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Regions of frequent biomass burning and gas flaring highlighted by NOAAs Nightfire product during 18 MarchY14 July 2013.
Interference from the South Atlantic Anomaly (SAA) is visible over a large portion of South America.
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First Global Analysis of Saturation Artifacts in the
VIIRS Infrared Channels and the Effects of

Sample Aggregation
Thomas N. Polivka, Edward J. Hyer, Jun Wang, and David A. Peterson

Abstract—Unlike previous spaceborne Earth observing sensors,
the Visible Infrared Imaging Radiometer Suite (VIIRS) employs
onboard sample aggregation to reduce downlink bandwidth re-
quirements and preserve spatial resolution across the scan. To
examine the potentially deleterious impacts of onboard sample
aggregation when encountering detector saturation, nearly four
months of the National Oceanic and Atmospheric Administra-
tion’s Nightfire product are analyzed, which contains a subset of
the hottest observed nighttime pixels. An empirical method for
identifying saturation is devised. The M12 band (3.69 µm) is the
most frequently saturating band with 0.15% of the Nightfire pixels
at or near the ∼359-K detector saturation limit; some saturation
is also found in M14, M15, and M16 (8.58, 10.74, and 11.86 µm).
Artifacts consistent with detector saturation are seen with M12
temperatures as low as 330 K in the scene center. This partial
saturation and aggregation influence must be considered when
using VIIRS radiances for quantitative characterization of hot
emission sources such as fires and gas flaring.

Index Terms—Fires, infrared measurements, nightfire, remote
sensing, sample aggregation, saturation, Suomi National Polar-
orbiting Partnership (S-NPP), Visible Infrared Imaging Radio-
meter Suite (VIIRS).

I. INTRODUCTION

ON October 28, 2011, the Suomi National Polar-orbiting
Partnership (S-NPP) satellite was launched from the

Vandenberg Air Force Base in California, and it now orbits with
a mean altitude of 840 km above the Earth in sun-synchronous
orbit. Located aboard S-NPP, the Visible Infrared Imaging
Radiometer Suite (VIIRS) is a 22-band scanning radiometer
with a nominal spatial resolution of 375 m in the five imagery
bands (I-bands) and 750 m in both the 16 moderate-resolution
bands (M-bands) and the day–night band (DNB) [1]–[4] (see
Table I). The sensor data records (SDRs) of calibrated radiances
and brightness temperatures cover a spectral range from 0.411
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TABLE I
GENERAL SUOMI-NPP AND VIIRS SENSOR

CHARACTERISTICS [1], [2], [10]

to 11.87 µm and are used in a wide range of Earth observation
applications, including fire detection and characterization, re-
trieval of cloud and aerosol properties, and land and sea surface
temperature estimation [5]. The VIIRS sensor was designed to
improve upon legacy instruments, such as the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS), the Advanced Very
High Resolution Radiometer, and the Operational Line Scanner.
One significant enhancement relative to these legacy sensors is
that VIIRS does not experience the significant off-nadir pixel
growth affecting sensors such as MODIS; VIIRS pixels at the
scan edge are only two to four times the size of nadir pixels,
whereas MODIS exhibits a growth factor of 10 [2]. For the
M-bands, VIIRS delivers SDRs of calibrated radiances and
brightness temperatures with a pixel instantaneous field of view
(IFOV) of 0.75 × 0.79 km at nadir, which increases to 1.66 ×
1.71 km at the edge of the scan [1], whereas the five imagery
bands have smaller IFOVs ranging from 0.38 × 0.39 km to
0.83 × 0.86 km at the scan edge.

The spatial resolution of VIIRS is preserved across the scan
by employing asymmetrical detectors in conjunction with a
unique sample aggregation scheme, as illustrated in Fig. 1,
which combines multiple samples from one rectangular de-
tector into single raw data record (RDR) pixels consisting of
digital counts. This processing is done onboard the satellite,
except for the dual-gain bands whose aggregation is done on
the ground [2]. As a result, the RDR has three aggregation
zones. The 3:1 aggregation zone refers to scan angles between
0◦ (nadir) and 31.72◦, where the value of each pixel is ac-
tually the average of three individual samples. Similarly, in
the 2:1 aggregation zone (scanning angles between 31.72◦ and
44.86◦), two samples from the same detector are aggregated
to form a pixel. No sample aggregation is performed in the

1545-598X © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. VIIRS aggregation scheme (not to scale) and sample dimensions over
the equator with an orbital altitude of 830 km [2]. The individual rectangles
represent samples from an M-band detector, shaded by aggregation zone.

1:1 aggregation zone (scan angles greater than 44.86◦); thus,
each pixel is calculated from a single detector sample. Once the
RDR has been generated, it is later processed into a calibrated
SDR, retaining the characteristics from aggregation.

While the VIIRS aggregation scheme effectively reduces
pixel footprint growth across the scan, it also results in fun-
damental differences in the data characteristics among the three
aggregation zones, particularly when detector saturation occurs.
The VIIRS onboard electronics module does not flag the data
if an individual sample saturates before aggregation occurs.
Consequently, the aggregation of samples does not account for
saturation effects, which may result in biases or artifacts for
pixels containing active biomass burning or other heat sources
that have the potential to cause detector saturation. In the case
when an individual sample is saturated and then aggregated
with unsaturated samples, the resulting pixel will have a radi-
ance bias associated with saturation, even if the reported pixel
radiance is well below the detector saturation limit. This study
investigates the frequency and effects of saturated samples in
the VIIRS infrared (IR) channels and evaluates the potential
for biases and artifacts in the VIIRS SDR caused by onboard
sample aggregation. This study represents a first attempt to
derive an empirical method for identifying possible partial
saturation and determine thresholds to filter partially or fully
saturated pixels in bands that are relevant to the detection and
characterization of hot targets.

II. DATA SET DESCRIPTION

In order to facilitate the analysis of saturation potential in
VIIRS data, a NOAA Joint Polar Satellite System Proving
Ground product named “Nightfire” is used in this study [6].
Nightfire is utilized because it contains an extensive set of
prescreened “hot” pixels, allowing for fast analysis of months
of data. The Nightfire algorithm selects thermally anomalous
pixels detected in the VIIRS shortwave infrared (SWIR) 1.6-µm
band (M10) [6], rather than utilize the 4-µm range that is
traditionally used for fire detection [7]. VIIRS is unusual in
that it records some near-infrared (NIR) and SWIR data during
nighttime (bands M7, M8, and M10 in Table II), which allows
for easy and rigorous detection of hot sources due to the lack

TABLE II
SPECTRAL CHARACTERISTICS AND STATISTICS OF OBSERVED RADIANCE

FOR EACH VIIRS BAND [1] IN THE NIGHTFIRE DATA SET

of background (solar) radiation. The nighttime background
radiance at 1.6 µm is very low, generally of the same order of
magnitude as dark current noise in the sensor. M10 is therefore
selected as the primary band of Nightfire to detect thermally ra-
diant objects, particularly gas flares with burning temperatures
up to 1800 K [6]. During nighttime, pixels more radiant than the
background digital count (DC) plus four standard deviations of
DC are first flagged as thermally anomalous candidate pixels.
The background DC is the mean DC of all nonhot pixels
(DC value ≤ 100) contained in each aggregation zone for
one VIIRS granule, and the standard deviation is calculated
using the same criteria. To filter the noise in M10 caused by
high-energy particles that frequently hit the sensor within the
South Atlantic Anomaly (SAA) [3], [8] and auroral areas, the
Nightfire algorithm conducts a second check on the hot pixel
detected by M10 with other NIR/SWIR bands (M7 and M8)
using the same technique as for M10. Finally, the algorithm
attempts to fit a Planck curve to the retrieved radiances to
obtain the temperature and area of the emitting source using the
simplex optimization method [9]. A more thorough discussion
of the Nightfire algorithm can be viewed in [6].

While Nightfire provides atmospheric-corrected data, only
the uncorrected calibrated radiances for the eight M-bands
(see Table II) for each pixel are examined in this study.
Atmospherically-corrected data and retrieved hot spot proper-
ties are not investigated. Statistical examination of the Night-
fire data (see Table II) indicates a discontinuity between data
before and after March 17, 2013. Therefore, the earlier data
are excluded, leaving Nightfire data from March 18, 2013 to
July 14, 2013 available for use in this study. After screening
out records with missing data (less than 0.01% of the data), this
time period yields 1 861 865 thermally anomalous pixels. The
geographic distribution of the filtered Nightfire data is shown
in Fig. 2, highlighting regions of frequent biomass burning
(Central Africa, Central America, Southeast Asia), as well as
regions that commonly flare gas, such as the Persian Gulf,
North Dakota, and Nigeria.

III. ANALYSIS AND RESULTS

The analysis is divided into three parts. First, the nine
M-bands from Table II are scrutinized by constructing
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Fig. 2. Global distribution of M12 counts in the Nightfire data set, gridded to
1◦ × 1◦. Clustering of counts can be observed in regions of frequent biomass
burning and gas flaring. Despite Nightfire’s attempts to filter it out, the blue
region on and around South America still manifests as the SAA, similar to what
has been observed from other sensors observing near the 1.6-µm range [8].

histograms to identify which bands are fully saturating. Full
saturation would be manifested by sudden or unexpected peaks
in frequency at the highest radiance bin. Second, the most
frequently saturating band’s data are separated by aggregation
mode to determine if there is a relationship with sample sat-
uration and aggregation scheme. In this case, scatterplots of
the data between saturating and nonsaturating bands are con-
structed to look for distinct populations of pixels unique to each
mode. The third and final step of the analysis attempts to verify
the relationship between sample saturation and aggregation by
statistically simulating the effects of partial saturation. This
is accomplished by using the properties of the unaggregated
data (from the 1:1 aggregation zone) to generate synthetic
populations of detector data that can be aggregated to match the
VIIRS sample aggregation scheme and comparing the resulting
histograms of the synthetic data with the observed distributions
of each aggregation mode.

A. Band-by-Band Detection of Saturation

From the radiance histograms of each band (see Fig. 3),
significant saturation is observed in the 3.69-µm (M12)
band, which is highlighted by the sudden density peak at
3.39 W/m2 · sr · µm, representing 0.15% of the data (red ar-
row). The approximate radiances corresponding to the theoret-
ical limits described by [1] are indicated by the vertical dashed
red lines in Fig. 3. The maximum observed radiance is slightly
higher than the theoretical maximum; 3.39 W/m2 · sr · µm has
a corresponding brightness temperature of ∼359 K at the
center wavelength of 3.69 µm in comparison with the 353-K
brightness temperature limit reported by [1]. The incidence of
partial pixel saturation as a possible side effect of aggregation
is noted near 1.3, 1.8, and 2.3 W/m2 · sr · µm, which can be
seen by the slight and smoothed peaks near those radiance
values. Fig. 4 shows the global distribution of fully saturated
(3.39 W/m2 · sr · µm) M12 pixels aggregated to a 1◦ × 1◦ grid;
many of the same regions with hot spots in Fig. 2 are visible,
but the SAA is notably absent.

Clustering of values near the maximum observed bins from
Fig. 3 gives qualitative evidence of possible saturation in the

Fig. 3. Analysis of the infrared channels contained in Nightfire. The published
saturation limits for each band are shown by the red dashed lines (except M13,
much higher than observed data). The only channel exhibiting easily discernible
saturation is M12, which has been marked with a red arrow. Blue arrows mark
possible saturation features in M14, M15, and M16.

Fig. 4. Global distribution of Nightfire detections at the M12 saturation limit
(3.39 W/m2 · sr · µm), aggregated to a 1◦ × 1◦ grid. Note that the color scale
is an order of magnitude lower than that in Fig. 2.

M14, M15, and M16 bands (marked by the blue arrows). How-
ever, for bands other than M12, the percentage of pixels that
lie above 99.9% of the nominal saturation levels and observed
maximum values is very low (e.g., less than 0.002%, Table II,
right columns), suggesting that saturation effects in nocturnal
scenes are very rare in these bands. Bands M10 and M13 do
not experience saturation in this data set.

B. M12 Saturation Aggregation Zone Dependence

In order to determine the effects of sample saturation in the
M12 band, the data are segregated according to aggregation
zone. Scatterplots of 3.69 µm/4.06 µm (M12/M13) ratio versus
4.06 µm (M13) for each aggregation zone are shown in Fig. 5.
The ratio of M12/M13 is used for comparison since M13 does
not saturate and lies in close spectral proximity to M12. The
three panels illustrate the 1:1, 2:1, and 3:1 aggregation zones,
respectively. The 1:1 pixels [see the green dots in Fig. 5 (left)]
show the baseline pattern for M12, where the ratio of M12/M13
varies up to the detector saturation point of 3.39 W/m2 · sr · µm.
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Fig. 5. Ratio of M12/M13 radiance versus M13 radiance separated by scan-
ning angle to show the effects of onboard aggregation. (Left) 1:1 aggregation
zone points (44.86◦+). (Center) 2:1 aggregation zone points (31.72◦–44.86◦).
(Right) 3:1 aggregation zone points (0◦–31.72◦). Aggregation results in con-
centrations of values along curves at lower ratios than the detector saturation
limit depending on how many samples are aggregated into one pixel. These
curves are overlaid with the number of samples saturating for each population.

For M13 radiances above this limit, M12/M13 is truncated,
indicating that M12 is saturating while M13 is not [labeled 1
in Fig. 5 (left)]. The variability of M12/M13 at low M13
radiances shows a spread of ratios due to different thermal
properties, owing to the atmospheric effects and the Planck
function’s sensitivity to temperature for differing wavelengths.
Despite this, as the M13 radiance increases, the M12/M13 ratio
converges to a curve determined by the M12 saturation limit.

The 2:1 aggregation zone [see Fig. 5 (center)] shows a similar
pattern with one important and noticeable difference. As the
M13 radiance increases, the M12/M13 ratio converges to two
clusters with a spread of points between them. The lower cluster
(labeled 1) reflects the case when one sample saturates while
the other aggregated sample does not. As the ratio increases for
the same M13 radiance value, there is still one saturated M12
sample, but the neighboring aggregated M12 sample is report-
ing increased radiances until both samples saturate (labeled 2).
That is visible as the detector saturation limit of the M12/M13
ratio with the same M12 radiance of 3.39 W/m2 · sr · µm.

Finally, in the case of the 3:1 aggregation scheme [see Fig. 5
(right)], there are three populations of curves, owing to the
three samples that are averaged together. The lowest cluster
represents the case when one of the aggregated M12 samples
saturates (labeled 1) but the two other samples do not. The
middle ratio population for a given M13 radiance is for a
situation where two samples saturate but the third does not
(labeled 2). Finally, the uppermost population is where all three
aggregated M12 samples saturate (labeled 3).

C. Diagnosing and Verifying New Saturation Thresholds

To confirm that these features are consistent with aggrega-
tion effects, a statistical method was devised to simulate the
observed distribution of radiances in each aggregation zone.
Thirty million values are randomly drawn from the observed
M12 1:1 aggregation zone. The 2:1 aggregation zone is simu-
lated by drawing 15 million random pairs from the 1:1 aggrega-
tion zone and averaging each pair, whereas the 3:1 aggregation
zone is simulated by drawing 10 million triplets from the 1:1
aggregation zone and averaging them. The results of these

Fig. 6. Distribution of radiances (filled bars) observed and (black outlines)
synthetically calculated for each aggregation zone. The three rows represent
the different aggregation modes starting with 1:1 at the top and ending with
3:1 at the bottom, whereas the three columns are M12 radiance, M13 radiance,
and M12/M13 ratios, from left to right. Solid bars represent the observed
distributions of radiances, and the black outlines represent the synthetic
distributions made by averaging samples drawn from the edge scan data set
(see Section III-C for details).

simulations are displayed in Fig. 6, which is divided into nine
panels. In each panel, the colored bars show the observed
distribution from the Nightfire data, and the black lines show
the statistically created distributions. The three rows represent
the aggregation zones starting with 1:1 at the top and ending
with 3:1 at the bottom, whereas the three columns are 3.69-µm
radiance (M12), 4.06-µm radiance (M13), and 3.69/4.06 µm
ratios (M12/M13), respectively, from left to right. The statisti-
cally simulated radiance values almost exactly reproduce the
observed distributions of radiances from the 1:1 aggregation
zone (see the top row in Fig. 6). The randomly selected pairs
and triplets (see the second and third rows in Fig. 6) show peaks
of density in the same locations as the observed data, indicating
the effects of saturation well below the detector saturation limit.

Saturation can be seen to affect radiances as low as
1.7 W/m2 · sr · µm (∼337 K at 3.69 µm) for the 2:1 aggre-
gation zone [see Fig. 6(d)]. In the 3:1 aggregation zone, the
influence of an individual saturated sample becomes apparent
at radiances of only 1.3 W/m2 · sr · µm (∼330 K). The second
column shows the observed and synthetic distributions for the
M13 (4.06 µm) band, where no unusual peaks in density are
noted. The far right column shows suppression of high values
of M12/M13 with aggregation, consistent with the effects of
averaging. The geographic distribution of potential partially
saturated pixels is displayed in Fig. 7, where data are mapped
only if the radiance values reach above the thresholds of pos-
sible partial saturation (1.3 W/m2 · sr · µm for 3:1 aggregation,
1.7 W/m2 · sr · µm for 2:1 aggregation, and 3.39 W/m2 · sr · µm
for 1:1 aggregation). In comparison with the observed detector
saturation limit (see Fig. 4), a much larger area is impacted by
partial saturation.

While the general pattern of the observed and simulated
distributions is similar, particularly the features caused by de-
tector saturation, large discrepancies exist. One main difference
stems from sample correlation. Normally, when VIIRS scans
a scene, adjacent samples will observe a similar environment;
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Fig. 7. Global distribution of the partially saturated M12 pixel counts to a
1◦ × 1◦ grid. Partial saturation is determined by taking the lowest temperature
at which saturation artifacts are observed in each aggregation zone. The color
scale is the same as that in Fig. 4.

that is, if one sample scans a fire, the chances are high that
the adjacent samples(s) will also scan hot terrain. This greatly
increases the frequency of high temperatures occurring in the
observations compared with randomly selected samples. An-
other compounding factor is the difference in IFOV, which is
dependent on scan angle. While the pixel footprint change is
reduced by aggregation, detector footprint sizes for VIIRS still
increase significantly with scan angle. Thus, the detector IFOV
near nadir is much smaller than at the scan edge, which leads to
higher fire fractions and, subsequently, increased occurrence of
very high radiances in the near-nadir samples when compared
with the 1:1 aggregation zone samples. These two effects have
similar impacts on the observed distribution; therefore, they
cannot be easily separated for analysis or considered in the
simulated distributions. This demonstrates that extrapolation
from the 1:1 zone tends to underestimate the occurrence of
saturation in the 2:1 and 3:1 aggregation regimes.

IV. SUMMARY AND CONCLUSION

This letter investigated the prevalence and influence of de-
tector saturation when the VIIRS sample aggregation scheme
is applied. It should be noted that saturation may occur more
frequently than the Nightfire data set indicates because fires
tend to burn hotter in the daytime than at night. The only
band to suffer from significant deleterious detector saturation
is the 3.69-µm band (M12), but there is some evidence to
support saturation in the other single-gain thermal infrared
(TIR) channels that might be more apparent in a larger data
set. The maximum radiance values recorded by VIIRS in those
bands are significantly higher than the pub lished maxima in
[1]. For the M12 band, distinct clustering of pixel radiances
below the detector saturation limit of 3.39 W/m2 · sr · µm
(∼359 K) appears in the data from the 2:1 and 3:1 aggrega-
tion zones. The 1:1 aggregation zone’s saturation limit is thus
3.39 W/m2 · sr · µm (∼359 K), whereas the 2:1 aggregation

zone exhibits saturation at 1.7 W/m2 · sr · µm (∼337 K), and
the 3:1 aggregation zone is susceptible to saturation only at
1.3 W/m2 · sr · µm (∼330 K).

VIIRS does not record when saturation occurs in individual
samples. Therefore, it is impossible to know if a pixel is affected
by saturation in the M12 band beyond its respective saturation
threshold. The potential for biases in pixel radiance due to
unidentified saturation is a significant problem for quantitative
use of the M12 band for applications that use hot pixels, such
as for multispectral fire property retrievals. M12’s intended
use for sea surface temperature derivation [1], [11] should not
be impacted, provided pixels are filtered to avoid hot sources
such as gas flaring. For applications that require quantitative
evaluation of hot sources, the aggregation scheme determines
the upper limit of radiances known to be unsaturated.
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