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Progression of the 2013 Rim Fire from ignition to extinction, as revealed by the operational Active Fire Application Related Product (left)
and the Firelight Detection Algorithm (right), both using the same input data from the VIIRS aboard the Suomi-NPP satellite.
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Improving Nocturnal Fire Detection
With the VIIRS Day–Night Band

Thomas N. Polivka, Jun Wang, Luke T. Ellison, Edward J. Hyer, and Charles M. Ichoku

Abstract—Building on existing techniques for satellite remote
sensing of fires, this paper takes advantage of the day–night band
(DNB) aboard the Visible Infrared Imaging Radiometer Suite
(VIIRS) to develop the Firelight Detection Algorithm (FILDA),
which characterizes fire pixels based on both visible-light and
infrared (IR) signatures at night. By adjusting fire pixel selection
criteria to include visible-light signatures, FILDA allows for sig-
nificantly improved detection of pixels with smaller and/or cooler
subpixel hotspots than the operational Interface Data Processing
System (IDPS) algorithm. VIIRS scenes with near-coincident Ad-
vanced Spaceborne Thermal Emission and Reflection (ASTER)
overpasses are examined after applying the operational VIIRS fire
product algorithm and including a modified “candidate fire pixel
selection” approach from FILDA that lowers the 4-µm brightness
temperature (BT) threshold but includes a minimum DNB radi-
ance. FILDA is shown to be effective in detecting gas flares and
characterizing fire lines during large forest fires (such as the Rim
Fire in California and High Park fire in Colorado). Compared with
the operational VIIRS fire algorithm for the study period, FILDA
shows a large increase (up to 90%) in the number of detected fire
pixels that can be verified with the finer resolution ASTER data
(90 m). Part (30%) of this increase is likely due to a combined use
of DNB and lower 4-µm BT thresholds for fire detection in FILDA.
Although further studies are needed, quantitative use of the DNB
to improve fire detection could lead to reduced response times to
wildfires and better estimate of fire characteristics (smoldering
and flaming) at night.

Index Terms—Day–night band (DNB), fire detection, fires, gas
flares, Visible Infrared Imaging Radiometer Suite (VIIRS), visible
light at night, wildfires.

I. INTRODUCTION

A S AN important component in the Earth–atmosphere
system, wildfires are a serious threat to life and prop-

erty that, despite improving warning systems [1], [2], have

Manuscript received September 11, 2015; revised March 2, 2016 and
April 25, 2016; accepted May 5, 2016. Date of publication June 23, 2016;
date of current version August 2, 2016. This work was supported in part by
the NASA Suomi NPP Program and Applied Science Program managed by
John A. Haynes and Lawrence A. Friedl and in part by the Interdisciplinary
Studies (IDS) Program directed by J. Kaye and administered through the Ra-
diation Sciences Program managed by Hal B. Maring. The work of T. Polivka
was also supported by the NASA Nebraska Space Grant.

T. N. Polivka and J. Wang are with the Department of Earth and Atmospheric
Sciences, University of Nebraska—Lincoln, Lincoln, NE 68588 USA (e-mail:
thomas.polivka@huskers.unl.edu; jwangjun@gmail.com).

L. T. Ellison is with Science Systems and Applications, Inc., Lanham, MD
20706 USA, and also with NASA Goddard Space Flight Center, Greenbelt, MD
20771 USA (e-mail: luke.ellison@nasa.gov).

E. J. Hyer is with the Marine Meteorology Division, Naval Research Labo-
ratory, Monterey, CA 93943 USA (e-mail: edward.hyer@nrlmry.navy.mil).

C. M. Ichoku is with the NASA Goddard Space Flight Center, Greenbelt,
MD 20771 USA (e-mail: charles.ichoku@nasa.gov).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2016.2566665

exacted greater costs in recent years [3], [4]. In addition, they
impact global atmospheric chemistry by releasing potent trace
gases such as carbon monoxide, carbon dioxide, methane, and
ethene [5], as well as aerosols and black carbon [6]. These by-
products of combustion are capable of traveling great distances
and impacting health and meteorological processes in remote
locations [7], [8], and in addition to creating local pollution
hazards, these can affect Earth’s climate [9]. Fire-spawned
smoke aerosols have complex interactions with the atmosphere
by causing a reduction in surface illumination [10]–[12] and
simultaneously warming the atmosphere, thereby decreasing
vertical temperature gradients and increasing atmospheric sta-
bility [13] due to their relatively low single-scattering albedo
[14]. As a consequence of wildfire lethality and potential
for property damage, earlier detection of wildfires via remote
sensing is paramount to proper allocation of fire manage-
ment resources [15], [16]. Effective response to all of these
phenomena requires accurately detecting and characterizing
fires as well as accurately quantifying emissions from biomass
burning.

The launch of the Suomi National Polar-orbiting Partner-
ship (S-NPP) satellite on 28 October 2011 has opened up
unprecedented capabilities with the Visible Infrared Imaging
Radiometer Suite (VIIRS) instrument. With a heritage extend-
ing back over 40 years to the Defense Meteorological Satel-
lite Program (DMSP) Sensor Aerospace Vehicle Electronics
Package (SAP), first launched in 1970, Advanced Very High
Resolution Radiometer (AVHRR, first launched 1978), and
Moderate Resolution Imaging Spectroradiometer (MODIS, first
launched in 1999), VIIRS boasts improved spatial resolution
and a higher signal-to-noise ratio than these legacy sensors.
VIIRS has already shown promise in detecting smaller and
cooler fires [17] than what MODIS currently is capable of.
This paper presents a novel approach to detecting fire pixels
(with smaller and/or cooler subpixel hotspots) by employing the
VIIRS day–night band (DNB) in conjuction with the midwave
infrared (MWIR) band that is currently used in both the MODIS
and VIIRS fire detection algorithms.

This paper is divided as follows. In Section II, we present
a brief history of satellite remote sensing of fires, primarily
based on the past research that used AVHRR, Geostationary
Operational Environmental Satellite(GOES), and MODIS data.
In Section III, the characteristics of VIIRS and its data are
described in detail. The ASTER sensor, used for validation, is
also described in Section III. Afterward, we discuss the methods
employed to improve the detection of smaller and cooler fires
in Section IV. We then discuss the results and validation in
Section V, and in Section VI, we finish with a discussion of
our findings and main conclusions.

0196-2892 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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II. PRE-VIIRS NASA/NOAA SATELLITE-BASED

FIRE DETECTION

Weather satellites have played a pivotal part in the under-
standing of the Earth–atmosphere system since 1 April 1960,
when NASA launched the first weather satellite, i.e., the Tele-
vision Infrared Observation Satellite (TIROS-1), into orbit.
TIROS-1 carried a television camera that only pointed at the
Earth for short portions of its orbit (over North America).
Convinced by TIROS-1’s success in monitoring meteorological
conditions, the U.S. Air Force launched its own military satel-
lite program in 1962, i.e., DMSP. Subsequent satellite launches
(organized into “blocks” based on satellite generation) im-
proved upon sensor and bus design. In order to monitor noctur-
nal cloud cover, the DMSP Blocks 5A, B, and C (1970–1975)
were capable of observing low-light environments at night with
the SAP [18]. The SAP carried two sensors: one for visible and
the other for IR radiation. The visible sensor was capable of
observing nocturnal scenes as the spectral response was quite
broad: the half-power response points were at 0.57 and 0.97 µm
with the peak at around 0.8 µm [19]. Data from the nocturnal
scenes had a resolution of approximately 3.7 km near the
subsatellite point. Using the SAP’s visible channel, Croft [20]
was the first person to qualitatively demonstrate its potential for
monitoring gas flaring, savannah brush fires, and cooking fires
over Africa during the night. In 1976, DMSP Block 5D was
launched, and carried a new instrument that improved upon the
SAP’s design: the Operational Linescan System (OLS). Like
the SAP, the OLS has a very broad band covering the visible
and NIR portion of the spectrum with a “smoothed” spatial
resolution of approximately 2.7 km. The instrument was also
noted by Croft [21] to be excellent at qualitatively observing
gas flares and city lights [22]. The DMSP data were eventually
declassified and made available to scientists, who used the
sensor to globally map cities, human settlements, and nighttime
fires based on their light emission [18], [23], [24].

Unrelated to the DMSP, subsequent NASA TIROS satellites
improved upon the original satellite design, and following the
collaboration with NOAA, the TIROS-N satellite was launched
in 1978. TIROS-N brought digital data transmission, rather than
analog as in previous NASA satellites [25]. In addition, TIROS-
N carried a powerful instrument for its time: the AVHRR.
AVHRR/1 was a scanning radiometer which sensed the Earth
in four channels (increased to five on later AVHRR sensors).
The four channels spanned several different sectors of the elec-
tromagnetic spectrum with a resolution of 1.09 km at nadir [25]:
Channel 1 sensed a portion of the visible spectrum (0.58–0.68
µm); channel 2 recorded the NIR (0.725–1.00 µm); channel 3,
being a hybrid channel (since NOAA-15), utilized two different
IR signatures of 1.58–1.64 µm [channel 3a, shortwave IR
(SWIR)] and 3.55–3.93 µm (channel 3b, MWIR); and finally,
channel 4 covering 10.30–11.30 µm. Channel 5 (11.50–12.50
µm) was added with AVHRR/2. The AVHRR datastream has
continued uninterrupted since the launch of the first one in
1978, giving a remarkable history of how the Earth’s surface
and atmosphere has changed through the decades.

Using AVHRR’s channels 3b (centered at 3.74 µm) and
4 (centered at 10.8 µm), Dozier [26] developed a bispectral
approach to identify hot sources and quantitatively estimate
the area occupied by the hot target in an unsaturated pixel.

Channel 3b, spanning 3.55–3.93 µm, was noted to be sensitive
to hot sources such as steel mills in the Ohio River Valley and
gas flares in the Middle East [27]. Flaming wildfires typically
have kinetic temperatures between 800 and 1200 K (sometimes
as hot as 1800 K) and smoldering temperatures between 450
and 800 K [28]. At a temperature of 1000 K, fire emits radi-
ation with peak radiance at 2.9 µm (according to the Planck
function). As smoldering fire (T = 600 K) has peak radiation
emission at 4.8 µm, the combination of the two combustion
types lies very close to the spectrum of AVHRR’s channel 3b
(3.6–3.9 µm). However, by the same logic, the influence of
the fires in channel 4 (10.3–11.3 µm) is small by comparison,
which is why it is used to separate fires from background scene
brightness effects. In addition to the signal difference between
the two channels, the approach also depended on an accurate es-
timation of a background temperature, e.g., the surface kinetic
temperature of the portion of the pixel that was not occupied
by the heat source. This was assumed to be represented by the
∼4 µm brightness temperature (BT) of a similar adjacent pixel
[27]. It should be noted, however, that Giglio and Kendall [29]
later showed that averaging neighboring pixel BTs for 4 and
11 µm could be used instead of estimating the surface back-
ground kinetic temperature. Using the approach in [26], Matson
and Dozier [27] performed the first estimation of gas flare and
steel mill temperatures and areas using AVHRR’s IR bands, as
AVHRR was not capable of detecting visible light at night. This
was the first time fires were observed from satellite via the IR
bands alone. Several studies (including [30] and [31]) used this
relationship to investigate the global distribution and frequency
of wildfires. Today, fire detection algorithms have evolved from
AVHRR into the realm of more sophisticated sensors, but they
are still based on that principle: the difference in radiance/BT
between 4 and 11 µm [17], [32]–[37].

Several early fire detection algorithms developed for AVHRR
identified potential fire pixels according to predefined thresh-
olds (e.g., in [38]–[40]). These consisted of the minimum
3.8-µm BT (abbreviated as BT4) and a minimum difference
between 3.8-µm and 10.8-µm BTs (abbreviated BT4−BT11)
that a pixel must exceed. For example, in [38], any pixel with a
BT4 greater than 311 K and BT4−BT11 greater than 8 K was
flagged as a potential fire. Only then would additional contex-
tual tests be run, which compared the potential fire pixel to its
surrounding pixels. These thresholds were usually tailored to
the specific region to be monitored (such as subtropical Africa,
as in [39]) and had difficulty monitoring fires in radically
different environments [41]. Other algorithms, such as those
of [38], [40], and [42], employed contextual tests as well to
attempt to further screen out false positives while permitting the
use of a lower BT4 threshold. Common to all these algorithms
is that they used BT4 and BT4−BT11 thresholds that were
obtained empirically and somewhat arbitrarily.

Despite AVHRR’s power and utility for remotely sensing
wildfires globally, it was still largely limited by the large pixel
sizes and the fact that fires only occupy a small portion of a
full pixel (termed fire fraction). The BT for a pixel consists
of the total radiance over the entire pixel area detected by the
sensor, which in AVHRR’s case, is 1.09 km × 1.09 km near the
subsatellite point [25]. This means most fire signals, although
having their peak emission wavelength close to 3.7 µm, are
largely drowned out by the background (nonburning) portion
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of a pixel. AVHRR’s 3b and 4 channels also suffer from low
saturation temperatures, which depending on the platform and
calibration coefficients, varies between 322 and 331 K [31].
In cases of extremely hot fires/targets, the bispectral approach
from [26] readily breaks down [43]. In addition, AVHRR only
affords two views per day across much of the globe, because
the 3.7-µm channel has not been always available due to
the channel 3a3b scheme. Newer instruments would partially
overcome these limitations.

Geostationary sensors were in a prime position to supplement
the poor temporal resolution of AVHRR, despite their de-
creased spatial resolution. Beginning in 1980 with the launch of
GOES-4, NOAA’s GOES systems were equipped with an
atmospheric sounder: the Visible and Infrared Spin Scan Ra-
diometer Atmospheric Sounder (VAS). The sensor provided
bands centered near 4 and 11 µm, allowing for the use of the
Dozier approach (see [26]), despite a significant caveat: The
spatial resolution of the VAS was ∼14 km for the 4-µm band
and ∼7 km for the 11-µm band [33], versus AVHRR’s ∼1 km.
However, the large pixel sizes also meant that the sensor did
not saturate nearly as frequently as AVHRR. Prins and Metzel
[33] developed an algorithm that utilized the VAS to identify
biomass burning in South America. Unlike the algorithms that
used predetermined BTs as in AVHRR, fire pixels were identi-
fied only when BT4 was 4 K greater than the background BT4

(termed BT4b) and the BT11 was 1 K greater than the back-
groundBT11 (termedBT11b). They proved that the VAS had im-
mense potential in monitoring biomass fires in South America,
and although showing promising results, the technique was too
cumbersome to perform on an operational level [33]. At the
time, the approach required manual smoke and atmospheric
correction to account for differences in atmospheric transmit-
tance caused by the water vapor contained in the smoke. Later,
Prins and Metzel [44] released the automated biomass-burning
algorithm (ABBA), an updated version of the algorithm devel-
oped in 1992 but done on a much larger and automated scale. As
before, fire pixels were identified after being compared against
the background BTs. Background BTs were 11-µm nonfire BTs
calculated from 150 km × 150 km subsections of the study area
after correcting for transmissivity and emissivity. To be clas-
sified as fire pixels in the updated algorithm, pixels needed to
pass two primary tests: 1) BT4−BT11 needed to be greater than
BT4b−BT11b; and 2) BT4−BT4b needed to be greater than 2 K
or 1.5 times the BT4b standard deviation. This process disqual-
ified 90% of the nonfire pixels [44], and afterward, additional
tests were run that accounted for atmospheric transmittance
as the VAS bands showed a moderate degree of water vapor
contamination. ABBA was later renamed as Wildfire-ABBA
(or WF-ABBA), and has been continually updated (to improve
the characterization of background surface temperatures by
expanding windows for background areas and through iterative
use of statistics of local surrounding surface temperatures). It is
widely used to monitor wildfires and estimate smoke emissions
[7], [45], in addition to extending well beyond its GOES
heritage to European and Japanese geostationary sensors.

One of the most important fire-detecting spaceborne sensors
to date, i.e., MODIS, was launched in 1999 aboard NASA’s
Terra satellite. MODIS is a 36-channel instrument, which cov-
ers a wide segment of spectrum from 0.4 to 14.4 µm, with
spatial resolutions of 250 m (bands 1–2), 500 m (bands 3–7),

and 1 km (bands 8–36). A second MODIS instrument was
launched in 2002 aboard the Aqua satellite. Together, Terra
and Aqua provide two to four daylight scenes over much of
the globe each day (and two to four more at night). While
MODIS was designed for a wide variety of scientific applica-
tions, its 3.9 and 11-µm channels were specifically designed for
fire detection with saturation temperatures of 450 and 400 K,
respectively [46]. The MODIS fire detection algorithm,
like the AVHRR algorithms before it, is based on the
idea that the BT4 band is more sensitive to fires than
the BT11 band [34]. It has undergone numerous revisions
over the years, and the latest publicly available version at
the time of this study in 2015—MODIS Collection 5—
still relies on prespecified thresholds. The original MODIS
fire detection algorithm consisted of a combination of absolute
and relative tests [34], [47] and was designed to minimize
false positives. Giglio et al. updated the MODIS algorithm and
greatly enhanced its performance with detection of smaller
and cooler fires [35]. The primary mechanisms of improve-
ment were lowering the thermal thresholds and including con-
textual tests, which compared potential fire pixels to their
surroundings.

MODIS ushered in an unparalleled level of satellite-based
fire research, not only in terms of fire detection but also fire
characterization as well. Kaufman developed the concept of
fire radiative power (FRP) [46], [47]. FRP, which is a proxy
measure of fire intensity based solely on a ∼4-µm channel [37],
[46], [48], was shown to be correlated with smoke emissions
[6], [49]. The MODIS fire products were a substantial upgrade
when compared with products from AVHRR and other sensors.
By identifying the utility of satellite-based fire detection for
fire suppression resource allocation, the U.S. Forest Service
requested quicker availability of the MODIS fire products. The
MODIS Rapid Response fire product was created as a result,
which disseminated fire data within hours of MODIS data
acquisition [34]. Until that point, satellite data were useful for
fire monitoring but not for detection and response.

While fires were first seen and thought to be detectable by
satellite with visible data observed at night [20], quantitative
characterization and detection of fire activity from space over
the last 40 years has mainly relied on satellite-measured IR
data. Here, we take advantage of the DNB’s high spatial res-
olution of ∼750 m and radiometric calibration aboard VIIRS
and continue working toward the ideas that Croft [20] proposed
over 40 years ago: combining both visible and IR data to
detect fires, creating the FILDA. The remaining sections of this
paper describe the data sources, data processing algorithm, and
validation results for the FILDA method.

III. INSTRUMENTS AND DATA

A. VIIRS

VIIRS was launched on 28 October 2011, and is a successor
to MODIS (used by NASA for quasi-operational fire detection)
for operational fire detection. Located aboard S-NPP, VIIRS is a
22-band scanning radiometer with a nominal spatial resolution
of 375 m in the five imagery bands (I-bands) and 750 m
in both the 16 moderate resolution bands (M-bands) and the
DNB [17], [36], [50], [51]. The sensor data records (SDRs)
of calibrated radiances and BTs cover a spectral range from
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0.411 to 11.87 µm and are used in a wide range of Earth
observation applications including fire detection and character-
ization, retrieval of cloud and aerosol properties, and land and
sea surface temperature estimation [52]. The VIIRS sensor was
designed to improve upon legacy instruments, such as MODIS,
AVHRR, and the OLS. One significant enhancement relative to
these legacy sensors is that VIIRS pixels at the scan edge are
only four times the size of nadir pixels, compared with MODIS
which exhibits a growth factor of nearly ten. For the M-bands,
VIIRS delivers SDRs of calibrated radiances and BTs with an
instantaneous field of view (IFOV) of 0.74 × 0.78 km at nadir,
which increases to 1.60 × 1.58 km at the edge of the scan [50],
whereas the five imagery bands have smaller IFOVs ranging
from 0.37× 0.39 km at nadir to 0.80× 0.79 km at the scan edge.

Like the OLS, in order to reduce off-nadir pixel growth,
VIIRS aggregates samples depending on the sensor scan angle.
This is accomplished by employing asymmetrical detectors in
conjunction with a unique sample aggregation scheme, which
combines multiple samples from one rectangular detector into
single raw data record (RDR) pixels consisting of digital counts
(see [53, Fig. 1] for an illustration). This processing is done
onboard the satellite, except for the dual-gain bands (M1-5, 7,
and 13) whose aggregation is done on the ground [51]. As a re-
sult, the RDR has three aggregation zones. The 3:1 aggregation
zone refers to scan angles between 0◦ (nadir) and 31.72◦, where
the value of each pixel is actually the average of three individ-
ual samples. Similarly, in the 2:1 aggregation zone (scanning
angles between 31.72◦ and 44.86◦), two samples from the same
detector are aggregated to form a pixel. No sample aggregation
is performed in the 1:1 aggregation zone (scan angles greater
than 44.86◦); thus, each pixel is calculated from a single de-
tector sample. Once the RDR has been generated, it is later
processed into a calibrated SDR, retaining the characteristics
from aggregation [53].

Unlike MODIS, VIIRS is able to detect visible light and NIR
radiation at night with the DNB. The band has a broad spectral
response (0.5–0.9 µm) that is sensitive to city lights, volcanoes,
lunar illumination, and wildfires, in addition to phenomena
such as aurora, bioluminescence, and air glow, for example
[54]–[57]. In order to capture the wide range of radiances re-
flected and emitted from the Earth’s surface, the DNB employs
three modes of operation: low-gain, medium-gain, and high-
gain stages (the latter of which contains two redundant focal
plane arrays to eliminate noise). The low-gain stage is used for
sunlit areas, the medium-gain stage is used for twilight areas,
whereas the high-gain stage is used for nocturnal scenes. These
gains are automatically determined by the onboard electronics
module, which can switch between the four focal plane arrays
on the fly. In addition to its wide dynamic range, the DNB also
features a nearly constant IFOV across the swath, accomplished
by employing 32 different aggregation zones for its 672 time-
delay-interval detectors [57]. At nadir, the 672 detectors scan
the Earth, and 42 detectors are aggregated to comprise each
of the 16 pixels per scan. At the edge of the scan, due to the
growth of the detector footprint, only the central 320 detectors
are aggregated to form the 16 pixels (20 detectors per pixel).
Thus, the DNB pixels are coterminous with the M-bands only
at nadir; away from nadir, the DNB and M-band pixel bound-
aries are offset, as explained by their independent aggregation
modes.

B. ASTER

In order to evaluate our proposed algorithm, a different sen-
sor with a higher spatial resolution to observe smaller fires must
be used. Many past fire studies have opted to use airborne sen-
sors such as the Airborne Infrared Disaster Assessment System
in [58] or the Autonomous Modular Sensor in [37], for several
reasons. These include their extremely high spatial resolutions,
the reduced severity of atmospheric contamination, and ability
to plan near-coincident overpasses. There is no supplemental
airborne data set to compare with VIIRS data, unfortunately;
thus, a different spaceborne sensor is needed to be utilized.
The Advanced Spaceborne Thermal Emission and Reflection
(ASTER) instrument aboard NASA’s Terra satellite proved
to be a viable option. ASTER is capable of supplying 90-m
thermal IR data at night in five bands across a 60-km swath with
a descending equator local crossing time of 10:30 A.M.. Using
12-bit quantization, it supports a 4.2-mb/s data rate to relay the
information sensed by its ten Mercury–Cadmium–Tellurium
detectors. The longwave bands must be used as the SWIR
and visible data collection is turned off for nocturnal scenes.
Unfortunately, longwave emissive bands are much less sensitive
to fires than shorter wavelengths as described by the Planck
function. In [59], it was shown that ASTER’s shortest TIR
band, band 10 (spanning 8.125–8.475 µm, 90 m resolution),
was still able to detect fires in the daytime, but was less able to
detect individual fires and show less detail than SWIR band 9
(2.36–2.43 µm, 30-m resolution) because of the coarser reso-
lution. Thus, given the nocturnal nature of this paper, band 10
was used. This channel is sensitive to water vapor, but there is
still a substantial fire signal nonetheless when compared with
the background radiation (as shown in [60]). ASTER data are
distributed freely by the USGS.

Nighttime ASTER data are sparse and originate from a
different orbit than VIIRS; therefore, overpasses capturing an
active fire event also captured by VIIRS are rare. The USGS’s
Global Visualization Viewer website assisted in visualizing the
ASTER data and manually identifying scenes containing fires.
While the VIIRS swath overlap does not extend into the
ASTER track at the equator, it is indeed possible at higher
latitudes that one VIIRS swath may have some overlaps with
two or more ASTER tracks. For this paper that focuses on
the midlatitude fires, only ASTER scenes that are spatially
nearest to the VIIRS nadir view (with temporal differences of
less than 4 h) are used to evaluate the VIIRS fire detection.
Note that the geolocation tie points packaged with the
ASTER granules were consistently mismatching the true
geolocation by up to two tenths of a degree; therefore, the
data were manually projected using the “SceneFourCorners”
metadata, by a process outlined in the ASTER data handbook
(http://asterweb.jpl.nasa.gov/content/03_data/04_Documents/
aster_user_guide_v2.doc). Once an ASTER scene was found
containing a fire, a corresponding VIIRS scene nearest to nadir
was obtained.

IV. DATA PROCESSING AND ALGORITHMS

Due to the different aggregation schemes and differing
IFOVs between the DNB and M-bands, VIIRS data need to be
processed in several ways before they can be used in the fire
detection algorithm. In addition, further processing is needed to

http://asterweb.jpl.nasa.gov/content/03_data/04_Documents/aster_user_guide_v2.doc
http://asterweb.jpl.nasa.gov/content/03_data/04_Documents/aster_user_guide_v2.doc
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account for pixel overlap, despite the onboard overlap deletion
(bow-tie deletion). We first describe these procedures and then
discuss the VIIRS fire algorithm and our modifications to it by
adding the DNB.

A. VIIRS Data Processing

1) Exclusion of Redundant Overlapping Pixels: Because of
the instrument’s wide scanning range, regions far from nadir
are often scanned twice, creating a “bow-tie” effect. To reduce
downstream bandwidth requirements, the VIIRS flight software
automatically excludes some of these duplicate pixels from
transmission as a function of aggregation zone. This bow-
tie deletion removes the topmost and bottommost pixels from
each scan in the 2:1 aggregation zone (31.72◦ < scan angle <
44.86◦), and in the 1:1 aggregation zone (scan angle > 44.86◦),
the top two and bottom two pixels are removed. For perspective,
13% of a given VIIRS granule has data removed by bow-
tie deletion. However, despite this bow-tie deletion, significant
pixel overlap still occurs near the edge of the scan and before
the switch between each aggregation regime (see [51, Fig. 3]
for an illustration).

Correcting for this scan overlap is the first obstacle, and the
aggregation scheme for the M-bands makes this increasingly
complicated. While viewing fires from different geometries
can be advantageous [61], it artificially inflates fire retrievals.
Therefore, to avoid spuriously double-counting fire pixel de-
tections, overlapping pixels are removed by exploiting the
geometric similarities in VIIRS scans. The method is similar
to that in [37], except that it is applied to VIIRS instead. One
M-band VIIRS scan consists of 3200 along-scan pixels and
16 along-track pixels; however, to accommodate aggregation,
each scan is actually comprised of 6304 along-scan samples by
16 along-track samples. In order to make the overlap calculation
feasible, the sample dimensions are first determined using
VIIRS geometry and by making several assumptions, including
that the Earth is a perfect sphere, the orbit is perfectly circular,
and excluding terrain influences. Samples in one scan that
overlap the subsequent scan boundaries by more than 50% of
the samples’ along-track dimension are then excluded from the
scene. Afterward, the nonoverlapping samples are aggregated
into pixels according to VIIRS specifications. This resultant
exclusion mask is then applied to the data for each VIIRS
scan. After overlap correction, for one scan, only seven rows
of along-scan pixels suffer from no overlap by the edge of
the scan; the remaining nine rows experience some degree of
overlap. Since each scan follows the same scanning geometry,
it can be quickly applied to the entire data segment (granule);
although close to the poles, there is additional uncertainty. With
the 13% onboard bow-tie deletion, after manually correcting
for pixel overlap, an additional 11% is removed; thus, a total of
25% of the granule’s pixels are removed due to overlap. Unlike
the VIIRS operational algorithm that FILDA is based on, if a
pixel falls within the 11% of pixels additionally removed, it is
not considered for fire pixel detection.

Fig. 1, picturing the Souris River in North Dakota with a
scan zenith angle of ∼50◦, shows the same sequence of scans
before and after correcting for pixel overlap. The black lines in
Fig. 1(a) are the bow-tie deleted areas, which is done onboard
the satellite according to VIIRS data processing procedures

Fig. 1. Correcting for pixel overlap. (a) VIIRS unprojected M13 (BT4) scene
before corrections. The red outlines highlight the duplicated river areas, and
black lines are the bow-tie deleted areas done onboard VIIRS. (b) Pixel
footprints for the M13 VIIRS scene including overlap (before corrections) with
different colors representing different scans. (c) Image in (a) after corrections
with additional overlapping regions removed (blue). (d) Projected scans after
corrections. Without overlap correction, the same pixel is often counted twice
near the edge of the scan.

[62]. As seen by the repeating river pixels circled in red, it is
clearly imaging the same area twice, despite the bow-tie dele-
tion (black lines). Fig. 1(b) shows the individual pixel footprints
when the same region is enlarged, highlighting the need for
overlap correction. Fig. 1(c) and (d) shows the resulting scene
after correction, with minimal resulting gaps or overlap.

2) Resampling DNB Radiances to M-Band Resolution: Af-
ter correcting for pixel overlap, normalizing the DNB to
M-band pixel sizes is necessary due to their different aggre-
gation schemes and IFOVs. Similar to overlap correction, this
approach employs the similarity of VIIRS scans to quickly
match the DNB to the M-bands. First, one scan of 16 along-
track pixels is analyzed. Since VIIRS is polar-orbiting with an
inclination of 98.7◦, as the satellite descends in its nighttime
orbit, the primary along-scan axis of change is the longitude
(excluding extremely high latitudes, which fortunately do not
have many fires). Pixel longitudes are taken from the M-band
terrain-uncorrected geolocation since there is no DNB terrain-
corrected geolocation available for the study period. For each
M-band pixel, the left and right edge longitudes are determined
by taking the midpoint between neighboring pixels, and then
the DNB pixels that fall within that M-band pixel’s edges are
averaged based on the respective DNB pixel longitude edges.
DNB pixels that lie between two M-band pixels have their
respective fractions combined into the appropriate M-band
pixel. However, since there is still considerable M-band foot-
print growth in the along-track direction far from nadir (and not
in the DNB), they must also be combined in the along-track
direction as well using the same principles. After this has been
done for one full scan, the calculated geometry and fractions are
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then used to correct the remaining scans in the granule. Terrain-
corrected geolocation can then be utilized for the M-band and
resampled DNB radiances from this point forward. Our method
is different than other approaches; for example, in [63], they
collocate the DNB pixel with M-band pixels based upon the
scan angle and local features (such as data maxima) in each
scan line. This dismisses the reality that the DNB maintains a
near constant IFOV with almost no pixel overlap, whereas the
M-bands overlap significantly, creating a large discrepancy in
retrieved geolocation.

B. VIIRS Fire Detection Algorithm

Currently, the VIIRS Interface Data Processing System
(IDPS) fire detection algorithm (called the Active Fire Appli-
cation Related Product or AFARP) is based almost exclusively
on the MODIS fire detection algorithm presented in [35], which
is the equivalent of the MODIS Collection 4 [36], [64]. As
mentioned in Section II, the algorithm is tuned to be conser-
vative and reduce false positives. AFARP was the only VIIRS
fire product available during this study period; however, newer
products include those generated from NOAA’s S-NPP Data
Exploitation (NDE) system that started in early 2016, as well
as the VIIRS fire products generated within NASA’s production
systems.

As shown in Fig. 2, the nighttime version of the algorithm
begins by using an internal cloud mask to filter out pixels
with a BT12 (M16) less than 265 K. In addition, any pixels
that are known to be water (based on a static database) are
filtered out, and any pixels with missing or invalid data are
removed. Afterward, the algorithm selects pixels that could be
fires, which is any unfiltered pixel with a BT4 > 305 K and
BT4−BT11 > 10 K. If any pixels meet those criteria, they have
their background statistics calculated, analyzing the pixel’s
environment relative to neighboring pixels. The background
statistics include the calculation of the mean, median, standard
deviation, and the mean absolute deviation—used due to its
insensitivity to outliers [65]—by a kernel centered on the pixel.
The kernel is initially calculated with 3 × 3 pixels and expands
up to a maximum of 21 × 21 pixels, until at least 25% of
the included pixels are valid with a minimum of 8 pixels in
total [35]. In this case, valid pixels have a BT4 < 310 K, a
BT4−BT11 < 10 K (e.g., not a potential fire pixel), are not
cloudy, and are land. If the grid’s size reaches 21 × 21 pixels
without satisfying these criteria, the individual pixel it is cen-
tered on is flagged as unknown. Once the statistics are generated
for each potential fire pixel, then four tests are applied to the
pixel to determine if it is a fire. The first test is the “absolute”
test, and the pixel is flagged as a fire if BT4 > 320 K. If the
pixel does not pass the test, then the other three contextual tests
are applied, and a pixel must pass all three to be flagged as a
fire. They are:

1) ∆BT > ∆BTB + 3.5δ(∆BTB);
2) ∆BT > ∆BTB + 6 K;
3) BT4 > BT4B + 3δBT4B;

where ∆BT is BT4−BT11, ∆BTB is the background
BT4−BT11, δ(∆BTB) is the background mean absolute de-
viation of BT4−BT11, BT4B is the mean background BT4,
and δBT4B is the background mean absolute deviation for

Fig. 2. Flowchart of FILDA, which is based on the operational nocturnal
VIIRS fire product (AFARP). Blue text highlights modifications to the algo-
rithm in contrast to AFARP.

BT4. During the daytime, there are additional tests to disqualify
pixels due to sun glint, unmasked water pixels, and deserts, but
they require solar reflectivity and are not utilized at night [35].
After the fire pixels have been identified, they are cataloged.
AFARP contains the columns and rows, latitudes and longi-
tudes, and the quality flag data for each fire pixel. Nonfire or
disqualified potential fire pixels are not included in the product.
Although MODIS Collection 4 is now obsolete, VIIRS is able
to overcome some of its shortcomings due to its improved
spatial resolution. However, despite the improved spatial res-
olution, it still relies on a prespecified 4-µm BT threshold of
305 K for potential pixel selection, omitting smaller and cooler
fires, irrespective of the environment they are located in.

C. FILDA

Our approach is similar to that of Giglio et al. [35] and JPSS
[64] with three important differences. First, instead of relying
on a prespecified BT4 threshold of 305 K, FILDA generates
the BT4 threshold dynamically using a moving window around
each candidate fire pixel. Second, visible light is also included
in the potential fire pixel selection process. Finally, we do
not screen out water pixels to capture gas flares and other
phenomena such as island volcanoes since sun glint is not an
issue at night. The basis for this methodology is that pixels with
visible light emission and relatively pronounced BT4 signatures
are likely to be fires (or volcanoes in some cases).

Initially, FILDA and AFARP begin nearly the same by
screening out invalid pixels such as clouds and bad data,
although FILDA does not exclude water pixels. An added
step for FILDA is also filtering out pixels with a solar zenith
angle less than 100◦, fully removing all twilight areas and thus
focusing on the fire detection at night only. Afterward, the
overlap correction is applied, and the DNB is collocated with
the M-bands. Next, unlike in AFARP, dynamic thresholds are
determined. They are computed as follows.

1) For an entire granule, determine the minimum DNB radi-
ance threshold. Bin the DNB radiances into increments
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Fig. 3. Histogram of valid DNB radiance values for the nighttime 24 August
2013 granule of the Western United States (orbit 9449, top panel), in addition to
the BT4 distribution for a 61 × 61 pixelwide box centered on a Rim Fire pixel
(bottom panel). The orange dashed line represents the thresholds calculated for
this granule. Red rectangles indicate bins that exceed the respective threshold
requirement and are included in potential fire pixel selection process.

of 1 nW · cm−2 · sr−1 and select the lowest bin of the
most radiant top 0.1%, with a floor of 4 nW · cm−2 · sr−1

(usually in a completely moonless scene).
2) For an entire granule, filter out pixels with a ∆BT

less than 10 K and with DNB radiances less than the
respective threshold.

3) For the remaining pixels (if any), create a 61 × 61 pixel-
wide box around each. Then, bin those BT4s in incre-
ments of 1 K, and in order of decreasing temperature,
select the last bin with a density less than 19 pixels. That
bin is then the BT4 threshold.

After the identification of potential fire pixels, FILDA pro-
ceeds exactly as AFARP by running the same absolute and
contextual tests. No additional tests are added. At the end, fire
pixel latitudes, longitudes, columns, and rows are cataloged.
By lowering the BT4 threshold while still keeping the same
∆BT , FILDA will improve the detection of fire pixels that
have cooler BTs (and/or cooler background temperatures [49],
[66]). The FILDA algorithm, however, has the same efficiency
as AFARP for detecting fire pixels with warmer temperatures;
this is because those detected by AFARP (with BT4s > 305 K)
would pass FILDA’s fire detection criteria regardless (where
BT4 is dynamically set and is lower than 305 K). An important
caveat, however, is that significant reductions in BT4 thresholds
suffer from diminishing returns. Since the ∆BT threshold
must still be greater than 10 K, background temperatures must
be exceedingly cold in order to meet that criterion (which
intuitively reduces the likelihood of fires).

As an example of how the algorithm operates, a granule
containing most of the West Coast of the U.S. on 24 August
2013 (taken during a night of intense burning over the Rim Fire)
has a median DNB radiance of 2.4 nW · cm−2 · sr−1. However,
the lowest bin of the top 0.1% most radiant pixels gives a DNB
radiance threshold of 12 nW · cm−2 · sr−1 (see Fig. 3). After
screening out pixels less radiant than 12 nW · cm−2 · sr−1 and
with ∆BT s less than 10 K, of the 9.83 × 106 original pixels,
189 pixels remain. Each has its own BT4 threshold, varying
from 284 K for a fire complex in the mountains of Idaho to
293 K in the center of Rim Fire. These 189 potential pixels are
then passed to the fire tests, as in AFARP.

This approach has the benefit of selecting a BT4 threshold
that is unique to the environment that each potential fire pixel

is located in. Other thresholds varying from 1% to 0.01% were
investigated for both the BT4 and DNB thresholds, as well. The
top 0.5% threshold for BT4 generally reflected the precipitous
decline in frequency for the ∼50 cases examined. Reducing
the BT4 threshold below 0.5% rapidly increased thresholds,
with most BT4 thresholds in hot regions not much lower than
AFARP’s static BT4 threshold of 305 K, and in some cases,
exceeding it. Conversely, increasing the BT4 threshold above
0.5% decreased the resulting thresholds, making them some-
what insensitive to BT4 distributions, and greatly increasing
the potential fire pixel counts. Thus, 0.5% was selected as a
conservative threshold. In the given example (see Fig. 3), of
the 189 potential fire pixels in the granule which meet all of
the prescreening criteria, 180 also passed all contextual tests.
While the determined BT4 thresholds can be quite low (as low
as 284 K in some cases examined), they are still necessary to
screen out regions adjacent to cloud edges. In most cases, the
DNB threshold is primarily influenced by moonlit terrain and
low-level clouds not screened by the internal cloud mask due
to their higher BTs. Unfortunately, constructing a box around
each potential fire pixel means that the scan edges cannot be
analyzed as they would exceed the dimensions of the granule.

The end result of the change in potential fire pixel selection
criteria is that the potential pixels must have three properties:
They are among the 0.5% hottest pixels in their 61 × 61 pixel-
wide box, they are also among the 0.1% most radiant DNB
pixels of the entire granule, and finally, they must all have a
∆BT of at least 10 K. In the case that a pixel is hotter than
305 K in 4 µm without meeting the DNB threshold, it is still
marked as potential fire pixel just as in AFARP (assuming
∆BT > 10 K). For example, using the data in Fig. 3, if a pixel
has a BT4 = 299 K, a DNB value = 16 nW · cm−2 · sr−1, and
∆BT = 12 K, it would be considered a potential fire pixel;
however, if the DNB radiance value is 10 nW · cm−2 · sr−1

instead, it would not be considered as one. Likewise, if a pixel
has a BT4 = 289 K and ∆BT = 11 K but has a DNB value of
25 nW · cm−2 · sr−1, it would also not be considered a potential
fire pixel. However, if the BT4 was 308 K, ∆BT = 11 K, and
DNB = 7 nW · cm−2 · sr−1, it would be considered a potential
fire pixel and analyzed further.

V. RESULTS

Several case studies are presented to show FILDA’s poten-
tial of using visible light at night to improve fire detection,
ranging from large forest fires to gas flares. They are chosen
based on three factors: 1) environmental variety representation;
2) availability of near-coincident ASTER overpasses; and 3)
the impact level of the fire. Here, we examine California’s Rim
Fire, which burned in the summer of 2013; the High Park Fire
in Colorado from the summer of 2012; and gas flares in the
Khanty-Mansiysk and Niger Delta regions from the summer
and winter of 2013, respectively.

A. Rim Fire

Located near Yosemite National Park in the Sierra Nevada
Mountains in California, the Rim Fire was the third largest
wildfire in California’s history. It was ignited at 3:25 P.M.
(local time) on 17 August 2013 by a hunter’s illegal campfire.
While it grew slowly at first, the fire grew rapidly on 19 August
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Fig. 4. Progression of the Rim Fire from ignition to extinction. The left panel shows the Rim Fire’s development using AFARP, whereas the right panel shows
the fire’s progress using FILDA. The white arrow highlights the first nocturnal detection by VIIRS using FILDA at 2:43 A.M. PDT on 18 August 2013, 11 h after
ignition. AFARP was not able to identify the fire at night until 19 August. Some dates are repeated due to consecutive overpasses on the same days.

Fig. 5. Time series of fire pixel counts as they relate to overpass time (a) and
thresholds (b) over the Rim Fire. FILDA pixel counts are displayed in blue,
while AFARP counts are shown in light green. Missing symbols indicate no
fire detections for that overpass with the corresponding algorithm. While there
is a DNB threshold for every point, there are gaps in BT4 thresholds due to the
lack of potential fire pixels. In addition, the reduced overpass frequency near
1 September 2013 is because the Rim Fire was too close to the granule edges.

and then explosively a week after ignition. The Rim Fire’s rapid
growth was primarily driven by favorable upper air conditions,
which created sustained low relative humidity and strong winds
near the surface, particularly during nighttime hours [67]. By
the time it was extinguished, it had burned over 250 000 acres
of forest within one month.

VIIRS provides a unique vantage point to study the Rim Fire
because of its ability to track the smoke and light emissions at
night. Because the fire continued to grow quickly during noctur-
nal hours, the Rim Fire is an ideal candidate for FILDA applica-
tion. After applying FILDA to every VIIRS scene covering the
Rim Fire during its burn duration (51 granules), Fig. 4 shows
the comparison between AFARP (left) and FILDA (right) fire
pixel detections. The first major difference between the two is
that FILDA is able to detect the Rim Fire the first night it burned,
with an overpass time of 2:43 A.M. PDT on 18 August 2013.
AFARP is unable to identify the fire because the pixel’s 4-µm

Fig. 6. (a) Scatter plot of BT 4
4 and DNB radiances for FILDA fire pixels from

the 3:1 aggregation zone for the Rim Fire during the 8 August–23 September
2013 period. Note the logarithmic scale for both the x-axis and y-axis. More-
over, shown is the linear correlation coefficient (R) between the two variables.
The vertical and horizontal lines in red denote the BT4 threshold (305 K) used
in AFARP and the maximum value of the DNB thresholds used by FILDA
during the whole Rim Fire time period, respectively. (b) Time series of mean
DNB radiance (left y-axis) and BT4 (right y-axis) for fire pixels detected by
VIIRS for each day.

BT is only 301.7 K, which is 3.3 K below the minimum de-
tection threshold. Meanwhile, FILDA’s 4-µm BT threshold
is 292 K with a DNB threshold of 10 nW · cm−2 · sr−1.
Comparing the two maps, a distinct pattern can be seen: The
growth of the Rim Fire is better tracked using FILDA. The
large gaps in coverage for both images occur due to a period
of explosive growth between 3:27:26 A.M. PDT on 21 August
2013 to 3:04:14 A.M. PDT on 22 August 2013, during which
the fire tripled in area burned.

As mentioned, FILDA’s BT4 and DNB thresholds are dy-
namic. Fig. 5 shows how the pixel counts and thresholds vary
with each scene and scanning geometry. The top graph relates
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TABLE I
PIXEL COUNTS OF DETECTED HOTSPOTS OVER THE COURSE OF THE

RIM FIRE FOR AFARP AND FILDA BY AGGREGATION ZONE

the pixel counts for FILDA and AFARP in relation to scan
angle; as with any other scanning radiometer, geometry plays
a significant role in time series of retrievals (e.g., [68]). Near-
nadir cases are closest to the horizontal orange dotted line.
These nadir cases show obvious peaks in fire pixel retrievals,
for both FILDA and AFARP, since there are more pixels
encompassing the fire region. Farther from nadir, fire pixel
frequencies are considerably reduced. It should be noted that
this effect will be smaller than for MODIS because of the
reduced pixel footprint growth rate due to the VIIRS aggre-
gation scheme. The bottom graph shows how the DNB and
mean BT4 thresholds vary with each scene. Overall, the BT4

threshold varies between ∼285 and ∼295 K; note that the very
top of the 4-µm axis is the threshold for AFARP. Rapid shifts
in overpass time reflect that the Rim Fire has been scanned
twice in one night due to being close to the scan edge in two
consecutive orbits, although the influence is minor. Unlike the
BT4 threshold, the DNB threshold is primarily governed by the
lunar cycle. This is because moonlit terrain effectively raises the
signal floor, increasing the minimum DNB radiance for the top
0.1%. For moonless or nearly-moonless scenes, the top 0.1%
instead captures the effects of artificial lights.

In addition, the FILDA’s performance in comparison to
AFARP has been quantified in Table I. Throughout the lifetime
of the Rim Fire, both algorithms agreed on most hotspot de-
tections in the VIIRS’ 3:1 and 2:1 aggregation zones along the
scan direction. Near the center of the scan (3:1 aggregation),
FILDA was able to increase the number of hotspot detections
by 89%. However, significant divergence occurred in the 1:1
aggregation zone (near the edge of the scan). This is due to
two factors. First, larger pixel areas decrease fire fractions and
diminish hotspot signals, which FILDA is better able to capture
due to the reduced thermal thresholds. Second, this divergence
is related to FILDA’s scan overlap correction. The number of
pixels only detected by AFARP (93 in total, bottom row of
Table I) consists entirely of fire pixels that were disqualified
by overlap correction.

Fig. 6(a) shows a scatter plot of DNB radiances and BT4s
for all FILDA Rim Fire pixels from the 3:1 aggregation zone
(1243 in total). This figure highlights an important issue with
the version of AFARP used during the study period: many of
the pixels identified by FILDA hotter than 305 K were excluded
by AFARP (301 pixels in total), despite successfully satisfying
all required criteria. This has been relayed to the Active Fire
team for further analysis. In addition, while overlap correction
can partially explain the difference in fire pixel detections, the
use of the DNB to dynamically lower the BT4 threshold from
305 K is a major reason for large increases in fire pixel
detections by FILDA (middle row in Table I). Despite overlap

correction, FILDA adds 283 more fire pixels as shown on the
left side of the vertical line. In other words, ∼30% more fire
pixels are detected by FILDA because of the combined use of
the DNB and a dynamic BT4 threshold (if FILDA and AFARP
were to agree on all detections greater than 305 K). Further-
more, by adding a horizontal line representing the maximum
DNB threshold during Rim Fire with the vertical BT4 threshold
line, we can divide Fig. 6 into four quadrants to better classify
fire pixels. Most (65%) of the fire pixels are in the upper right
quadrant, indicating they are hot and bright, meaning subpixel
hotspots are likely in the flaming phase. Twelve percent of
the fire pixels are in the lower right quadrant, indicating they
are relatively hot but not very bright. Many factors affect
the distribution of BTs and DNB radiances at the pixel level
(including fire fraction, kinetic temperature, terrain, emissivity,
smoke cover, and so on), but this suggests that the flaming
fraction could be lower and the smoldering fraction could be
higher than the upper right quadrant. Another 12% of fire pixels
are in the upper left quadrant, indicating they are relatively cool
yet brighter than average. Ascertaining fire properties between
the lower right and upper left quadrants is difficult for the
reasons mentioned earlier. Finally, 11% of fire pixels are in the
lower left quadrant, indicating they are cool and dim. Pixels in
this quadrant either have low fire fractions or low temperatures,
which could mean they are young and/or expiring hotspots. The
specific thresholds used to divide these four quadrants and our
hypotheses need to be further studied, but the data from this
paper suggest that a combination of DNB and MWIR data [as
shown in Fig. 6(b)] adds more information to characterize the
life cycle of a fire event as well as the characteristics of each
fire pixel, both of which have implications for studying fire dy-
namics, fire weather, and fire emissions. Indeed, the correlation
between BT 4

4 (the fire pixel energy) and DNB is relatively high
[0.69, see Fig. 6(b)], suggesting the utility of FILDA for detect-
ing nighttime fires. The time series of the mean DNB radiance
and BT4 for all FILDA pixels of all aggregation zones shows
a correlation of 0.69; both have progressively smaller radiances
and temperatures toward the end of the Rim Fire event. This
contrast of DNB radiances during the lifetime of the Rim Fire is
more significant than the contrast of mean BT4s for fire pixels,
suggesting the further need to use the DNB alongside NIR and
MWIR data to characterize fire events.

The algorithm is also evaluated by studying the Rim Fire on
24 August 2013, which had a near-coincident ASTER overpass.
The Rim Fire was imaged the night immediately after its
second day of explosive growth, during which it doubled its
area burned from the day before. The explosive growth left
large swaths of smoldering vegetation in its wake. Fig. 7 shows
a multiband view of the Rim Fire that night, as well as the
ASTER imagery. Fig. 7(a) shows the pixel locations overlaid
onto Google Earth satellite imagery. The blue boxes represent
FILDA pixels, whereas the green boxes are the AFARP pixel
locations. In this scene, every AFARP pixel is also indepen-
dently identified as a FILDA pixel (gold boxes). The rest of
the panels (b)–(e) show the Rim Fire at different wavelengths.
On the VIIRS BT4 map [see Fig. 7(b)], the fire front is easily
discernible. AFARP captures the most intense fire hotspots, but
much of it is ignored. FILDA, on the other hand, shows a more
continuous fire front. ASTER’s 8.3-µm band [see Fig. 7(c)],
showing the fire front hot spots at a much finer resolution, was
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Fig. 7. Multiband/sensor view of the Rim Fire taken at 2:29 A.M. PDT on 24 August 2013 by VIIRS. ASTER [panel (c)], aboard Terra, scanned the fire at
11:01 P.M. PDT on 23 August 2013. The blue boxes are pixels detected by FILDA, whereas the gold boxes are classified as fires by FILDA and AFARP. Note that
FILDA also included all AFARP pixels. The purple arrows in (e) point to saturating pixels in the I4 band.

imaged 3.5 h before VIIRS. While the ASTER band shows a
tendency to slightly emphasize smoldering terrain, the fire front
is still well colocated with the VIIRS fire pixel footprints. It also
reminds us that fire events are entirely subpixel in nature, even
in large fire complexes such as this Rim Fire scene. The DNB
image [see Fig. 7 (d)] suggests two important points: 1) It is
correlated with the 4 µm band; and 2) it is useful for identifying
weakly burning terrain (some of which is even identified as
fire pixels by FILDA). Finally, the VIIRS I4 band (centered at
3.7 µm) is shown in Fig. 7(e). The increased spatial resolution
highlights the terrain effects and smaller flare-ups not well
observed in the moderate-resolution 4 µm band. Unfortunately,
there are two I4 pixels that saturate in this scene and appear
as missing data. They have been marked with the two purple
arrows as they are hard to identify.

The VIIRS 24 August 2013 scene is further analyzed to
show the method by which FILDA operates. A 2-D histogram
of DNB radiances versus 4-µm BTs for the entire granule is
presented in Fig. 8, binned into increments of 1 nW·cm−2 ·sr−1

(DNB) and 1 K BTs (4 µm). It shows which pixels are clas-
sified as fires by FILDA and AFARP. The dashed gold line
indicates the 4-µm potential fire pixel BT threshold of 305 K
used by AFARP and by FILDA when the DNB radiance
is below the minimum DNB threshold. The solid blue
line represents the threshold determined by FILDA. In this
case, the BT4 threshold is 298 K, and the DNB threshold is
12 nW · cm−2 · sr−1. Importantly, AFARP does not classify
many of the potential fire pixels as fires, whereas FILDA
does. There is no publicly available diagnostic information for
AFARP; therefore, there is no method of identifying why and
how the pixels are disqualified as fires. Second, there are many
fire pixels with BTs less than 305 K, highlighting the need
for reduced thresholds (preferably dynamically as in FILDA).
Other case studies will show how the BT and DNB distributions
change for each scene.

Fig. 8. Two-dimensional histogram of the Rim Fire VIIRS granule used in
Fig. 7, showing fire pixel classifications for both FILDA and AFARP. In this
case, every AFARP pixel is also a FILDA pixel. The blue line represents the
FILDA thresholds, whereas the gold dashed line is the AFARP threshold. The
annotated numbers describe each population of pixels: 1) most low-altitude
terrain and open Pacific Ocean pixels; 2) marine stratus clouds; 3) high altitude
terrain, cirrus clouds, and some cooler marine stratus clouds; 4) nonarid cities
and towns, warm marine stratus clouds; 5) cities under partial cloud cover; and
6) desert environments.

Several different populations of pixels are visible in Fig. 8,
marked by different numbers. They are presented as follows
with decreasing occurrence. The major population in group (1)
is comprised of low-altitude terrain, which reflects some
moonlight, and then open Pacific Ocean water, which represents
the lowest bins under the label (1). Group (2) represents the
majority of marine stratus clouds. Group (3) consists of a
variety of features, which include high-altitude terrain such
as the Sierra Nevada Mountain Range and ranges in western
Nevada and Central Oregon. It also contains pixels adjacent to
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Fig. 9. Imagery from 3 September 2013 showing the Rim Fire still burning underneath the cloud cover. AFARP could not identify any pixels but FILDA
identified four.

Fig. 10. Multiband/sensor view of the High Park fire taken at 3:04 A.M. MDT on 19 June 2012 by VIIRS. ASTER [panel (c)] scanned the fire at 11:05 P.M. MDT
on 18 June 2012. The blue boxes are pixels detected by FILDA, whereas the green boxes are AFARP detections. Note that FILDA also included all AFARP pixels
(gold boxes). The purple arrow in (e) points to saturating pixels in the I4 band.

higher clouds. Finally, some of the cooler marine stratus clouds
are in this population. Group (4) varies widely in spatial dis-
tribution, but pixels are mostly nonarid locations such as cities
like San Francisco and smaller towns. There are some highly
reflective marine stratus clouds in this population as well, but it
is primarily dominated by artificial lights. Conversely, group (5)
is relatively uncommon and contains partially cloud-covered
cities; the visible light penetrates the clouds, but the clouds are
attenuating the 4 µm signal. Finally, an unusual group (6) exists
only in very warm areas. In this scene, only two places belong
in this group: Death Valley and the waters of the Salton Sea,
both located in Southern California. Although not marked as a
specific group, fires can be seen as the outliers in warmer BTs
and brighter DNB values.

During the course of the Rim Fire, there were several periods
of cloud cover from pyroconvection and frontal passages. Un-
surprisingly, during those times, AFARP has trouble identifying

fire pixels because of the attenuated fire signal in the 4-µm
channel. The issue is further compounded by cloud cover
reducing solar heating during the day, and when combined with
an arbitrarily high potential fire pixel threshold, makes fires
particularly challenging to detect. Cloud cover moving into the
area on 3 September 2013 is one such case (see Fig. 9). AFARP
is unable to detect any fire pixels, but despite the less-than-
favorable conditions, the Rim Fire can still be seen burning
underneath the cloud cover. Similarly, FILDA is unable to see
the fires burning beneath the clouds, but it is able to identify
four fire pixels on the periphery of the cloud edge due to the
reduced (mean) BT4 threshold of 288.7 K.

While the Rim Fire was a devastating fire, it provided the
perfect opportunity to test FILDA and examine AFARP’s per-
formance due to its long burn duration and intense nighttime
activity. In the remaining examples, we investigate a variety of
other fires and apply FILDA to them.
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B. High Park Fire

On 9 June 2012, lightning ignited a fire in the Roosevelt
National Forest, near Fort Collins, Colorado (http://inciweb.
nwcg.gov/incident/2904/). The fire burned for ∼21 days and
scorched 87 000 acres before it was declared 100% contained
on 30 June 2012. As the fire was located near Fort Collins,
over 250 homes were destroyed, causing estimated damage and
suppression costs of $39.2 million. Like the Rim Fire, it was a
high-impact fire that burned intensely in excess of two weeks,
making it another ideal candidate for FILDA. Here, we only
examine one day of observations, and not all of the observations
over the course of the wildfire’s lifespan.

The investigated nighttime period is 19 June 2012 primarily
because that evening had a near-coincident ASTER overpass
[see Fig. 10(c)]. ASTER scanned the fire event at 11:05 P.M.
MDT on 18 June, with VIIRS overpassing the fire at 3:04 A.M.
MDT on 19 June. Although the 4-h difference is significant,
the High Park fire did not spread substantially during that
period, and the same hot spots are still visible with both
ASTER and VIIRS. FILDA identifies an intense hot spot that
AFARP neglected: the southernmost portions of the fire (see
Fig. 10). Instead, AFARP only flags the central portion of the
fire front, highlighting potential for improvement even with
fires of moderate intensity.

The reason behind its difficulty with detecting those fires is
easily discernible in Fig. 11. With AFARP’s minimum BT4

threshold of 305 K, the majority of fire pixels are discarded
before any analysis is done (e.g., anything to the left of the
dashed green line). To the contrary, FILDA determines that
the minimum BT4 threshold should be 294 K for the High
Park fire potential pixels, which encompasses these missed hot
spots while successfully excluding the nonfire pixels. However,
even FILDA does not classify some of these obvious hot spots
as fires because they either fail the background tests or have
a ∆BT < 10 K, showing the difficulty of fine-tuning fire
detection algorithms. To reiterate, the solid blue line at 289 K
in Fig. 11 is the mean BT4 threshold for the entire granule,
also encompassing fire complexes burning in the mountains of
Idaho and Colorado. The outlying fire detection at 290 K is a
gas flare in central Alberta (hence the low threshold), which
will be discussed next.

C. Gas Flares

One unintended but important application of FILDA involves
the detection of gas flares. While other algorithms exist for
the sole purpose of flare detection and characterization using
other satellite platforms (e.g., in [69] and [70]) or use funda-
mentally different parts of the IR spectrum (as in [63]), FILDA
shows potential for nocturnal gas flaring detection based on
the reduction of the BT4 threshold. Two gas-flaring regions
are examined. First, the Khanty-Mansiysk region of Russia is
examined because of its rapid development in recent years and
its high volume of flared gas. Second, offshore flares in the
Niger Delta are investigated in order to test FILDA’s potential
for monitoring flares over open water.

Although gas flares do not pose a direct risk to life and
property, they do emit hazardous compounds as by-products

Fig. 11. Two-dimensional histogram of the granule used in Fig. 10 showing
fire pixel classifications for both FILDA and AFARP. As in Fig. 8, blue circles
indicate FILDA fire pixels, whereas the green circles are AFARP detections.
The solid blue line represents FILDA’s DNB and mean BT4 threshold, whereas
the gold dashed line is the 305 K 4 µm BT potential fire pixel threshold used
by AFARP (and FILDA with little light). It should be noted that this scatter plot
includes the entire granule and not just the region shown in the previous figure.

of incomplete combustion. These include soot, partially com-
busted hydrocarbons, CO, CO2, NOx, and SO2 [71]. Unfortu-
nately, it is often difficult to obtain flare volume and location
information from their operators due to security concerns and
lack of accountability, particularly in poorer countries [70].
Remote sensing fills that important void in the estimation of
gas flaring emission impacts.

Located in Central Russia, Khanty-Mansi is an oil producing
region that has been growing rapidly in the last two decades.
In 2011, it constituted 51.3% of Russia’s oil production and
continues to increase [72]. A very small portion of the region is
shown in Fig. 12. Fig. 12(a) shows a portion of the flare com-
plex located near the Ob River; notice in the center of the image,
there is a FILDA detection over what is seemingly wilderness.
Recent higher-resolution imagery available through Google
Earth (not shown) indicates human activity at the location of the
hot spot. The flare signatures are two flow stations, which are
structures that collect natural gas from smaller wells and flare
them in a centralized location. In Fig. 12, the flare signature
is visible in all bands, although the DNB highlights the feature
exceptionally well. Unfortunately, the BT4 threshold in AFARP
is too high to consider them as potential fire pixels.

The Niger Delta, like the Khanty-Mansi region, is also home
to large-scale oil and gas production. The region is infamous
for the ecological devastation that petroleum extraction has
wreaked on its fragile estuarial ecosystems [73] which include
large mangroves. Nigeria was reportedly flaring 99% of its
natural gas production as recently as 2003 [74], but laws passed
in recent years banning the practice have reduced the portion of
gas flared to under 20% [75]. Field studies are rarely conducted,
and most flaring estimates are derived from satellite data, such
as in [70].

While both AFARP and FILDA are able to identify large
flow stations on land (FILDA improves detection of smaller
sources), offshore oil rig flares are not identified by AFARP

http://inciweb.nwcg.gov/incident/2904/
http://inciweb.nwcg.gov/incident/2904/
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Fig. 12. Multiband/sensor view of two gas flares in the Khanti-Mansiysk region of Russia from 20:52 UTC (2:52 A.M. local time) on 9 August 2013 by VIIRS.
ASTER [panel (c)] scanned the flares at 16:44 UTC (10:44 P.M. local time). The blue boxes are pixels detected by FILDA (AFARP omitted both flares). The BT4
threshold is 287 K, and the DNB threshold is 6 nW/cm2-sr.

Fig. 13. Multiband/sensor views of offshore gas flares by VIIRS and ASTER, using the same 01:20:47 UTC 19 December 2013 VIIRS granule as in Table II.
Larger flares are identified by FILDA, but smaller flares are still omitted. The ASTER overpass time was 21:55:58 UTC on 18 December 2013.

because all water pixels are initially screened out by the al-
gorithm to avoid false positives associated with daytime sun
glint. With the inclusion of water pixels, offshore rigs are
easily identified. Using the VIIRS scene from 01:20:47 UTC
on 19 December 2013, overlooking parts of the Niger Delta
and Southern Atlantic, flares stand out from the background
with both the DNB and M13. Table II shows the detections
of the granule and their associated information. Of particular
note is that most of these offshore flares listed in the table are
extremely hot and bright, and even well above the minimum

detection threshold for AFARP. Fig. 13 shows some of these
flare detections, with hot spots apparent in every band. Un-
fortunately, many of the smaller flares that can be seen in the
DNB image [see Fig. 13(d)] are not detected by FILDA. Some
flares are omitted because their BT4 signatures are masked
by overlying marine stratus clouds, despite their visible DNB
signatures. Other flares are omitted because they are smaller
and their ∆BT signatures are less than 10 K. The I4 band
does, however, highlight many of these smaller hot spots; this
feature might be useful to include in future refinements, as it
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TABLE II
OFFSHORE FLARE CHARACTERISTICS FROM THE 01:20:47 UTC

19 DECEMBER 2013 VIIRS GRANULE AS DETECTED BY FILDA. THE
MEAN BT4 THRESHOLD IS 294.7 K, AND THE DNB

THRESHOLD IS 20 nW · cm−2 · sr−1

is colocated with the M-bands. Despite missing these smaller
flares, FILDA, unlike AFARP, detects larger flares and works
over open water.

VI. CONCLUSION

This paper has presented a novel approach to detecting wild-
fires, biomass burning, and gas flares at night by incorporating
visible light into the fire detection algorithm. Although Croft
proposed the idea over 40 years ago [20], the fire algorithms
developed since then utilize only the IR portion of the electro-
magnetic spectrum. Due to the launch of VIIRS in October of
2011 with its DNB, we are finally able to incorporate visible
data into these algorithms to further refine them. FILDA is the
result of this approach. Our approach is based on the official
VIIRS IDPS fire product algorithm, known as the AFARP,
with modifications to improve the detection of low tempera-
ture hotspots. We recognize that AFARP is based on a dated
algorithm and is different from the other two recently available
VIIRS-based fire products generated respectively as part of
the NDE system (operational since early 2016) and NASA’s
production systems. Indeed, other fire detection algorithms uti-
lizing VIIRS have already shown much potential; for example,
Schroeder et al. [17] have made progress in developing an
operational algorithm using the 375-m resolution I-bands, and
Elvidge et al. [63] developed a nocturnal gas flare detection
algorithm based on 1.6-µm and other IR bands that also re-
trieves subpixel fire characteristics. However, our modifications
to AFARP are due to two primary considerations: 1) the 375-m
fire product does not currently permit quantitative FRP retrieval
[17], thus improving the sensitivity of the 750 m algorithm
is meaningful; and 2) by combining the DNB and IR bands,
FILDA has the theoretical potential to distinguish between
flaming and smoldering phases, thereby improving emission
factor estimates for fire emission models. By definition, if a
pixel is hot and emits light at night, the fire in that pixel should

have a flaming component; in contrast, if a pixel is hot and emits
no light, the fire in that pixel is likely in the smoldering phase.

Many case studies (including those not presented here) show
that FILDA has potential in improving the detection of wild-
fires. Overall, the number of FILDA detections nearly doubles
that of AFARP. This mainly occurs at the fringes of fire fronts
and the weakly burning terrain left in their wake where the
BT4s were slightly under AFARP detection thresholds. Both
FILDA and AFARP still miss most smoldering fires, charac-
terized by lower burning temperatures and low visible light
output. Errors of commission were rare and primarily confined
to large industrial complexes (such as steel mills). In addition to
wildfires, FILDA improves the detection of gas flares. Although
significant numbers of small flares are still omitted by FILDA
because of their weak IR signatures, many more flow stations
are observed than in AFARP. One marked improvement is with
the detection of offshore oil rig flares since FILDA does not
prescreen water pixels from the selection of potential fire pixels.

Of particular note is the power FILDA has for detecting
smaller and cooler fires that would otherwise be omitted from
detection by AFARP. The Rim Fire in California is a good
example of this; FILDA is able to identify the fire the first night
it burned, whereas AFARP required an additional day for the
Rim Fire pixels to reach detection thresholds. This has broad
implications for the fire response and management community,
since earlier response is paramount to controlling fires while
they are still manageable. Further refinement of this approach
(with possible combined use of data from GOES) could lead
to earlier detection of fires in both clear and cloudy conditions
over various surface types, reducing fire-related property dam-
age and loss of life. Given many fires in remote regions are
caused by lightning [76], more studies are needed for evaluating
the potential of using the DNB together with IR data from
VIIRS and GOES to detect fires near cloud edges at night.

REFERENCES

[1] A. L. Westerling, H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam,
“Warming and earlier spring increase western US forest wildfire activity,”
Science, vol. 313, no. 5789, pp. 940–943, Aug. 18, 2006, doi: 10.1126/
science.1128834.

[2] K. Haynes, J. Handmer, J. McAneney, A. Tibbits, and L. Coates,
“Australian bushfire fatalities 1900–2008: Exploring trends in relation to
the ‘prepare, stay and defend or leave early’ policy,” Environ. Sci. Policy,
vol. 13, no. 3, pp. 185–194, May 2010, doi: 10.1016/j.envsci.2010.03.002.

[3] National Interagency Fire Center, Federal Firefighting Costs (Sup-
pression Only), 2015. [Online]. Available: https://www.nifc.gov/fireInfo/
fireInfo_documents/SuppCosts.pdf

[4] M. Re, Wildfires, 2015. [Online]. Available: http://www.iii.org/fact-
statistic/wildfires

[5] W. M. Hao, D. E. Ward, G. Olbu, and S. P. Baker, “Emissions of CO2,
CO, and hydrocarbons from fires in diverse African savanna ecosys-
tems,” J. Geophys. Res.-Atmos., vol. 101, no. D19, pp. 23 577–23 584,
Oct. 30, 1996, doi: 10.1029/95JD02198.

[6] C. Ichoku and Y. J. Kaufman, “A method to derive smoke emission
rates from MODIS fire radiative energy measurements,” IEEE Trans.
Geosci. Remote Sens., vol. 43, no. 11, pp. 2636–2649, Nov. 2005,
doi: 10.1109/TGRS.2005.857328.

[7] J. Wang et al., “Mesoscale modeling of Central American smoke transport
to the united states: 1. “top-down” assessment of emission strength and
diurnal variation impacts,” J. Geophys. Res.-Atmos., vol. 111, no. D5,
Mar. 9, 2006, Art. no. D05S17, doi: 10.1029/2005JD006416.

[8] T. J. Duck et al., “Transport of forest fire emissions from Alaska
and the Yukon territory to nova scotia during summer 2004,” J. Geo-
phys. Res.-Atmos., vol. 112, no. D10, May 19, 2007, Art. no. D10S44,
doi: 10.1029/2006JD007716.

https://www.nifc.gov/fireInfo/fireInfo_documents/SuppCosts.pdf
https://www.nifc.gov/fireInfo/fireInfo_documents/SuppCosts.pdf
http://www.iii.org/fact-statistic/wildfires
http://www.iii.org/fact-statistic/wildfires


POLIVKA et al.: IMPROVING NOCTURNAL FIRE DETECTION WITH VIIRS DNB 5517

[9] G. R. van der Werf et al., “Global fire emissions and the contribution of
deforestation, savanna, forest, agricultural, and peat fires (1997–2009),”
Atmos. Chem. Phys., vol. 10, no. 23, pp. 11 707–11 735, 2010,
doi: 10.5194/acp-10-11707-2010.

[10] D. L. Westphal and O. B. Toon, “Simulations of microphysical, ra-
diative, and dynamic processes in a continental-scale forest-fire smoke
plume,” J. Geophys. Res.-Atmos., vol. 96, no. D12, pp. 22 379–22 400,
Dec. 20, 1991, doi: 10.1029/91JD01956.

[11] Y. J. Kaufman et al., “Passive remote sensing of tropospheric aerosol
and atmospheric correction for the aerosol effect,” J. Geophys.
Res.-Atmos., vol. 102, no. D14, pp. 16 815–16 830, Jul. 27, 1997,
doi: 10.1029/97JD01496.

[12] Y. J. Kaufman, D. Tanre, and O. Boucher, “A satellite view of aerosols
in the climate system,” Nature, vol. 419, no. 6903, pp. 215–223,
Sep. 12, 2002, doi: 10.1038/nature01091.

[13] V. Ramanathan et al., “Indian ocean experiment: An integrated analysis of
the climate forcing and effects of the great Indo-Asian haze,” J. Geophys.
Res.-Atmos., vol. 106, no. D22, pp. 28 371–28 398, Nov. 27, 2001,
doi: 10.1029/2001JD900133.

[14] O. Dubovik et al., “Single-scattering albedo of smoke retrieved from the
sky radiance and solar transmittance measured from ground,” J. Geophys.
Res.-Atmos., vol. 103, no. D24, pp. 31 903–31 923, Dec. 27, 1998,
doi: 10.1029/98JD02276.

[15] S. P. Flasse et al., “Warming and earlier spring increase western US forest
wildfire activity,” Science, vol. 313, no. 5789, pp. 940–943, 2006.

[16] D. K. Davies, S. Ilavajhala, M. M. Wong, and C. O. Justice, “Fire in-
formation for resource management system: Archiving and distributing
modis active fire data,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1,
pp. 72–79, Jan. 2009, doi: 10.1109/TGRS.2008.2002076.

[17] W. Schroeder, P. Oliva, L. Giglio, and I. A. Csiszar, “The new VIIRS
375 m active fire detection data product: Algorithm description and initial
assessment,” Remote Sens. Environ., vol. 143, pp. 85–96, Mar. 5, 2014,
doi: 10.1016/j.rse.2013.12.008.

[18] C. Elvidge et al., “Radiance calibration of DMSP-OLS low-light imag-
ing data of human settlements,” Remote Sens. Environ., vol. 68, no. 1,
pp. 77–88, Apr. 1999, doi: 10.1016/S0034-4257(98)00098-4.

[19] L. G. Dickinson, S. E. Boselly, III, and W. S. Burgmann, “Defense Mete-
orological Satellite Program (DMSP) user’s guide,” Air Weather Service,
U.S. Air Force, Washington, DC, USA, Dec. 1974.

[20] T. A. Croft, “Burning waste gas in oil fields,” Nature, vol. 245, no. 5425,
pp. 375–376, Oct. 1973, doi: 10.1038/245375a0.

[21] T. A. Croft, “Nighttime images of the earth from space,” Sci. Amer.,
vol. 239, pp. 86–98, 1978, doi: 10.1038/scientificamerican0778-86.

[22] R. Welch, “Monitoring urban-population and energy-utilization patterns
from satellite data,” Remote Sens. Environ., vol. 9, no. 1, pp. 1–9, 1980,
doi: 10.1016/0034-4257(80)90043-7.

[23] C. D. Elvidge et al., Algorithm for the Retrieval of Fire Pixels From
DMSP Operational Linescan System. Cambridge, MA, USA: MIT
Press, 1996, ch. 8, pp. 73–85.

[24] C. Elvidge, K. Baugh, E. Kihn, H. Kroehl, and E. Davis, “Mapping
city lights with nighttime data from the DMSP operational linescan sys-
tem,” Photogramm. Eng. Remote Sens., vol. 63, no. 6, pp. 727–734,
Jun. 1997.

[25] D. A. Hastings and W. J. Emery, “The advanced very high-resolution
radiometer (AVHRR)—A brief reference guide,” Photogramm. Eng.
Remote Sens., vol. 58, no. 8, pp. 1183–1188, Aug. 1992.

[26] J. Dozier, “A method for satellite identification of surface-temperature
fields of subpixel resolution,” Remote Sens. Environ., vol. 11, no. 3,
pp. 221–229, 1981, doi: 10.1016/0034-4257(81)90021-3.

[27] M. Matson and J. Dozier, “Identification of subresolution high-
temperature sources using a thermal IR sensor,” Photogramm. Eng.
Remote Sens., vol. 47, no. 9, pp. 1311–1318, Sep. 1981.

[28] J. M. Lobert and J. Warnatz, Emissions From the Combustion Process in
Vegetation, vol. 13. New York, NY, USA: Wiley, 1993, pp. 15–37.

[29] L. Giglio and J. D. Kendall, “Application of the dozier retrieval to wildfire
characterization—A sensitivity analysis,” Remote Sens. Environ., vol. 77,
no. 1, pp. 34–49, Jul. 2001, doi: 10.1016/S0034-4257(01)00192-4.

[30] M. Flannigan and T. Vonderhaar, “Forest-fire monitoring using NOAA
satellite AVHRR,” Can. J. Forest Res.-Revue Canadienne De Recherche
Forestiere, vol. 16, no. 5, pp. 975–982, Oct. 1986, doi: 10.1139/x86-171.

[31] J. Robinson, “Fire from space—Global fire evaluation using infrared
remote-sensing,” Int. J. Remote Sens., vol. 12, no. 1, pp. 3–24,
Jan. 1991.

[32] E. Prins, J. Feltz, W. Menzel, and D. Ward, “An overview of goes-8
diurnal fire and smoke results for SCAR-B and 1995 fire season in south
america,” J. Geophys. Res.-Atmos., vol. 103, no. D24, pp. 31 821–31 835,
Dec. 27, 1998.

[33] E. Prins and W. Menzel, “Geostationary satellite detection of bio-
mass burning in South-America,” Int. J. Remote Sens., vol. 13, no. 15,
pp. 2783–2799, Oct. 1992.

[34] C. Justice et al., “The MODIS fire products,” Remote Sens. Environ.,
vol. 83, no. 1/2, pp. 244–262, Nov. 2002, doi: 10.1016/S0034-
4257(02)00076-7.

[35] L. Giglio, J. Descloitres, C. O. Justice, and Y. J. Kaufman, “An enhanced
contextual fire detection algorithm for MODIS,” Remote Sens. Environ.,
vol. 87, no. 2/3, pp. 273–282, Oct. 15, 2003, doi: 10.1016/S0034-
4257(03)00184-6.

[36] I. Csiszar et al., “Active fires from the Suomi NPP visible in-
frared imaging radiometer suite: Product status and first evaluation re-
sults,” J. Geophys. Res., Atmos., vol. 119, no. 2, pp. 85–96, 2013,
doi: 10.1016/j.rse.2013.12.008.

[37] D. Peterson, J. Wang, C. Ichoku, E. Hyer, and V. Ambrosia, “A sub-
pixel-based calculation of fire radiative power from modis observations:
1 algorithm development and initial assessment,” Remote Sens. Environ.,
vol. 129, pp. 262–279, Feb. 15, 2013, doi: 10.1016/j.rse.2012.10.036.

[38] S. Flasse and P. Ceccato, “A contextual algorithm for AVHRR fire detec-
tion,” Int. J. Remote Sens., vol. 17, no. 2, pp. 419–424, Jan. 20, 1996.

[39] O. Arino and J. M. Melinotte, “The 1993 Africa fire map,” Int.
J. Remote Sens., vol. 19, no. 11, pp. 2019–2023, Jul. 20, 1998,
doi: 10.1080/014311698214839.

[40] C. O. Justice, J. D. Kendall, P. R. Dowty, and R. J. Scholes, “Satellite
remote sensing of fires during the safari campaign using NOAA advanced
very high resolution radiometer,” J. Geophys. Res.-Atmos., vol. 101,
no. D19, pp. 23 851–23 863, Oct. 30, 1996, doi: 10.1029/95JD00623.

[41] Z. Li et al., A Review of AVHRR-Based Active Fire Detection
Algorithms: Principles, Limitations, and Recommendations. Hague,
The Netherlands: SPB Academic, 2001.

[42] L. Giglio and J. D. Kendall, “Evaluation of global fire detection algorithms
using simulated AVHRR infrared data,” Int. J. Remote Sens., vol. 20,
no. 10, pp. 1947–1985, Jul. 10, 1999, doi: 10.1080/014311699212290.

[43] M. Matson and B. Holben, “Satellite detection of tropical burn-
ing in brazil,” Int. J. Remote Sens., vol. 8, no. 3, pp. 509–516,
Mar. 1987.

[44] E. Prins and W. Menzel, “Trends in South-American biomass burning
detected with the goes visible infrared spin scan radiometer atmospheric
sounder from 1983 to 1991,” J. Geophys. Res.-Atmos., vol. 99, no. D8,
pp. 16 719–16 735, Aug. 20, 1994.

[45] J. S. Reid et al., “Global monitoring and forecasting of biomass-burning
smoke: Description of and lessons from the fire locating and model-
ing of burning emissions (flambe) program,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 2, no. 3, pp. 144–162, Sep. 2009,
doi: 10.1109/JSTARS.2009.2027443.

[46] Y. J. Kaufman, R. G. Kleidman, and M. D. King, “SCAR-B fires in the
tropics: Properties and remote sensing from EOS-MODIS,” J. Geophys.
Res.-Atmos., vol. 103, no. D24, pp. 31 955–31 968, Dec. 27, 1998,
doi: 10.1029/98JD02460.

[47] Y. J. Kaufman et al., “Potential global fire monitoring from EOS-
MODIS,” J. Geophys. Res.-Atmos., vol. 103, no. D24, pp. 32 215–32 238,
Dec. 27, 1998, doi: 10.1029/98JD01644.

[48] C. Ichoku, L. Giglio, M. J. Wooster, and L. A. Remer, “Global character-
ization of biomass-burning patterns using satellite measurements of fire
radiative energy,” Remote Sens. Environ., vol. 112, no. 6, pp. 2950–2962,
Jun. 16, 2008, doi: 10.1016/j.rse.2008.02.009.

[49] D. Peterson and J. Wang, “A sub-pixel-based calculation of fire radia-
tive power from modis observations: 2. Sensitivity analysis and potential
fire weather application,” Remote Sens. Environ., vol. 129, pp. 231–249,
Feb. 15, 2013, doi: 10.1016/j.rse.2012.10.020.

[50] C. Cao, F. J. D. Luccia, X. Xiong, R. Wolfe, and F. Weng, “Early on-
orbit performance of the visible infrared imaging radiometer suite onboard
the Suomi National Polar-Orbiting Partnership (S-NPP) satellite,” IEEE
Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1142–1156, Feb. 2014,
doi: 10.1109/TGRS.2013.2247768.

[51] R. E. Wolfe et al., “Suomi NPP VIIRS prelaunch and on-orbit geomet-
ric calibration and characterization,” J. Geophys. Res.-Atmos., vol. 118,
no. 20, Oct. 27, 2013, doi: 10.1002/jgrd.50873.

[52] D. Hillger et al., “First-light imagery from suomi NPP VIIRS,” Bull.
Amer. Meteorol. Soc., vol. 94, no. 7, pp. 1019–1029, Jul. 2013,
doi: 10.1175/BAMS-D-12-00097.1.

[53] T. N. Polivka, E. J. Hyer, J. Wang, and D. A. Peterson, “First global
analysis of saturation artifacts in the VIIRS infrared channels and the
effects of sample aggregation,” IEEE Geosci. Remote Sens. Lett., vol. 12,
no. 6, pp. 1262–1266, Jun. 2015, doi: 10.1109/LGRS.2015.2392098.

[54] S. Miller, S. Haddock, C. Elvidge, and T. Lee, “Detection of a bi-
oluminescent milky sea from space,” Proc. Nat. Acad. Sci. United



5518 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 9, SEPTEMBER 2016

States Amer., vol. 102, no. 40, pp. 14 181–14 184, Oct. 4, 2005,
doi: 10.1073/pnas.0507253102.

[55] T. E. Lee et al., “The NPOESS VIIRS day/night visible sensor,”
Bull. Amer. Meteorol. Soc., vol. 87, no. 2, pp. 191–199, 2006, doi:
10.1175/BAMS-87-2-191. [Online]. Available: http://0-search.ebscohost.
com.library.unl.edu/login.aspx?direct=true&db=aph&AN=19897069
&site=ehost-live

[56] S. D. Miller et al., “Suomi satellite brings to light a unique frontier
of nighttime environmental sensing capabilities,” Proc. Nat. Acad. Sci.
United States Amer., vol. 109, no. 39, pp. 15 706–15 711, Sep. 25, 2012,
doi: 10.1073/pnas.1207034109.

[57] L. B. Liao, S. Weiss, S. Mills, and B. Hauss, “Suomi NPP VIIRS
day–night band on-orbit performance,” J. Geophys. Res.-Atmos., vol. 118,
no. 22, pp. 12 705–12 718, Nov. 27, 2013, doi: 10.1002/2013JD020475.

[58] V. G. Ambrosia et al., “An integration of remote sensing, GIS,
and information distribution for wildfire detection and management,”
Photogramm. Eng. Remote Sens., vol. 64, no. 10, pp. 977–985,
Oct. 1998.

[59] J. T. Morisette, L. Giglio, I. Csiszar, and C. O. Justice, “Validation of
the modis active fire product over Southern Africa with ASTER data,”
Int. J. Remote Sens., vol. 26, no. 19, pp. 4239–4264, Oct. 10, 2005,
doi: 10.1080/01431160500113526.

[60] L. Giglio et al., “Active fire detection and characterization with the
Advanced Spaceborne Thermal Emission and Reflection radiometer
(ASTER),” Remote Sens. Environ., vol. 112, no. 6, pp. 3055–3063,
Jun. 16, 2008, doi: 10.1016/j.rse.2008.03.003.

[61] P. H. Freeborn, M. J. Wooster, D. P. Roy, and M. A. Cochrane, “Quan-
tification of MODIS fire radiative power (FRP) measurement uncertainty
for use in satellite-based active fire characterization and biomass burning
estimation,” Geophys. Res. Lett., vol. 41, no. 6, pp. 1988–1994, 2014,
doi: 10.1002/2013GL059086.

[62] “Joint Polar Satellite System (JPSS) VIIRS Geolocation Algorithm The-
oretical Basis Document (ATBD),” Joint Polar Satellite Syst. (JPSS),
Lanham, MD, USA, 474-00053, Jul. 2011, Jul. 31, 2011. [Online].
Available: http://npp.gsfc.nasa.gov/documents.html

[63] C. D. Elvidge, M. Zhizhin, F.-C. Hsu, and K. E. Baugh, “VIIRS nightfire:
Satellite pyrometry at night,” Remote Sens., vol. 5, no. 9, pp. 4423–4449,
Sep. 2013, doi: 10.3390/rs5094423.

[64] “Joint Polar Satellite System (JPSS) VIIRS Active Fires: Fire Mask
Algorithm Theoretical Basis Document (ATDB),” Joint Polar Satellite
Syst. (JPSS), Lanham, MD, USA, Apr. 2011, 474-00030, Apr. 22, 2011.
[Online]. Available: http://npp.gsfc.nasa.gov/documents.html

[65] P. J. Huber, “1972 Wald lecture—Robust statistics—Review,” Ann. Math.
Statist., vol. 43, no. 4, p. 1041, 1972, doi: 10.1214/aoms/1177692459.

[66] C. Seielstad, J. Riddering, S. Brown, L. Queen, and W. Hao, “Testing the
sensitivity of a MODIS-like daytime active fire detection model in alaska
using NOAA/AVHRR infrared data,” Photogramm. Eng. Remote Sens.,
vol. 68, no. 8, pp. 831–838, 2002.

[67] D. A. Peterson et al., “The 2013 rim fire: Implications for predicting
extreme fire spread, pyroconvection, and smoke emissions,” Bull. Amer.
Meteorol. Soc., vol. 96, no. 2, pp. 229–247, Feb. 2015, doi: 10.1175/
BAMS-D-14-00060.1.

[68] C. L. Heald et al., “Biomass burning emission inventory with daily reso-
lution: Application to aircraft observations of asian outflow,” J. Geophys.
Res., Atmos., vol. 108, no. D21, p. 8811, 2003, doi: 10.1029/
2002JD003082.

[69] K. Muirhead and A. Cracknell, “Identification of gas flares in the north-
sea using satellite data,” Int. J. Remote Sens., vol. 5, no. 1, pp. 199–212,
1984.

[70] O. C. D. Anejionu, G. A. Blackburn, and J. D. Whyatt, “Detecting gas
flares and estimating flaring volumes at individual flow stations using
modis data,” Remote Sens. Environ., vol. 158, pp. 81–94, Mar. 2015,
doi: 10.1016/j.rse.2014.11.018.

[71] O. S. Ismail and G. E. Umukoro, “Global impact of gas flaring,” Energy
Power Eng., vol. 4, no. 4, pp. 290–302, Nov. 2012, doi: 10.4236/
epe.2012.44039.

[72] newsru.com, “Khanty-Mansi Autonomous District Extracted 10 Billion
Tons of Oil,” 2012. [Online]. Available: http://www.newsru.com/finance/
22feb2012/ugra.html

[73] O. J. A. Bayode, E. A. Adewunmi, and S. Odunwole, “Environmental
implications of oil exploration and exploitation in the coastal region
of ondo state, nigeria: A regional planning appraisal,” J. Geography
Regional Plan., vol. 4, no. 3, pp. 110–121, Mar. 2011.

[74] “Nigeria’s First National Communication Under the United Nations
Framework Convention on Climate Change,” Ministry Environ. Fed-
eral Republic Nigeria, Abuja, Nigeria, 2003. [Online]. Available: http://
unfccc.int/resource/docs/natc/nignc1.pdf

[75] “Estimated flared volumes from satellite data, 2007–2011,” World Bank,
Washington, DC, USA, 2014. [Online]. Available: http://go.worldbank.
org/D03ET1BVD0

[76] D. Peterson, J. Wang, C. Ichoku, and L. A. Remer, “Effects of lightning
and other meteorological factors on fire activity in the north american
boreal forest: Implications for fire weather forecasting,” Atmos. Chemistry
Phys., vol. 10, no. 14, pp. 6873–6888, 2010, doi: 10.5194/acp-10-6873-
2010.

Thomas N. Polivka received the B.S. degree in me-
teorology from Northern Illinois University, DeKalb,
IL, USA, and the M.S. degree in atmospheric science
from the University of Nebraska—Lincoln, Lincoln,
NE, USA.

He is currently with the Department of
Earth and Atmospheric Sciences, University of
Nebraska—Lincoln. His research interests include
the use of satellite-based measurements for fire
detection and characterization.

Jun Wang received the B.S. degree in meteorol-
ogy from Nanjing Institute of Meteorology, Nanjing,
China; the M.S. degree in atmospheric dynamics
from the Institute of Atmospheric Physics, Chinese
Academy of Sciences, Beijing, China; and the Ph.D.
degree in atmospheric science from the University of
Alabama, Huntsville, AL, USA.

In 2005–2007, he was a Postdoctoral Researcher
with Harvard University, Cambridge, MA, USA, be-
fore joining the University of Nebraska—Lincoln,
Lincoln, NE, USA, as a faculty member. His research

interests include satellite remote sensing of aerosols and fires, chemistry
transport modeling, data assimilation, inverse optimization, and integration of
these elements to study air quality and aerosol–cloud interaction.

Luke T. Ellison received the B.A. degree in engi-
neering science and Physics from Bethel University,
St. Paul, MN, USA, and the Bachelor’s degree in
aerospace engineering and mechanics from the Uni-
versity of Minnesota Twin Cities, Minneapolis, MN,
USA, both in 2007.

After working at Cessna Aircraft Company,
Wichita, KS, USA, as a Sustaining Engineer for the
Citation Mustang entry-level business jet, he ac-
cepted a research position in 2009 in the Climate and
Radiation Laboratory, NASA Goddard Space Flight

Center, Greenbelt, MD, USA. His research at Goddard centers around the re-
mote sensing of wildfires, and has included endeavors such as validation of the
two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments,
development of a new biomass burning emissions inventory, research on the in-
teractions and feedback between biomass burning and the hydrological cycle in
Northern Sub-Saharan Africa, advocating for an increase and improvement of
the available airborne and spaceborne fire-sensing platforms, and development
and maintenance of the FEER project website (http://feer.gsfc.nasa.gov/).

Edward J. Hyer received the Ph.D. degree in ge-
ography from The University of Maryland, College
Park, MD, USA.

He is currently a Physical Scientist with the
Marine Meteorology Division, Naval Research Lab-
oratory, Monterey, CA, USA. His research inter-
ests include remote sensing of fires and aerosols,
modeling of biomass burning emissions, and data
assimilation for air quality modeling.

http://npp.gsfc.nasa.gov/documents.html
http://npp.gsfc.nasa.gov/documents.html
http://www.newsru.com/finance/22feb2012/ugra.html
http://www.newsru.com/finance/22feb2012/ugra.html
http://unfccc.int/resource/docs/natc/nignc1.pdf
http://unfccc.int/resource/docs/natc/nignc1.pdf
http://go.worldbank.org/D03ET1BVD0
http://go.worldbank.org/D03ET1BVD0


POLIVKA et al.: IMPROVING NOCTURNAL FIRE DETECTION WITH VIIRS DNB 5519

Charles M. Ichoku received the B.Sc. and M.Sc.
degrees in surveying sciences from the University
of Nigeria, Nsukka, Nigeria, in 1982 and 1987,
respectively, and the the DESS (Diplôme d’Etudes
Supérieures Specialisées) degree in remote sensing
and the Ph.D. degree in earth sciences from Pierre et
Marie Curie Sorbonnes Universités, Paris, France, in
1989 and 1993, respectively.

From 1993 to 1997, he was a Research Fel-
low/Visiting Scientist with the Jacob Blaustein Insti-
tute for Desert Research, Ben-Gurion University of

the Negev, Sede Boqer Campus, Sede Boqer, Israel, and from 1997 to 1998,
with the Max-Planck Institute for Chemistry, Mainz, Germany. His research
interests activities include the development of remote sensing applications
in various branches of Earth sciences, including geology, hydrology, and
atmospheric studies. In November 1998, he joined the NASA Goddard Space
Flight Center, Greenbelt, MD, USA, as a Research Scientist. His research
interests have been in remote sensing of aerosols and fires, their global
distribution, and their impacts on the human population, the environment, and
climate. He has been actively involved in various interdisciplinary research
activities and project/program leadership roles, and is currently leading a NASA
interdisciplinary research project investigating the anthropogenic influences on
the water cycle dynamics in the northern sub-Saharan African region.

Dr. Ichoku is a member of the American Geophysical Union AGU.


