . The iteration stops when the reduction of Ψ (x) is less than 1% within 10
continuous iterations. Then, the optimal solutions are identified corresponding to the smallest norm of ∂Ψ

∂x
from these 10 last iterations. In addition, to ensure a physically reasonable solution, we also perform retrieval
error analysis and impose a practical quality control on real measurements.

4.4. Retrieval Error Analysis

The retrieval without error characterization is of significantly lesser value. Once the retrieval is achieved, the
retrieval error can be characterized by the a posteriori state, and the error analysis can be performed in terms
of a linearization of the problem around the solution x̂. We estimate the retrieval error on each state vector
element using the error covariance matrix of the a posteriori state:

Ŝ�1 ¼
XJ

j¼1

K̂ j
T
Sϵ�1

j K̂ j þ S�1
a þΩ; (23)
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where K̂ j is the Jacobian matrix of the forward model Fj(x) at the solution x̂. It should be noted that the above
three-term a posteriori formularized according to the cost function defined in equation (20) but without
applying regularization parameters. Therefore, regularization only applies in the inversion for the search of
optimal solution. We estimate a posteriori error in the nonregularized space once the solution is achieved.
Simply, the retrieval error for each element can be estimated by

ϵ̂ i ¼ Ŝ
1
2
i;i: (24)

With Ŝ, we can also estimate the uncertainty in parameters (such as ωA and asymmetry factor in this study)
that can be fully determined by the parameters in x but are not themselves directly retrieved. If such a
parameter is a function defined by ξ = ξ(x), then the uncertainty of ξ is [Rodgers, 2000]

ϵ̂ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xn
j¼1

Ŝ i;j
∂ξ
∂xi

∂ξ
∂xj

vuut (25)

4.5. Quality Control of Measurements

We apply a suite of quality criteria to ensure (a) a cloud-free condition, (b) that aerosol particles are quasi-
homogeneously distributed in the horizontal plane within the scanning region, and (c) the measurements
are densely populated and cover a wide range of scattering angles so that they provide sufficient
information to retrieve all parameters falling within specified uncertainty levels. More specifically, these
criteria are as follows: (i) the number of AOD observations ≥ 2 within a ±25min centered at the period of a
full scan sequence; (ii) sky radiance observations are excluded when the scattering angle is less than 3.2°
and DOLP observations are excluded when the scattering angle is smaller than 5°; (iii) a symmetry check
for the ALM radiances: the difference is less than 5% for the azimuthal angle of 180° and less than 10%
elsewhere; and (iv) PPL and PPP observations are discarded when their second derivatives with respect to
the scattering angle are beyond the smoothing threshold. Although most of these criteria follow Holben
et al. [2006], we also check the smoothness of the principal plane radiances and DOLP to identify scans
that are contaminated by cloud. We apply the threshold on the second derivative of radiance (or DOLP)
with respect to scattering angle in order to restrain local oscillations of radiance (or DOLP) caused by
clouds or heterogeneous aerosol plumes. Thus, applying such a threshold can effectively remove sharp
kinks and ensure continuous quantities in the PPL and PPP sequences. Indeed, this smoothness check
shares the same principle to the smoothness constraint presented in the section 4.2.

5. Demonstration With Real AERONET Observations
5.1. Selected Cases and the A Priori Characterization

We applied our algorithm to the radiance and polarization measured by the CIMEL CE318-DP Sun photometer
(instrument #350) at Beijing_RADI (116.37°E, 40.00°N), which is a joint station of the AERONET and the Sun/sky-
radiometer Observation NETwork. The AOD measurements are designated from the field-calibrated level 1.5
products. Measurements of the direct and diffuse radiance as well as DOLP were performed at eight spectral
wavelengths, with the measurements at 440, 675, 870, and 1020nm chosen for the inversion. The sky
radiances were calibrated following Li et al. [2008] and are reported as values normalized by the
extraterrestrial solar irradiance. The DOLP were calibrated in the laboratory following Li et al. [2010].
Measurement uncertainties were estimated to be 0.01–0.02 for AOD, 3–5% for radiance, and 0.01 for DOLP.

The a priori is characterized with the climatology of aerosol properties derived from the version 2.0 AERONET
daily inversion products of the same site during 2011–2013. These daily products are averages of up to eight
individual inversions within a day. The PSD parameters were analyzed with 299 available daily inversions
when the 440 nm AOD is larger than 0.2. The refractive index and SSA were analyzed with 215 inversions
when the 440 nm AOD is larger than 0.4. In Figure 2, the variables are shown as functions of the fine-mode
fraction in terms of the aerosol volume, or fmfV. It can be found that the fmfV from 0.2 to 0.6 accounts for
~70% of occurrences (Figure 2a), indicating aerosol over this site is dominated by the mixed fine-coarse
aerosols. The AE derived from the 1020 nm and 870 nm AOD pairs is more linearly related to the fmfV than
the 440 nm and 870 nm AE (Figure 2b), because AE over the longer-wavelength pairs is more sensitive to
the component fraction and less sensitive to the change of component particle size [Schuster et al., 2006].
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From Figures 2c and 2d, we determine the a priori (xa) of PSD parameters for both fine and coarsemodes based
on their mean values across all fmfV intervals. For refractive index, we pick theirmean values when fmfV< 0.2 for
the coarse mode and when fmfV> 0.6 for the fine mode (Figures 2e and 2f). Along with determining xa, we
estimate the a priori error (ϵa) for each parameter (very right column of Table 6) as two standard deviations
for a 95% confidence interval. Then we build Sa with zero off-diagonal elements by neglecting the error
correlation between retrieved parameters. In addition, we found in the Figure 2e that the mr retrievals
decrease quasi-linearly with the increasing fmfV, which indicates the mr has distinct values between aerosols
in the fine and the coarse modes over this site. It is expected that the mr in the mixed aerosol situations, e.g.,
0.3< fmfV< 0.6, is also expected to have the distinct values for fine- and coarse-mode particles.

With the above a priori characterization, we performed retrievals for three cases, respectively, on 22 February
2011, 17 March 2013, and 22 March 2013 (hereinafter, cases A–C). A brief characterization of these cases is
presented in Table 3. Indeed, these cases represent different aerosol mixtures: (A) dominated by fine particles,
(B) well mixed, and (C) dominated by large particles. Moreover, the present algorithm is designed to run with
two inversion scenarios: the first includes DOLP, while the second ignores it—hereafter, we label these
scenarios type P and I, respectively. An examination of the difference in the fitting results between these two
types of inversion would indicate the value of DOLP in improving the retrieval. For all cases, optimal solutions
are achieved within less than thirty iterations, and further iterations yield negligible reduction of the cost
function. Below we discuss the fitting residuals in section 5.2 and the retrieved results in section 5.3. A contrast
analysis is presented in section 5.4 to demonstrate the superiority of the inversion involving polarization.

5.2. Fitting Residuals

The fitting residual characterizes the disagreement between the model and the measurement. The individual
sky radiance residual is defined as a relative quantity:

eI ¼ Icalc � Imeasð Þ=Imeas; (26)

where Icalc and Imeas denote the calculated (using the retrieved aerosol parameters) and measured sky
radiances, respectively. In contrast, the fitting residuals for AOD and DOLP are defined by

eAOD ¼ AODcalc � AODmeas; (27)

eDOLP ¼ DOLPcalc � DOLPmeas: (28)

The residual errors for AOD, sky radiance, and DOLP are mean values of |eI|, |eAOD|, and |eDOLP|, respectively.

Because similar fitting results are found for these three aerosol types (cases), we illustrate in Figure 3 the
fitting results for sky radiances and DOLP only for the case B. We found that retrievals from both types of
inversion can well reproduce these AERONET measurements of AOD and sky radiances. Fitting residuals
from both types of inversions for individual ALM radiance measurement lie within the experimental
uncertainty of 5%, although the fit of radiances from the P-type inversion is slightly deteriorated: residual
error is 1.60% for the P type compared to 1.46% for the I-type inversion. However, the DOLP residual error
can be much larger for the I-type inversion than that for the P-type inversion: 0.011 versus 0.004. The
statistical residual errors for all three cases are displayed in Table 4. As these fitting results show, without
the constraints imposed by polarization, the retrieved aerosol microphysical parameters could result in
larger error in polarization simulations, highlighting the necessity to include polarization in the inversion as
an additional source of constraint.

5.3. Retrieved Aerosol Properties

Figure 4 displays our retrievals from both I-type and P-type inversions for the aerosol volume PSD and
complex refractive indices. Also shown are the retrievals from the AERONET Dubovik00&06 inversion.
Table 5 presents the values of the (P-type inversion) retrieved PSD parameters including V0, reff, veff, rV, and

Table 3. Main Characteristics of Case Studies in this Work

Case Date and Time UTC θ0 (°) τ440 AE (870–1020 nm) OMI NO2 (molecules/cm2) OMI O3 (DU) Vapor (cm)

A 02/22/2011 04:30 50.3–50.6 3.46 1.57 6.3 × 1016 356.5 0.86
B 03/17/2013 03:25 43.0–42.2 2.74 1.39 4.2 × 1016 332.7 0.76
C 03/22/2013 07:23 57.0–60.0 1.05 1.01 4.1 × 1016 386.7 1.01
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σg for both fine and coarse modes and corresponding values from the Dubovik00&06 inversion. The PSD in
these cases consists of separated fine- and coarse-aerosol modes. In the cases dominated by fine-mode
aerosol (A) and well-mixed aerosol (B), our retrievals agree with the AERONET inversions, though marginal
differences are found in the effective radius and standard deviation. In case C dominated by coarse-mode
aerosols, our algorithm results in a smaller-coarse mode reff than that from the AERONET algorithm; this
may be caused by our assumption of spherical particles, whereas the Dubovik00&06 algorithm considers
nonsphericity for coarse particles. We did not find significant differences in the aerosol volumes between
our algorithm and the Dubovik00&06 algorithm. As Figures 4b–4c indicate, fine-mode volume retrieved by
the P-type inversion is lower than that retrieved by the I-type inversion; such an overestimation from
radiance-only inversion was also found by Li et al. [2009].

In contrast with the Dubovik00&06 algorithm, which retrieves a single refractive index for each spectrum that
is independent of aerosol size, our retrieved aerosol refractive indices pertain to the corresponding fine and
coarse modes. In order to get a general impression of the agreement between our retrievals and the
AERONET inversions, we compute the bulk refractive index that is a weighted average by the particle
volume of each mode in our retrieval [e.g., Wang and Martin, 2007]. According to Figures 4d–4f, while the
bulk value of mr is in good agreement (differences < 0.03) with that of the Dubovik00&06 retrievals, our
retrieval allows for a mode-resolved characterization of aerosol refractive index. For instance, the aerosol
mr has values 1.5–1.6 in the coarse mode, which is larger than that in the fine mode (1.4–1.5). A T-Test
using the corresponding retrieving standard errors indicates a statistical significance level of about 98% for
the difference of real part refractive indices between the fine and coarse modes. In addition, we found that
the P-type inversion usually yields higher values of mr compared to the I-type inversion; this finding agrees
with Li et al. [2009] in that the radiance-only inversion underestimates mr.

Table 4. Summary of Measurement Fitting Errors

Case Inversion Type AOD Residual Error Radiance Residual Error DOLP Residual Error

A I 0.0008 1.78% 0.008
P 0.0015 1.85% 0.005

B I 0.0007 1.46% 0.011
P 0.0005 1.60% 0.004

C I 0.0006 2.67% 0.020
P 0.0021 3.11% 0.009

Figure 3. (a) Measured almucantar normalized radiances. (b) Measured DOLP in the solar principal plane. (c) Fitting residuals
for almucantar radiances by the P-type inversion (solid curves) and I-type inversion (crosses). (d) Same as Figure 3c but for
the fitting residuals of principal plane DOLP. Four colors indicate different wavelengths: blue for 440 nm, green for 675 nm, red
for 870 nm, and orange for 1020 nm. Gray areas in Figures 3c and 3d indicate the measurement uncertainty.
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According to Figures 4g–4i, the bulk mi retrieved by our algorithm is consistent overall with that from the
Dubovik00&06 algorithm, with both retrievals showing similar spectral dependencies. One exception is for
case C; mi at 440 nm is about 0.01 from our algorithm but is about 0.02 with the Dubovik00&06 algorithm.
As expected, our inversion algorithm also offers mode-resolved mi. We notice in our retrieval that mi

shows an increasing dependence on the spectral wavelength for the fine mode but a decreasing tendency
for the coarse mode.

Figure 4. Retrieved aerosol volume size distribution (PSD) and refractive index compared with Dubovik00&06 inversions
(gray). P-type and I-type inversions are represented by green and red colors, respectively. In Figures 4d–4i, the retrievals
are shown for aerosols in both fine (dotted) and coarse (dashed) modes, as well as bulk averages (solid). The PSD relevant
quantities for Figures 4a–4c are summarized in Table 5.

Table 5. PSD-Related Parameters Retrieved by our P-Type Inversion, Compared With Values From the AERONET
Dubovik00&06 Inversion

Units

Case A Case B Case C

Ours AERONET Ours AERONET Ours AERONET

V f
0 μm3 μm�2 0.41 0.36 0.28 0.31 0.10 0.09

rfeff μm 0.215 0.208 0.223 0.201 0.163 0.156
vfeff - 0.26 0.32 0.23 0.32 0.30 0.33
rfv μm 0.242 0.240 0.246 0.232 0.186 0.179
σfg - 1.62 1.69 1.57 1.69 1.67 1.70
Vc
0 μm3 μm�2 0.24 0.21 0.39 0.32 0.28 0.26

rceff μm 2.02 2.01 2.05 2.26 2.24 2.61
vceff - 0.59 0.53 0.55 0.38 0.75 0.50
rcv μm 2.55 2.44 2.57 2.65 2.97 3.28
σcg - 1.98 1.92 1.94 1.76 2.12 1.89
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In the forward modeling framework, the aerosol macrophysical optical properties act as intermediate model
parameters to link the aerosol microphysical characteristics to the radiation fields. These macrophysical
optical parameters include but are not limited to the aerosol SSA (ωA), the scattering phase function, and
the asymmetry factor (Asy). These quantities do not appear in the state vector; instead, they can be
derived from the retrieved microphysical parameters, and are thus called derived or intermediate
parameters. In Figure 5, we present ωA and Asy from our retrieval and the comparison with their
counterparts from the Dubovik00&06 inversion. In our retrieval, bulk values of ωA and Asy are again
calculated by a scatter-weight averaging of the fine- and coarse-mode values. We found that the bulk ωA

and Asy from our algorithm and the Dubovik00&06 algorithm agree very well. However, our retrieved
coarse-mode ωA varies from 0.7 to 0.9, increasing with wavelength. In contrast, the retrieved fine-mode ωA

runs close to 0.9.

5.4. Improvement Over Radiance-Only Retrievals

The above comparisons of retrieval results confirm that both P- and I-type inversions by our algorithm can
generate solutions quite consistent with the current Dubovik00&06 algorithm. In order to demonstrate the
improvements in the retrieval by including polarization, we compare the retrieval errors between the
P-type and I-type inversions in Table 6 for individual aerosol parameters. Also compared are the errors in
the derived ωA and Asy. Clearly, the P-type inversion yields lower retrieval errors for all the retrieved and
derived parameters; this is confirmed by the theoretical analysis in the companion paper of this two-part
series [Xu and Wang, 2015]. The key points from the comparison are

1. Polarization measurements provide important constraints in improving the retrieval of V0, reff, and veff for
both fine- and coarse-aerosol modes. For these three cases, the errors in the retrieved V0 with polarization
are less than 3% for the fine mode and less than 5% for the coarse mode, representing a significant
decrease from their counterparts (~15% and ~10%) in the I-type inversion. Adding polarization can also
decrease the error in reff of both fine and coarse modes from 8–14% for the I-type inversion to 3% and
below. Errors in veff retrieved by the P-type inversion are 8–12% for aerosol in the fine mode and
11–26% in the coarse mode, whereas they can exceed 50% with the I-type inversion.

2. Polarizationmeasurements also provide useful constraints in improving the refractive index retrievals. The
most significant improvement is found in the fine-mode mr, where the error is lower than 0.01 for the
P-type inversion, compared to 0.02–0.03 for the I-type inversion. The error in the coarse-mode mr from
P-type inversion ranges from 0.04 to 0.06, depending on the prevalence of coarse-mode particles. For
retrieving mi, the inclusion of polarization reduces the error by 10–30%, a value also depending on
coarse-mode dominance.

Figure 5. Same as Figure 4 but for derived aerosol SSA and Asy.
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3. Adding the polarization yields better estimates of the aerosol SSA and Asy for both aerosol modes. From
P-type inversion, the errors in the retrieved ωA are lower than 0.02 for aerosols in the fine mode and 0.06
for aerosols in the coarse mode, representing a 10–40% decrease from the I-type inversion. As expected,
errors in the Asy also reveal a 30–50% decrease.

6. Conclusion

In this paper, we presented a new algorithm to retrieve both fine- and coarse-mode aerosol properties from
multispectral and multiangular solar polarimetric radiation fields such as those measured by AERONET
including additional spectra of polarization observations. The retrieval algorithm uses a multicomponent
vector radiative transfer model, UNL-VRTM and incorporates the statistical optimized inversion to retrieve
aerosol parameters pertaining to a bilognormal particle size distribution (PSD) of spherical aerosols,
including the columnar volume concentration, effective radius and variance, and complex indices of
refraction. While the new algorithm has heritage from the existing AERONET inversion algorithm in using
multiple a priori constraints, it is different from the existing AERONET algorithm in that (a) a bimodal
lognormal PSD (instead of 22 size bins) is assumed and (b) the spectral refractive indices are retrievable for
both fine and coarse modes.

We applied the new algorithm to a suite of photopolarimetric measurements taken from the new-generation
Sun photometer at the Beijing_RADI AERONET station. In order to demonstrate the importance of adding
polarization measurements, we performed aerosol retrievals from radiance measurements only (the I-type
inversion), in addition to the retrievals using both radiance and polarization measurements (the P-type
inversion). We found that, for both types of inversion, the fitting errors for the AOD and sky radiance are
much smaller than the calibration uncertainties (0.02 for AOD and 5% for sky radiance). Also, the fitting
errors of the degree of linear polarization (DOLP) with the P-type inversion are much smaller than the
calibration error (~0.01). However, the DOLP fitting errors in the I-type inversion usually exceed 0.01, and
even reach 0.04 for many individual measurements in the case dominated by coarse aerosols, which
highlights the necessity to include polarization in the inversion as an additional source of constraint.

Our retrieval results are generally consistent with the AERONET inversion products, but we found distinct
differences between the values of the refractive index and SSA for the fine- and coarse-mode aerosols. For
these three cases selected for our study, we found that the retrieved real part refractive index is about
1.5–1.6 in the coarse mode, which is higher than those for the fine mode, 1.4–1.5. Also, the coarse-mode
aerosols are more absorbing than the fine-mode ones. We also compared the retrieval error for each
retrieved parameters between the I-type and P-type inversions. A comparison analysis indicates that the
retrieval error can be reduced by at least 50% in PSD parameters, by 10–30% in the refractive index
components, and by 10–40% in the aerosol SSA. These error reductions depend on the fine-/coarse-mode

Table 6. Errors on the Retrieved and Derived Parameters From Both Types of Inversiona

Case A Case B Case C

ϵaϵ̂P ϵ̂ I ϵ̂P ϵ̂ I ϵ̂P ϵ̂ I

V f
0 1.9% 12% 2.1% 13% 2.9% 19% 100%

rfeff 1.4% 7.5% 1.3% 8.3% 2.3% 12% 50%
vfeff 8.4% 27% 8.9% 31% 12% 29% 60%
mf

r 0.005 0.016 0.006 0.018 0.008 0.027 0.14
mf

i 0.002 0.002 0.003 0.004 0.004 0.006 0.009
ωf
A 0.010 0.011 0.016 0.019 0.020 0.032 -

Asyf 0.003 0.005 0.003 0.005 0.004 0.007 -
Vc
0 4.7% 14% 3.2% 10% 3.0% 8.8% 100%

rceff 6.7% 16% 3.3% 7.4% 2.0% 6.0% 50%
vceff 26% 53% 16% 42% 11% 30% 60%
mc

r 0.060 0.068 0.052 0.063 0.037 0.056 0.08
mc

i 0.008 0.009 0.005 0.006 0.003 0.005 0.011
ωc
A 0.059 0.068 0.044 0.055 0.028 0.044 -

Asyc 0.024 0.032 0.017 0.024 0.012 0.021 -

aϵ̂P and ϵ̂ I are retrieval error respectively from the P-type and I-type inversions, ϵa is the a priori error.
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fraction, specifics of instrumentation, and aerosol properties. These improvements in the P-type inversion
are consistent with the theoretical analysis in the companion paper of this two-part study [Xu and
Wang, 2015].

The mode-specific retrieval of aerosol microphysical and optical properties not only facilitates the evaluation
of atmospheric chemistry models and the validation of aerosol products from satellite sensors with
polarization capability (the challenges we present in section 1) but also can benefit the analysis of aerosol
radiative impacts and aerosol chemical compositions. Aerosol radiative forcing depends on both particle
size and refractive index [Nemesure et al., 1995; Mishchenko et al., 2004]. Nemesure et al. [1995] have shown
that, for sulfate particles, a change of particle size from 0.15μm to 0.25μm could lead to an 80% increase
of negative forcing. Mishchenko et al. [2004] found that accuracies of 10% in reff, 50% in veff, and 0.02 in mr

are required for radiative forcing calculations that will be able to determine aerosol contributions to the
Earth’s total energy balance. According to the real retrievals in this paper and the theoretical analysis in
the companion paper [Xu and Wang, 2015], the accuracies suggested in Mishchenko et al. [2004] can only
be attained by the integrated use of radiance and polarization. Accurate PSD and real part of refractive
index are also needed to identify the aerosol chemical composition, which can be used to derive the
aerosol hygroscopicity, to diagnose the efficiency of cloud condensation, and to distinguish anthropogenic
aerosol species from natural ones [Wang et al., 2008]. Indeed, efforts have been made by using the current
AERONET inversions to derive aerosol composition [e.g., Schuster et al., 2005; Arola et al., 2011; Li et al.,
2013]. Therefore, with more information on the refractive index, our inversion is expected to provide more
robust estimates of the aerosol chemical components.

The promising results in this study are obtained from the initial development and preliminary applications of
a new algorithm targeted for the retrieval of aerosol properties from new-generation AERONET
measurements. Future developments will include, but not be limited to, the treatment of nonspherical
large aerosol particles like mineral dust and the consideration of trimodal aerosols for special situations.
While the bilognormal PSD can well represent the aerosol size spectrum in most cases, future research
efforts will include the implementation of trimodal aerosol mixtures in situations of cloud formation [Eck
et al., 2012] or volcanic aerosols [Eck et al., 2010]. Moreover, extensive retrievals for a longer period of time
will also be performed over sites where CE318-DP Sun photometer instruments have been installed (i.e.,
Beijing_RADI and Lille). Historically, an issue with the CIMEL polarization measurements has been their
limited accuracy [Li et al., 2010]. It is thus worthwhile to investigate what level of accuracy in DOLP
measurements is necessary to contribute useful information for the retrieval. This question is important
not only for the historical polarization measurements by the older CIMEL Sun photometer but also for
providing guidance to the new instrument design.
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