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Abstract We develop an approach combining mass balance and four-dimensional variational (4D-Var)
methods to facilitate inversion of decadal-scale total nitrogen oxides (NOx = NO + NO2) emissions. In 7 year
pseudo-observation tests, hybrid posterior emissions have smaller normalized mean square error (NMSE)
than that of mass balance when compared to true emissions in most cases and perform slightly better in
detecting NOx emission magnitudes and trends. Using this hybrid method, OMI NO2 satellite observations
and the GEOS-Chem chemical transport model, we find more than 30% increases of emissions over most
of East China at the 0.5∘ × 0.667∘ grid cell level, leading to a 16% growth of emissions over all of China
from 2005 to 2012, whereas emissions in several urban centers have decreased by 10–26% in the same
period. From 2010 to 2012, a decline is found in the North China Plain, Hubei Province, and Pearl River
Delta area, coinciding with China’s enforcement of its twelfth “Five Year Plan.” Changes in individual grid
cell may be different from changes over the entire city or province, as exemplified by opposite trends in
Beijing versus the Mentougou district of Beijing from 2005 to 2012. Also, NO2 columns do not necessarily
have the same trend as NOx emissions due to their nonlinear response to emissions and the influence of
meteorology, the latter alone which can cause up to 30% interannual changes in NO2 columns. Compared
to recent bottom-up inventories, hybrid posterior emissions have the same seasonality, smaller emissions,
and emission growth rate at the national scale.

1. Introduction

Nitrogen oxides play a key role in atmospheric chemistry. They contribute to the formation of tropospheric
ozone through reaction with volatile organic compounds (VOCs), and they lead to the formation of secondary
organic and inorganic aerosols [Crutzen, 1979; Haagen-Smit, 1952; McKeen et al., 1991; Ryerson et al., 2001;
Chan et al., 2010]. These forms of air pollution lead to decreased visibility [Haagen-Smit, 1952], cardiac and
respiratory morbidity [Bhatnagar, 2006; Ghio et al., 2000; Nel, 2005], and acidification and eutrophication of
waters when deposited in excess [Driscoll et al., 2001; Likens et al., 1972]. Though NOx emissions in North
America [Kim et al., 2006; Lamsal et al., 2011; Russell et al., 2012; Lu et al., 2015] and Western Europe [Castellanos
and Boersma, 2012] have decreased in the past two decades, their emissions in China have increased rapidly
due to economic development and urbanization since the turn of the century [Stavrakou et al., 2008; Lamsal
et al., 2011; Lin and McElroy, 2011; Zhao et al., 2013; Mijling et al., 2013; Jin and Holloway, 2015; Krotkov et al.,
2016; Cui et al., 2016; Duncan et al., 2016; Xia et al., 2016].

A comprehensive and accurate NOx emissions inventory is an essential input for air quality modeling stud-
ies performed to support air quality regulations and further evaluate our understanding of atmospheric
chemistry. One of the first comprehensive Asian emission inventories was developed by Streets et al. [2003]
for the year 2000 to support the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign.
This inventory was then updated by Zhang et al. [2009] for the year 2006 for National Aeronautics and Space
Administration (NASA)’s Intercontinental Chemical Transport Experiment-Phase B (INTEX-B) mission. Recently,
Li et al. [2015] developed a new anthropogenic emission inventory for Asia (MIX) for the year 2008 and 2010
to support the Model Inter-Comparison Study for Asia (MICS-Asia) and Task Force on Hemispheric Transport
of Air Pollution (TF HTAP). A long-term Regional Emission Inventory in Asia (REAS) was also developed by
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Ohara et al. [2007] for the years 1980–2003 and was updated for 2000–2008 as version 2.1 by Kurokawa
et al. [2013]. These bottom-up NOx emission inventories have provided essential information for atmospheric
chemistry and climate studies but are subject to substantial uncertainties due to limited knowledge of emis-
sion factors and fuel combustion and often take years to compile [Streets et al., 2003; Ohara et al., 2007; Zhang
et al., 2007, 2009; Kurokawa et al., 2013; Li et al., 2015]. It is particularly difficult to precisely quantify NOx emis-
sions with this approach in China, since emissions originate from a complex mixture of sources with different
technologies and levels of combustion efficiencies and a large spatial variation [Streets et al., 2003].

Alternatively, satellite observations can improve our understanding of NOx sources and chemistry by con-
straining emission inventories through inverse modeling techniques. Several statistical approaches to devel-
oping such constraints have been considered in previous studies. Beirle et al. [2011] used an exponentially
modified Gaussian (EMG) method to determine both NOx emissions and lifetime in a megacity (Riyadh) from
NO2 column observations from the Ozone Monitoring Instrument (OMI). Duncan et al. [2013] estimate changes
of NOx emissions in a grid box containing power plants by scaling changes of NO2 columns with the product
of changes in emissions in power plants and a parameter determined by the chemical lifetime of NOx ,
meteorology, and factors affecting partitioning of NOx . These two approaches were evaluated in de Foy et al.
[2014], with results showing that the EMG approach requires NO2 plumes to be consistently in the same direc-
tion [Valin et al., 2014], and multiple years averages are required for an accurate result, whereas the box model
method can more robustly and precisely estimate NOx emissions at seasonal scales.

Other approaches have combined satellite retrievals with simulations from chemical transport models. An
extended Kalman filter algorithm is used to estimate NOx emissions in East China [Mijling and van der A, 2012]
and NOx emissions in the city of Nanjing during the 2014 Youth Olympic Games [Ding et al., 2015]. Miyazaki
et al. [2012] used an ensemble Kalman filter approach to optimize global daily NOx emissions from an assimila-
tion of OMI NO2 columns. Monte Carlo sampling of a linear statistical relationship between tropospheric NO2

column and NOx emissions is applied [Konovalov et al., 2006] to improve NOx emissions in Western Europe,
based on measurements from GOME and Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY). Two approaches closely related to our study are mass balance and 4D-Var. The
mass balance approach has been used to optimize global NOx emissions based on the ratio of observed and
simulated NO2 column [Martin et al., 2003a; Toenges Schuller et al., 2006; Boersma et al., 2008; Lamsal et al., 2011;
Ghude et al., 2013; Vinken et al., 2014a, 2014b; Castellanos et al., 2014; Gu et al., 2016]. This approach, originally
formulated for global models with resolutions exceeding hundreds of kilometers, has not rigorously taken
into account the impact of emissions in one model grid cell on concentrations in neighboring cells, which
may not be suitable for resolutions approaching a few kilometers [Turner et al., 2012]. The perturbation mass
balance approach, as used in Lamsal et al. [2011], Vinken et al. [2014a, 2014b], and Castellanos et al. [2014] is
a first-order approximation of the influence of nonlinear chemistry. More explicit treatment of chemistry and
transport can be accomplished using the 4D-Var approach [Müller and Stavrakou, 2005; Stavrakou et al., 2013;
Xu et al., 2013], in which information about model error is propagated backward in time through the modeled
chemistry and transport, and all NOx-related chemical processes included in the forward model are used to
improve NOx emissions. While rigorous, such approaches are more computationally demanding, requiring an
adjoint model and an interactive optimization procedure.

Many of these top-down approaches have been previously used to constrain NOx emissions in China. These
include studies of the seasonality of NOx emissions. For instance, an emission peak in winter was found by
Wang et al. [2007] in a 3 year average of 1997, 1998, and 2000, and Gu et al. [2014] found higher anthropogenic
NOx emissions in winter and summer than spring (and possibly fall, although this comparison is hindered by
uncertainties in the bottom-up inventory). Satellite inversions were also used for estimations of national NOx

budget, for which 6.8 Tg N yr−1 was estimated based on OMI observations in July 2008 [Lin et al., 2010], and
an optimization of 6.9 Tg N yr−1 was obtained using a daily inversion of OMI and GOME-2 for 2011 [Gu et al.,
2014]. A 20% reduction of NOx emissions from January 2008 compared to January 2009 was estimated by
Lin and McElroy [2011], indicative of an economic downturn in China; however, this decrease was not evident
in annual average NO2 column densities[Krotkov et al., 2016].

Our objective here is to develop an effective inversion approach for a monthly-scale, 8 year top-down NOx

emission inventory over China, which does not include Taiwan in this study. Before doing this, we improve
the performance of 4D-Var and mass balance approaches, compare how they optimize emissions, and eval-
uate the causes of differences between these approaches (section 3.1–3.3). We then seek a way to combine
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these two methods to provide a favorable blend of accuracy and efficiency (section 3.4). Trends of posterior
NOx emissions using this hybrid inversion method are analyzed in section 4. In section 5, these trends are
evaluated through comparison to other top-down studies, bottom-up inventories, and in situ measurements.
Uncertainties in this top-down emission inventory are discussed in section 6.

2. Model and Observations
2.1. NOx Simulation Using GEOS-Chem and Its Adjoint Model
To estimate NO2 column density over China from January 2005 to April 2013, we use the GEOS-Chem
adjoint model (http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint) v35f based on ver-
sion 8-02-01 of the GEOS-Chem 3-D chemical transport model (http://www.geos-chem.org) with relevant
updates and bug fixes up through version 9. Our simulations are driven by assimilated meteorology data from
the Goddard Earth Observing System (GEOS-5) of the NASA Global Modeling and Assimilation Office (GMAO)
[Bey et al., 2001]. These meteorological data are available for years 2004 through mid-2013; hence, we study
OMI data in this time range. It has a horizontal resolution of 0.5∘ × 0.667∘ and 72 vertical layers. We employed
the nested-grid version of GEOS-Chem in this study at a native horizontal resolution of 0.5∘ × 0.667∘ over East
Asia (70∘E–150∘E, 0∘N–50∘N) and 47 layers from the surface to∼0.01 hPa. Boundary conditions are generated
from a global simulation with 4∘ ×5∘ horizontal resolution. The tropospheric oxidant chemistry in GEOS-Chem
includes a detailed ozone-NOx-hydrocarbon chemical mechanism [Bey et al., 2001]. Partitioning of NOx and
nitric acid between the gas and particle phases is calculated using aerosol scheme from Park et al. [2004].
Uptake of NO2 and NO3 on aerosol surfaces is described in Martin et al. [2003b]. Uptake of N2O5 by aerosols is
from Evans and Jacob [2005]. Wet and dry deposition of gases and aerosols are described in Liu et al. [2001].

We use anthropogenic emissions (NOx , SO2, NH3, CO, NMVOCs, and primary aerosols) in 2010 to drive sim-
ulations from 2005 to 2013. These emissions are taken from HTAP inventory version 2 [Janssens-Maenhout
et al., 2015], which is a bottom-up emission inventory consisting of monthly 0.1∘ × 0.1∘ grid maps and is
compiled using different regional gridded inventories, including the Model Inter Comparison Study in Asia
(MICS-Asia)’s for Asian countries. The MICS-Asia inventory consists of REAS inventory 2.1 for the whole area of
Asia [Kurokawa et al., 2013], Multiresolution Emission Inventory for China (MEIC; http://www.meicmodel.org), a
high-resolution NH3 emission inventory (PKU-NH3) [Huang et al., 2012], Indian emission inventory (ANL-India)
[Lu et al., 2011], and the official Korean emission inventory [Lee et al., 2011]. Emissions from the HTAP inventory
are monthly average values. Diurnal and day-of-week variability are applied internally in GEOS-Chem.

Nonanthropogenic emissions are from each simulated year, with 3-hourly biomass burning emissions from
GFED4 [Giglio et al., 2013] generated by HEMCO stand-alone model [Keller et al., 2014]. NOx emissions from
lightning are specified using the cloud top height parameterization from Price and Rind [1992], vertical distri-
bution profile from Pickering et al. [1998], local redistribution method from Sauvage et al. [2007], and further
satellite constraints from Murray et al. [2012]. Soil NOx emissions are calculated by Yienger and Levy’s algo-
rithm [Yienger and Levy, 1995] with soil canopy reduction factors [Wang et al., 1998]. Monthly NOx emissions
in China from different sectors and changes of nonanthropogenic emissions from year to year are shown in
Figure 1. In the pseudo-observation test, we use anthropogenic emissions in 2006 from the INTEX-B mission
[Zhang et al., 2009] for all studied years and biomass burning inventory from GFED3 [van der Werf et al., 2010]
for 2005 to 2011 and GFED4 for 2012.

The GEOS-Chem adjoint model was developed specifically for inverse modeling of aerosol and gas emissions
using the 4D-Var method by Henze et al. [2007]. It includes the adjoint for model processes of aerosol ther-
modynamics, chemistry, convection, turbulent mixing, advection, and wet removal. This model provides an
efficient way to calculate sensitivity of model variables (e.g., column densities and concentrations) to model
parameters (e.g., emissions) [Henze et al., 2009; Kopacz et al., 2009].

2.2. Tropospheric NO2 Columns From OMI
The OMI aboard the Earth Observing System (EOS) Aura satellite observes visible and ultraviolet (264–504 nm)
solar backscatter radiation, which can be used to retrieve tropospheric NO2 column densities with the Differ-
ential Optical Absorption Spectroscopy (DOAS) method. The instrument has a Sun-synchronous polar orbit
with a 13:40 equatorial overpass time. Since August 2004, OMI has collected daily global coverage measure-
ments in a spatial resolution of 13 km along track and 24 km across track in the nadir view, and operational
data products are provided since October 2004.
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Figure 1. Distribution of monthly and annual NOx emissions from each sector in China. (a) Monthly NOx emissions in 2010. (b) Annual nonanthropogenic NOx
emissions from 2005 to 2012.

For this study, we use the NASA standard product OMNO2 (Level 2, Version 2.1) tropospheric NO2 slant column
density from NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) (http://disc.sci.
gsfc.nasa.gov/Aura/data-holdings/OMI/omno2_v003.shtml). In the retrieval algorithm, total slant column
density (SCD) is obtained from OMI spectra by DOAS; stratospheric SCDs are subtracted from the destriped
total SCD using a Stratosphere Troposphere Separation (STS) algorithm; tropospheric SCDs are then converted
to vertical column density (VCD) using tropospheric air mass factors (AMFs), which are a function of the shape
of the NO2 vertical profile, temperature profile, scattering weights, terrain albedo, tropopause pressure, cloud
fraction, cloud top pressure, viewing zenith angle, and solar zenith angle [Bucsela et al., 2006, 2013; Celarier
et al., 2008; Platt and Stutz, 2008]. Errors in tropospheric NO2 retrievals come from each of these three steps
and are associated with the total SCD, separation of the stratosphere and troposphere, and calculation of the
tropospheric AMF. These uncertainties play an important role in our maximum likelihood estimation and will
be discussed further in section 3.1.1.

In all of our simulations, we calculate the air mass factor (AMF) for GEOS-Chem simulated NO2 columns
(AMFGC) following equations (1) to (4) in Bucsela et al. [2013]. Here AMFGC is expressed as the ratio of the sum
of slant subcolumns in the troposphere (S) to the sum of vertical subcolumns in the troposphere (V):

AMFGC(i, j) = S
V

(1)

where

S = 𝜅Σl in the troposphereMR(i, j, l)(P(i, j, l) − P(i, j, l + 1))SCWOMI(i, j, l) (2)

V = 𝜅Σl in the troposphereMR(i, j, l)(P(i, j, l) − P(i, j, l + 1)). (3)

Here MR is the mixing ratio of NO2, 𝜅 is a unit conversion constant, P is the pressure at the center of the
GEOS-Chem grid, SCWOMI is the scattering weight linearly interpolated from OMI product to GEOS-Chem grid
using the scattering weight pressure from the Level 2 product and pressure at the center of each model grid
cell, with application of temperature correction following equation (4) of Bucsela et al. [2013]. This AMF is then
used for conversion of GEOS-Chem NO2 vertical column densities to SCDs, which are directly comparable to
tropospheric SCDs calculated using OMI retrieval products,

SCDGC(i, j) = AMFGC(i, j)Σl in the tropospherec(i, j, l )h(i, j, l ) (4)

where c is simulated NO2 concentration (molecules cm−3) and h is the height of the box. We screen OMI
observations using retrieval quality flags and exclude data with row anomalies (http://projects.knmi.nl/omi/
research/product/rowanomaly-background.php). Only positive tropospheric column densities in “cloud-free”
(cloud fraction <20%) columns, with solar zenith angle <75∘, and with viewing zenith angle <65∘ are used.
The bias introduced by only using positive NO2 column density is small for this study, as the monthly mean
values of the NASA standard retrievals are negative in less than 5% of the grid cells covering China (mostly in
western China). The absolute values of negative monthly means are all less than 1.7 × 1015 molecules cm−2
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during the studied period, with 78% of these absolute values less than 1× 1015 molecules cm−2. We also look
at trends of NO2 columns after eliminating data affected by row anomalies throughout the period.

In addition, we compare the trend of OMI NO2 columns from the NASA standard product with that from
the DOMINO (Level 2, Version 2.0) product (http://www.temis.nl/airpollution/no2.html). This destriped prod-
uct is derived using the KNMI combined assimilation approach. We screen these observations using the
tropospheric column flag and eliminate data when the surface albedo is larger than 0.3 as suggested by
the DOMINO data user manual (http://www.temis.nl/docs/OMI_NO2_HE5_2.0_2011.pdf). Filtering criteria for
positive tropospheric column density, cloud fraction, solar zenith angle, and viewing zenith angle follow those
used with the NASA standard product. However, unless otherwise noted, OMI data referred to in our work are
that from the NASA standard product OMNO2 described above.

3. Inversion Methods, Validations, and Comparisons
3.1. The 4D-Var Approach
We use an adjoint-based 4D-Var approach to constrain emissions. Considering anthropogenic emissions
as model parameters, E(i, j), in each grid cell (i, j), a linear parameter scaling factor is defined as 𝜎(i, j) =
E(i, j)∕Ea(i, j), where Ea(i, j) are prior emissions values. A cost function, J(𝝈), is used to measure the departure
of the emission scaling factors from their prior estimates weighted by the prior error covariance matrix, plus
the sum of squared error between the model and observations over time, weighted by the observational
error covariance matrix. A 𝝈 that minimizes the cost function balances the objectives of improving model
performance while ensuring the model not unreasonably deviate from its prior state. Here

J(𝝈) = 1
2
Σc∈Ω

(
c − SCDobs

)T
S−1

obs(c − SCDobs) +
1
2
𝛾r

(
𝝈 − 𝝈a

)T
S−1

a

(
𝝈 − 𝝈a

)
(5)

where  maps the species concentration vector c to observation space, cobs is the vector of species observa-
tions, 𝝈a is the prior estimate of the emission scaling factor, Sa and Sobs are error covariance matrices of the
emission scaling factors and observations, respectively, 𝛾r is a regularization parameter, and Ω is the domain
(in time and space) where observations are available. The first term is referred to as the “prediction error,”
and the second term is referred to as the “parameter error.” In this study,  is the operator that converts
GEOS-Chem simulated NO2 concentration, c, to NO2 SCD, SCDGC using equations (1) to (4), SCDOMI is NO2 SCD
from the OMI Level 2 product, and𝝈a is the prior emission scaling factor, which is a uniform vector of the ones
when assimilating OMI NO2 observations. Specification of other variable values is discussed in section 3.1.1.
3.1.1. Model Parameters and Optimization
Slant column densities from OMI at each observation time and site are used to constrain monthly anthro-
pogenic NOx emissions. The observation error covariance matrix, Sobs, is assumed to be diagonal. Absolute
uncertainties of these diagonal values are read from NASA OMNO2 L2 products for each individual OMI
observation. On average, the tropospheric slant column uncertainty of OMI is estimated to be ∼0.7 × 1015

molecules cm−2 [Boersma et al., 2008; Castellanos and Boersma, 2012]. To reduce the influence of observations
below the OMI detection limit, which mainly occur in remote locations, we conservatively assume an absolute
uncertainty of 1.0 × 1015 molecules cm−2, and we add this value to Sobs.

Emissions from several species and sectors can have an influence on NO2 column density. In order to identify a
subset of these to adjust during the optimization, we consider the sensitivity of the cost function to grid-scale
emission scaling factors for several species and sectors in four selected months, shown in Table 1. Sensitivities
with respect to NOx emissions are much higher than those of other species in all studied months. Sensitivities
to anthropogenic NOx emissions are about 2 orders of magnitude higher than other sectors in January, April,
and October. In summertime (e.g., July), NOx emissions from lightning have the largest sensitivities. In our
4D-Var inversions, we only allow emission scaling factors for anthropogenic NOx to be adjusted, as these have
the largest impact on J(𝝈), in general, and are the most likely drivers of trends in total NOx emissions, although
we recognize that here they serve as a proxy for adjustments to total NOx emissions in the inversion.

Uncertainties of the prior emission scaling factors are specified in the error covariance matrix, Sa. Compar-
isons from Li et al. [2015] show that Asian NOx emissions between MIX and the Emission Database for Global
Atmospheric Research (EDGAR v4.2) inventory are different by about 20%, while sector level differences are
even larger with a 48% discrepancy in residential emissions. Uncertainties in individual grid cells are expected
to be larger than this average over the entire domain. For convenience, we use a constant average uncertainty

QU ET AL. MONTHLY TOP-DOWN NOX EMISSIONS FOR CHINA 4604

http://www.temis.nl/airpollution/no2.html
http://www.temis.nl/docs/OMI_NO2_HE5_2.0_2011.pdf


Journal of Geophysical Research: Atmospheres 10.1002/2016JD025852

Table 1. Top Five Sensitivities of Adjoint
Forcing to Emission Scaling Factors Over
East Asia in 2010

Sector Sensitivity

Jan NOx ANTHa −355 to 13,262

NOx BBNb −2 to 601

CO ANTHa −43 to 148

SO2 ANTHa −8 to 101

CO BBNb 0–29

Apr NOx ANTHa −105 to 1,294

NOx BBNb −18 to 39

NOx LIGHc −7 to 24

NOx SOIL −7 to 13

ISOPdANTHa −28 to 6

Jul NOx LIGHc −6 to 4,011

NOx ANTHa −12 to 113

NOx SOIL −4 to 5

CO ANTHa 0–4

ISOPdANTHa −2 to 2

Oct NOx ANTHa −234 to 2,570

NOx BBNb −9 to 27

NOx LIGHc −1 to 29

NOx SOIL −6 to 8

CO ANTHa −2 to 6
aAnthropogenic emissions.
bBiomass burning emissions.
cLightning emissions.
dIsoprene.

of 40% for all grid cells in the studied domain; the regularization
parameter 𝛾r is then used to adjust the magnitude of the penalty term
using an L curve [Hansen, 1999] and total error minimization [Henze
et al., 2009] for January 2010 (Figure S1 in the supporting informa-
tion). Values of the regularization parameters in other months are
scaled by the number of observations (counting only those filtered by
criteria described in section 2.2) with respect to the value of 𝛾r in Jan-
uary. These values are shown in Table S1. Most previous NO2 inversion
studies using coarse resolution models have not accounted for spa-
tial correlation in emissions across grid cells [e.g., Martin et al., 2003a;
Müller and Stavrakou, 2005; Mijling and van der A, 2012]. With the finer
resolution used in our study, the emission correlation length scale
may be longer than that of our model’s horizontal resolution [Turner
et al., 2012], and errors are therefore correlated between adjacent grid
cells. In this study, we assume an exponentially decaying error cor-
relation with a constant decay distance of 150 km, whose inverse is
calculated using the algorithm described in Singh et al. [2011]. Thus,
an isolated high emission in one grid cell (not surrounded by other
high-emissions sources) is allowed to decrease by at most 90% within
a distance of three grid cells; however, we recognize that this treat-
ment is only approximate and that the actual error correlation length
scale in China is likely different and spatially variable. We minimize the
cost function using the quasi-Newton L-BFGS-B gradient-based opti-
mization technique [Byrd et al., 1995; Zhu et al., 1994], in which the
gradient of the cost function J(𝝈) with respect to the control param-
eter 𝝈 is calculated using the adjoint method. The adjoint model
is driven by a forcing term, which is the error weighted difference
between predicted and simulated NO2 slant columns. Inversions are
considered to have converged when the cost function decreases by
less than 1% in three consecutive iterations.

3.1.2. Evaluation Using Pseudo-Observations
We evaluate our 4D-Var inversion by designing an inverse problem with a known solution. Anthropogenic
emissions in 2006 from the INTEX-B mission [Zhang et al., 2009] are used to generate 135,915 pseudo-
observations for the whole month for January 2010, by sampling the model simulation at OMI overpass times.
Hourly average tropospheric slant column densities from GEOS-Chem within 30 min of each OMI observation
time and location are saved and used as pseudo-observations, which are assumed to have the same relative
uncertainties as the real OMI observation at that corresponding time and location. Random noise is added
to the observations according to the variance in Sobs. Emissions used in this simulation are therefore true
emissions for the pseudo-observations.

Our inverse modeling tests assimilate these pseudo-observations, starting from simulations whose anthro-
pogenic NOx emissions across the entire model domain are scaled to 0.5 or 1.5 times the product of true
emissions and random noise. We refer to these two experiments as 𝝈a = 0.5 and 𝝈a = 1.5 in the following
text. The random noise is normally distributed with mean of 1, standard deviation of 0.1, and spatial corre-
lation described by Sa. Only random noise within the range of 0.6 to 1.4 is applied to the true emissions.
These scaled emissions therefore mimic the spatial correlation of NOx emissions. The off-diagonal terms of
Sa introduce more regularization for the inversion; consequently, the localized corrections with off-diagonal
error covariance matrix are more smoothed out than those that result when using a diagonal error covariance
matrix.

Comparisons of posterior emissions and prior emissions for these two cases are shown in Figure 2. In an ideal
case (not considering errors in the observation or prior), emissions scaling factors would all converge to a
mean of one after the inversion. However, in the 𝝈a = 0.5 and 𝝈a = 1.5 cases, scaling factors mainly change in
Eastern China, where NO2 column densities are higher and have larger forcing to drive the inversion. Therefore,
emissions in several grid cells in this case still fall close to the y = 0.5x and y = 1.5x line after the inversion.
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Figure 2. The 4D-Var emission scaling factors in pseudo-observation tests for 𝝈a = 0.5 and 𝝈a = 1.5. Inversions are
performed with off-diagonal error covariance matrix. The black dots are prior emissions, while red triangles are
posterior emissions.

The asymmetry of changes in emission scaling factors and emissions for 𝝈a = 0.5 and 𝝈a = 1.5 is caused by the
dependence of initial conditions in the maximum likelihood estimation and the nonlinear response of NO2

column changes to changes in NOx emissions, which has been pointed out by Stavrakou et al. [2008]. This
behavior is also seen in the pseudo-observation tests for the mass balance approach in section 3.2.2. NMSE
and correlation coefficient of the posterior and initial emissions compared to true emissions are shown in
Table 2. NMSE of posteriors have decreased by 88% (𝝈a = 0.5) and 76% (𝝈a = 1.5) after 4D-Var inversions.
Correlation coefficients do not have big changes after the inversions.

3.2. Mass Balance Approach
The general idea of a mass balance inversion [Martin et al., 2003a] is to estimate a top-down emission, Et(i, j),
by scaling prior emissions, Ea(i, j), by the ratio of the observed NO2 slant column density, SCDobs(i, j), to the
modeled NO2 slant column density, SCDGC(i, j), for each grid cell (i, j). An averaging kernel may also be used
to account for the impact of emissions from neighboring grid cells [Toenges Schuller et al., 2006; Boersma et al.,
2008]. Detailed derivation of mass balance equations are shown in Appendix A. The weighting of errors in
equation (A9) returns a maximum likelihood estimation; treatment of emission as lognormally distributed may
yield a posterior emission that is smaller than both Ea(i, j) and Et(i, j), because the posterior mode is smaller
than its mean for a lognormal distribution. An example of this is shown in Figure 3.
3.2.1. Impact of Chemistry and Transport on Mass Balance Inversions
We first test the impact of horizontal transport of tracers across model grid columns and the nonlinear chem-
ical relationship between NOx emissions and NO2 columns on the performance of mass balance inversions
performed for a half month (first to sixteenth) simulation in January 2010, with real observations from OMI
and anthropogenic emissions from the HTAP inventory. In the “no transport” case, we turned off horizontal

Table 2. NMSE and Correlation Coefficient (R) of Anthropogenic NOx Emissions Compared to True Emissions in
Pseudo-observation Tests for Base Year (2010)

𝜎a = 0.5 𝜎a = 1.5

Mass Balance Mass Balance

Prior 4D-Var W/o Kernela W/ Kernelb Normalc Prior 4D-Var W/o Kernela W/ Kernelb Normalc

NMSE 3.17 0.39 1.01 1.04 0.87 1.32 0.32 0.54 0.56 0.57

R 0.98 0.97 0.97 0.96 0.96 0.98 0.98 0.97 0.95 0.98
aAssuming lognormal distribution of emissions, without averaging kernel.
bAssuming lognormal distribution of emissions, with averaging kernel as described in equation A12.
cAssuming normal distribution of emissions, without averaging kernel.
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Figure 3. An example of a probability distribution function of the
likelihood of being the true emissions given: prior emissions from
bottom-up inventory (blue), top-down estimate by applying the ratio
of observed column density (red), and their joint probability (black).
The mean of each probability distribution function is shown as a solid
vertical line in corresponding colors. The maximum likelihood emission
value is shown as a dotted line. The emission corresponding to the
maximum likelihood estimation of the joint probability is the posterior
of the mass balance method we use in this study.

transport of all species across model
columns. In order to avoid model
crashes owing to accumulation of
tracer concentrations when chemistry
is turned off, we only allow emissions
at the first time step for “no chemistry”
cases. For these tests, we only use
top-down emissions calculated from
equation (A1) to estimate a new slant
column density; we do not include a
weighted balance between prior and
posterior emissions (equation (A9)), as
the goal for these cases is to see how
well the model can match the obser-
vations, rather than to estimate phys-
ically meaningful emissions. We then
evaluate correlations between model
estimates of NO2 slant column den-
sity and observations from OMI for the
following cases: (a) prior model esti-
mates before inversions, (b) posterior
with chemistry and transport on, (c)
posterior without chemistry and trans-
port, (d) posterior without chemistry,
with transport, and without averaging
kernel, (e) posterior without chemistry,
with transport and averaging kernel,

and (f ) posterior without transport, with chemistry. These are shown in Figure 4. Without chemistry and trans-
port, the column density simulated by GEOS-Chem has increased by exactly the same ratio as applied to
emissions, and thus the posterior simulation is a near-perfect match to the observations. With only chemistry,
the posterior column density and OMI observations have a correlation of 0.95. Simulations with only trans-
port lead to lower correlations of 0.90 (without averaging kernel) and 0.83 (with averaging kernel), suggesting
that use of an averaging kernel (see equation (A11)) does not improve the posterior simulation. When both
chemistry and transport are turned on, the normalized mean bias (NMB) after applying mass balance with-
out using an averaging kernel is 9.2%, smaller than when applying mass balance with an averaging kernel
(10.5%), although correlation coefficients are the same in both cases. In more realistic settings, the perfor-
mance of mass balance inversions may be different at different length scales, may vary from time to time, and
may be improved through more sophisticated approaches [e.g., Toenges Schuller et al., 2006; Boersma et al.,
2008; Lamsal et al., 2011; Ghude et al., 2013], but overall, in the absence of any restrictions on emissions from
prior information, we find that the ability of simple mass balance inversions to improve 16 days’ simulated
NO2 SCDs at the 0.5∘ × 0.667∘ resolution is limited both by chemistry and not explicitly accounting for trans-
port of NOx emitted from neighboring grid cells when ascribing differences in simulated and observed NO2

column densities to emissions.
3.2.2. Evaluation Using Pseudo-Observations
Mass balance emission scaling factors are evaluated using pseudo-observations generated with the same
setup as described in section 3.1.2. Figure S2 shows posterior emission scaling factors with and without aver-
aging kernel, i.e., use equation (A13) and (A1) for Et in equation (A9), in the cases of 𝝈a = 0.5 and 𝝈a = 1.5.
There are more overcorrection of emissions in the case of 𝝈a = 1.5 than in the case of 𝝈a = 0.5, which can
also be explained by the weighting of observation error in the maximum likelihood estimation. This prefer-
ential change of emissions with lower uncertainty causes reduction of overestimates rather than reduction of
underestimates and leads to a negative bias after mass balance inversions. More details of these tests are in
the supporting information.

NMSE and correlation coefficient of the mass balance posterior emissions obtained with and without an
averaging kernel, and their comparisons with posterior emissions obtained with the assumption of nor-
mally distributed emissions are shown in Table 2. Posteriors in these three cases have very similar NMSE and
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Figure 4. Correlation of OMI and GEOS-Chem NO2 slant column densities in a half-month simulation from 1–16 January 2010. GEOS-Chem simulations are run
with (a) bottom-up emissions, with chemistry and transport on, (b) posterior from mass balance with chemistry and transport on, (c) posterior from mass balance
with no chemistry or transport, (d) posterior from mass balance with no chemistry, transport on, and no averaging kernel, (e) posterior from mass balance with
no chemistry, transport on, and averaging kernel applied, and (f ) posterior from mass balance with transport off but chemistry on. The solid line is a linear fit,
and the dashed line is the 1:1 line.

correlation coefficients. This suggests that the assumption of either normally or lognormally distributed emis-
sions does not much affect the performance of mass balance inversion. However, the way the averaging kernel
is applied may not fully capture the true processes in chemical transport. In reality, the monthly average wind
is less likely to blow uniformly from all directions. Therefore, accounting for transport by an averaging kernel
that has equal weight in all directions may not be suitable. One possible way to improve this could be
weighting contributions from surrounding grid cells by wind directions. We assume lognormal distribution
of emissions, and leave out the averaging kernel in this study based on the following: imbalanced behavior of
the kernel when increasing and decreasing emissions, occasional negative emissions resulting from the case
of r < 1 in equation (A13) (r is the ratio of SCDobs to SCDGC) when the weight of changes in emissions consid-
ering transport from adjacent cell (w) is large, and very similar performance of the mass balance inversion in
all these three cases.

3.3. Comparison of 4D-Var and Mass Balance Approach
From Table 2, the NMSE of the 4D-Var posterior is 61% (𝝈a = 0.5) and 41% (𝝈a = 1.5) smaller than the NMSE of
the mass balance posterior (assuming lognormal distribution, without averaging kernel). However, in another
set of pseudo-observation tests without introducing noise in the initial guess, the NMSE of the mass balance
posterior are less different (<25%) than that of 4D-Var with off-diagonal error covariance matrix. This differ-
ence is even smaller when compared to 4D-Var with diagonal error covariance matrix (5.8% larger when the
initial guess is low and is the same with 4D-Var using diagonal Sa when the initial guess is high). This much
better performance of 4D-Var after introducing noise to the initial guess can be explained by its strength in
correcting the spatial distribution of emissions. Nevertheless, 4D-Var inversion has much higher computa-
tional cost than mass balance (it takes about 2 weeks of wall time for the 4D-Var approach on a dual hex-core
2.6 GHz server, whereas the mass balance approach requires only a forward model run that takes about 12 h
on the same system). Therefore, a more effective inversion approach is needed to derive long-term emissions
with more accuracy.
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3.4. Hybrid Approach
Here we seek a way to combine the performance of the 4D-Var approach (with off-diagonal Sa) with the low
computational cost of the mass balance approach to facilitate decadal-scale inversions. We consider two types
of hybrid approaches.

In one hybrid approach, scaling factors derived from the mass balance equation are calculated first. These
scaling factors and errors are then used as the initial guess for the 4D-Var approach. Using the same setup
as the pseudo-observation test described in section 3.1.2, we find that this hybrid approach requires more
iterations for the cost function to converge to the same value obtained using the 4D-Var approach alone. This
is mainly caused by the overcorrection and undercorrection of mass balance scaling factors, which leads to
emissions that are spatially less smooth and incur a larger parameter error. For instance, in the case of𝝈a =0.5,
the parameter error in this hybrid inversion is 15,359, making up 51% of the cost function in the first iteration
and decreases to 235, 7% of the cost function when it converges in the 48th iteration, whereas in 4D-Var alone,
the value of the parameter term is 0 in the first iteration and 682, 18% of total cost function in the eighteenth
iteration when it converged. It takes more iterations for the off-diagonal term in 4D-Var to smooth the initial
condition in the hybrid inversion, since mass balance emission scaling factors are not spatially correlated.
Therefore, even if the cost function in the first iteration of this hybrid approach is less than half of that in
standard 4D-Var, it subsequently decreases at a much slower rate considering the less smooth initial emissions.

Another way to combine these two approaches to speed up monthly-scale inversions for an entire decade is
to first perform a 4D-Var inversion for a particular base year, and use this as a basis for mass balance inver-
sions in other years. The purpose of this first step is to correct for the spatial distribution of emissions and
decrease the systematic error from the bottom-up emission inventory. Given that differences of NO2 column
densities from OMI and GEOS-Chem simulation have very similar monthly differences on an interannual basis
in our studied domain, the optimized emissions from the 4D-Var approach in the base year are used as the
prior emissions for other different years’ mass balance inversion. Here we also validate this hybrid method
by setting up pseudo-observation tests. Optimized emission scaling factors from the 4D-Var approach in the
pseudo-observation test (section 3.1.2) are used as the 4D-Var solution for the base year (2010). Additional
sets of pseudo-observations are generated for January in other years using adjusted true emissions, i.e., 0.6
times the true emissions in the base year are used as true emissions for 2006, 0.7 times for 2007, 0.8 times
for 2008, 0.9 times for 2009, 1.1 times for 2011, and 1.2 times for 2011. This means adjusting true emissions
and corresponding pseudo-observations a little bit, as they would be expected to change from year to year
[Liu et al., 2016]. Optimized emissions in base year is used to simulate column densities in January for other
years. Further inversion from mass balance is applied by scaling the optimized emission in 2010 by the ratio of
the NO2 column densities from pseudo-observations in corresponding month and the NO2 column densities
in the previous simulations. We assume same emission change rate for all NOx sources and apply the same
ratio to all NOx emission sectors in mass balance inversion. The distribution of NOx emissions is assumed to
be lognormal in the mass balance constraint but normal in the 4D-var inversion. A lognormal assumption of
emission scaling factor is more physically realistic, since it does not allow for negative emissions [Henze et al.,
2009]. However, in a 4D-Var inversion, log scaling factors cannot increase emissions as efficiently as linear scal-
ing factors and would lead to a solution that deviates more from the true state than the solution using linear
scaling factor [Jiang et al., 2015]. Though this is somehow inconsistent, the performance of hybrid inversion
with this setting is found to be better than uniformly using either lognormal or normal distribution in 4D-Var
and mass balance.

We examine the effectiveness of this hybrid approach in two ways. In Table 3, the NMSE of the optimized
emissions compared to true emissions in each year’s hybrid inversions are compared with that using mass
balance in each year and to that using 4D-Var just in 2010. For the case of 𝝈a = 1.5, emissions optimized with
the hybrid approach have smaller NMSE (by 59% to 78%) than mass balance posterior emissions in all studied
years. This suggests that posterior emissions of the hybrid inversion deviate less from the true emissions than
the posterior mass balance emissions. For the case of𝝈a = 0.5, initial emission in 2006 and 2007 are very close
to the true state. Under such circumstances, further inversion would increase error of emissions. Also, applying
4D-Var scaling factor from 2010 leads to further deviation from the true emissions. Therefore, mass balance
posterior emissions in these two years have smaller NMSE than that of hybrid posterior. In 2008, 2009, 2011,
and 2012, when initial guesses deviate more from the true emissions, the hybrid inversion is more effective in
decreasing the error, and therefore has smaller NMSE than the mass balance posterior.
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Table 3. NMSE of Anthropogenic NOx Emissions for 2005–2012 in Pseudo-observation Tests

𝜎a = 0.5 𝜎a = 1.5

Prior 4D-Var (2010) Hybrid MB Prior 4D-Var (2010) Hybrid MB

NMSE 2006 0.36 1.68 0.62 0.19 6.05 2.64 1.48 3.63

2007 0.83 0.90 0.25 0.20 4.18 1.60 0.74 2.11

2008 1.50 0.50 0.28 0.48 2.89 0.94 0.49 2.12

2009 2.29 0.36 0.27 0.65 1.97 0.54 0.32 1.47

2010 3.17 0.39 0.46 1.01 1.32 0.32 0.33 0.54

2011 4.12 0.55 0.47 1.67 0.86 0.24 0.24 1.10

2012 5.12 0.80 0.57 2.14 0.54 0.25 0.20 0.54

We also evaluate how similar the posterior time series is compared to the true emissions. In Figure 5, the time
series of the total emissions in the hybrid approach (R = 0.991 for 𝝈a = 0.5, R = 0.983 for 𝝈a = 1.5) has a better
correlation than that of the mass balance approach (R = 0.914 for 𝝈a = 0.5, R = 0.965 for 𝝈a = 1.5). While we
find that correlation coefficients of the hybrid posteriors are larger than that of mass balance in both cases,
the difference between them is statistically significant at the 95% confidence level for the 𝝈a = 0.5 case, but
not for the 𝝈a = 1.5 case. Correlations of the hybrid inversion are worse if not further applying mass balance
to the 2010 emissions. However, to avoid using the same observations twice in the inversion, in the following
real observation simulations all reported hybrid posterior in 2010 are just based on a 4D-Var inversion. Our
posterior underestimates NOx emissions in most years for both 𝝈a = 0.5 and 𝝈a = 1.5. This can be explained
by the combined effects of preferentially decreasing emissions for 4D-Var and mass balance as described in
sections 3.1.2 and 3.2.2. In addition, there are fewer observations from OMI in 2011 and 2012, and therefore,
the mass balance step can hardly change emissions from 2010 levels in the hybrid inversion. Overall, the
growth rate of hybrid posterior (40.4% for𝝈a = 0.5 and 39.8% for𝝈a = 1.5) is smaller than that of true emissions
(100% for both cases) from 2006 to 2012, compared to a 44.3% growth rate of true NO2 column densities, a
15.3% increase for𝝈a = 0.5, and a 14.0% increase for𝝈a = 1.5. The growth rate of mass balance posterior is even
smaller, with a growth rate of 34.7% for 𝝈a = 0.5 and 37.8% for 𝝈a = 1.5. The magnitude of changes in NO2 col-
umn densities is smaller than that of NOx emissions, because column density is affected by meteorology even
with constant emissions and changes nonlinearly with different emissions under constant meteorology fields.
The smaller growth rate of the posterior emissions compared to the true emissions can be attributed to three
causes. First, in our Bayesian analysis, the posterior emissions are restricted by the value of the prior emissions
and their uncertainties. When these uncertainties are increased (magenta lines in Figure 5a, which have the
same observation errors as the mass balance and hybrid inversions but 100% uncertainty in prior emissions),

Figure 5. (a) Time series of prior, posterior, and true emissions for all NOx sources in the pseudo-observation tests.
Scaled emissions are calculated as the ratio of emissions to the true emissions in 2010. Monthly pseudo-observations
are generated for January 2006–2012. Hybrid inversions are performed by first applying the 4D-Var scaling factor from
January 2010 to other years, followed by mass balance inversion. The black line shows the true emissions; the green
lines are the prior emissions; the red and blue lines are the posterior emissions from the hybrid and mass balance
inversions, respectively. The two red dots are 4D-Var posterior emissions in 2010, with the larger value for 𝝈a = 1.5 case.
The solid and dotted lines show results for 𝝈a = 0.5 and 𝝈a = 1.5, respectively. (b) Time series of monthly average NO2
SCD over China. The black line is the trend of pseudo-observations simulated with the true emissions. The green lines
are NO2 SCD simulated using constant prior anthropogenic emissions in 2010.
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the posterior emissions trend is improved. Second, due to the impacts of meteorology, NO2 columns for sim-
ulations with constant (2010) anthropogenic emissions (Figure 5b) themselves have a trend opposite that of
the emission trends in our pseudo inversions. This opposing relationship between emissions and column con-
centrations serves to reduce the increasing trend in the posterior emissions. Third, the quality and density of
observations are not uniform throughout the time frame. When there are fewer observations, the hybrid pos-
terior emissions tend toward the value of the 4D-Var 2010 posterior emissions, leading to smaller deviations
from 2010 emissions compared to the true emissions. This is particularly apparent in 2006 when there are very
few observations in central East China, so the sum of emission over China has almost the same value in 2006
and 2007. These evaluations show the ability of the hybrid inversion to detect variability of NOx emissions
over several years. They also highlight the potentially different trends of NOx emissions and NO2 columns,
which will also occur when using real observations from OMI in section 4.2.

4. Long-Term Hybrid Inversion with Real Observations
4.1. 4D-Var Inversion in Base Year
We choose 2010 as the base year for hybrid inversion and perform adjoint-based 4D-Var inversions for each
of the 12 months in this year. Comparisons of adjoint forcing, which is the difference between predicted and
observed column density weighted by observation errors before and after inversions are shown in Figure 6.
Changes mostly occur in regions that have strong positive forcing, especially in the areas outlined by the black
rectangle. Column density predicted by GEOS-Chem using prior and posterior emissions and that observed
by OMI in January, April, July, and October of 2010 are shown in Figure 7. The optimized emissions gener-
ally decrease simulated NO2 column densities in China, especially inside the black rectangular area in each
month. This leads to an increase of negative bias in posterior NO2 column densities, when compared to OMI
observations. In July and other summer months, the spatial distribution and total amount of predicted NO2

column densities from GEOS-Chem are quite similar to those of OMI observations, even before any inversion.
Therefore, after inversion, correlations of predicted NO2 column densities stay the same for July, but have been
improved for January, April, and October. A preference in the L-BFGS-B optimization algorithm to decrease
emissions has been noticed previously, due to the asymmetry of emission scaling factors distributed around
1.0 and bounded on one side at 0.0, but unbounded in the other direction. Following Wells et al. [2015],
we impose an upper bound of 5 on the scaling factors. The asymmetric behavior is further influenced by
asymmetries in the observation errors. The minimization procedure tends to change emission in grid cells
where concentrations are high, uncertainties of satellite observations are small, and adjoint forcings are large.
This behavior can be clearly seen from Figure 6, in which adjoint forcing in East China has decreased signif-
icantly, whereas column densities in places with larger observation uncertainties (e.g., over the ocean) and
smaller adjoint forcing remain essentially unchanged after the inversion. This preferentially leads to reduction
of overestimates rather than reduction of underestimates and therefore results in more negative NMB after
inversions.

4.2. Long-Term Inversion
We use optimized emissions from 4D-Var inversions in each month of 2010 as prior emissions for the corre-
sponding months of other years from 2005 to 2012. Mass balance inversions are then performed to obtain
posterior emissions throughout the decade. There is a similar preferentially decreasing behavior in emissions
here using real OMI observations with mass balance inversion, as is described and explained in section 3.2.2.

Trends of NO2 columns from GEOS-Chem simulations and OMI observations are shown in Figure 8. We com-
pare optimized NO2 columns from three inversion methods (mass balance, 4D-Var in 2010, and hybrid) with
prior simulations over the whole of China, major economic regions (Beijing municipality, Yangtze Delta Area,
Guangdong province, and Beijing-Tianjin-Hebei), and some provinces in western China. After the hybrid
inversion, the simulated NO2 column over China has significantly better correlation with OMI observation
than that after mass balance inversion (R = 0.948 versus R = 0.911). In other studied regions, the difference
in the posterior correlation between these two methods is within the range of 0.05. In contrast to the initial
simulation, NO2 columns after the hybrid inversion over China rise from 2005 to 2012 by 9%. A generally
increasing trend on this 8 year scale is seen in some economic regions (e.g., Beijing municipality and Yangtze
River Delta), Inner Mongolia Autonomous Region, and several provinces in Western China (e.g., Xinjiang,
Ningxia, Qinghai, Shaanxi, and Gansu). However, decreases of NO2 columns of 11–39% occur in the following
provinces: Guangdong, Chongqing, Guizhou, Sichuan, and Guangxi. Optimized column densities generally
have lower values than the initial state. This can be explained by the weighting of errors, which preferentially

QU ET AL. MONTHLY TOP-DOWN NOX EMISSIONS FOR CHINA 4611



Journal of Geophysical Research: Atmospheres 10.1002/2016JD025852

Figure 6. Adjoint forcing in January, April, July, and October of 2010, for the prior and posterior 4D-Var inversion.
The adjoint forcing is the sum of the difference between observed and simulated NO2 column densities weighted
by the inverse of observational error covariance.

leads to reduction of overestimates rather than reduction of underestimates, as discussed in section 3.4. It is
hard for the inversion to increase NO2 column density in regions where initial column densities are much lower
than observations from OMI (e.g., Xinjiang Province, Qinghai Province, and Yunnan Province). Also, since we
set an absolute uncertainty of 1015 molecules cm−2 for each individual observation in the 4D-Var inversion,
and a lower limit of 1.5 ×1015 molecules cm−2 in the mass balance inversion, locations with smaller column
densities than these two values hardly exhibit changed emissions after the optimization. In locations without
satellite observations, it is also difficult to improve emissions.

Trends in OMI NO2 retrievals at regional scales may be susceptible to biases in the retrieval process itself
[e.g., Herron-Thorpe et al., 2010; Zheng et al., 2014; Ialongo et al., 2016]. To test the robustness of the trends driv-
ing our inversion, we next compare the two retrievals of OMI NO2 product here. We find that the annual mean
values of the OMI NO2 columns from NASA standard product are generally smaller (by ∼50%) than that from
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Figure 7. NO2 slant column density in January, April, July, and October of 2010. The first two columns are predicted
column density with prior emissions from HTAP and posterior emissions from 4D-Var inversions. The third column
shows NO2 slant column density from OMI.

the DOMINO product in densely populated and industrial regions. This discrepancy is consistent with previ-
ous comparisons of these two products over this region [e.g., Zheng et al., 2014]. In Figure 8, we compare the
annual mean from these two products at the regional scale. The correlation coefficients of these two trends
are negative in Chongqing, Guizhou, Sichuan, and Guangxi, but are above 0.6 in mainland China, Beijing, the
Yangtze River Delta, Xinjiang, Shaanxi, Qinghai, Gansu, Ningxia, and Inner Mongolia, suggesting that trends
of NO2 columns in the latter regions are more robust. Correspondingly, NOx posterior emissions are likely less
affected by differences in NO2 retrievals in these regions.

Finally, to evaluate the impact of data availability reduced by row anomalies on the NASA standard OMI
retrievals, we consider the approach of Duncan et al. [2013] and use the trend in NO2 columns from only rows
10 to 23, which are unaffected by row anomalies throughout the period. As shown in the grey lines in Figure 8,
these values are mostly lower than those using observations from all rows, but the two time series are quite
well correlated (R> 0.75) except for Guangxi, Sichuan and Chongqing. For deriving top-down emissions, we
chose to use all observations available after data filtering, but recognize that the inferred trends are most
robust (both R_DOMINO and R_row are larger than 0.9) with respect to the retrieval and processing steps in
Yangtze River Delta, Xinjiang, Ningxia, and Inner Mongolia.

We compare total (including anthropogenic and natural sources) prior and posterior NOx emissions in
Figure 9. Even though hybrid and mass balance inversions have similar total posterior emissions, their spatial
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Figure 8. Annual averaged NO2 SCD over the mainland China, major economic areas, and western China. The black dotted line is NO2 column density from
OMI using the NASA standard product; the cyan dotted line is OMI NO2 columns from the DOMINO product; the grey dotted line is the NASA standard OMI NO2
column only from row 10 to 23 throughout the 8 years; the magenta line is simulated column density with prior emissions; the green line is the modeled value
with 4D-Var scaling factor from 2010 applied; the red and blue lines are the posterior from hybrid and mass balance inversions, respectively. We also show the
correlation between the standard product SCD (black dotted) and the following: SCD simulated using hybrid posterior (R_hybrid); mass balance posterior
(R_MB); constant HTAP emissions in 2010 (R_prior); the DOMINO product (R_DOMINO); and the standard product (with all data after filtering) using only rows
10 to 23 (R_row).

distribution can be very different. For instance, total posterior NOx emissions in 2005 from the hybrid inver-
sion is 6.63 Tg N yr−1 and that from the mass balance inversion is 6.59 Tg N yr−1, but the grid-scale difference
of the posterior emissions from these two can be as much as 100%, as shown in Figure 10. There are a few grid
cells that have isolated negative values which coincide with locations with large emissions and overestimates
from GEOS-Chem when compared to OMI observations. In these grid cells, when optimizing emissions using
the mass balance method, only emissions in the local grid cell will decrease, whereas the 4D-Var approach
spreads the decrease of emissions to surrounding grid cells through the off-diagonal error covariance matrix.
Therefore, the emission in the local grid cell decreases more through mass balance than through 4D-Var
approach, and consequently, the differences between posterior from these two are very negative in these
grid cells.

Over China, optimized NOx emissions are generally on the rise during the studied period, with small anoma-
lies in 2008 and 2012. The decrease of NOx emissions in 2008 (2% decrease compared to emissions in 2007)
can be explained by economic recession and emission reduction measures during the Beijing Olympic Games
period, as will be discussed in section 5.1. NOx emissions in Beijing, as shown in Figure 9, are on the decline
in 2007 (by 5.1%) and 2008 (by 3.6%), increase by 3.8% in 2009 and 18.1% in 2010, decrease by 4.9% in 2011,
and stay almost the same in 2012. In the Yangtze River Delta Economic Zone, NOx emissions are generally on
the rise (by 0.6–9.5%), with small (<4.4%) decreases in 2006, 2008, and 2012. NOx emissions in Guangdong
Province fluctuate more during this period, with an increase (by 6.6%) in 2007 and decreases in 2008 (by 9.1%)
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Figure 9. The sum of NOx emissions from all sectors over the mainland China, major economic areas, and western China. The black line is prior emissions (both
anthropogenic and natural sources); the green line is emissions calculated by applying 4D-Var scaling factor in 2010; the red and blue lines are posterior from
hybrid and mass balance inversions, respectively. In the first panel, the red dotted line is the hybrid posterior emissions over East China (18–50∘N, 102–132∘E);
the magenta line in the first panel is the bottom-up anthropogenic emissions from the MEIC inventory plus GEOS-Chem prior natural emissions; the yellow line is
the bottom-up anthropogenic emissions from Xia et al. [2016] plus GEOS-Chem prior natural emissions. The cyan dotted line in the first panel is the top-down
estimate for total emissions in East China (18–50∘N, 102–132∘E) from Mijling et al. [2013].

and 2012 (by 5.5%). Fluctuations of posterior emissions in years other than 2007, 2008, and 2012 during the
study period are about 0.1% to 4.3% compared to each previous year. Emissions in provinces in Western
China are generally on the rise during the studied period, even though NO2 column densities are decreasing
in some of these provinces. Possible causes for opposing trends in NOx emissions versus NO2 columns are
discussed later.

Figure 10. Difference of posterior annual budget of NOx emissions in 2005 from hybrid and mass balance inversions.
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Figure 11. Spatial distribution of changes in total annual NOx hybrid posterior emissions from (a) 2005 to 2012, (b) 2005
to 2010, and (c) 2010 to 2012. The black rectangle in Figure 11a indicates the Mentougou district, which has a different
trend from the whole city of Beijing.

Changes in the emissions from the hybrid inversion from 2005 to 2012 are shown in Figure 11a. NOx emis-
sions are generally on the rise in most parts of China, but decreases are found in Mentougou district of
Beijing (3.1 × 106 kg N yr−1, 12%), the urban center of Guangzhou (6.5 × 106 kg N yr−1, 10%), Shenzhen
(9.3 × 106 kg N yr−1, 18%), Zhuhai (6.5 × 106 kg N yr−1, 26%), Hong Kong (9.3 × 106 kg N yr−1, 18%), and
Macau (2.7 × 106 kg N yr−1, 25%), which are major industrial and economic areas. NOx emissions in the rest
of East China, however, generally increase by more than 1.0 × 106 kg N yr−1 per grid cell in the GEOS-Chem
0.5∘ × 0.667∘ resolution, as shown in Figure 11a. As we have seen in Figure 9, total NOx emissions in Yunnan
Province almost stay the same in 2005 and 2010, but from Figure 11b, there are actually some areas which have
increased emissions (e.g., Kunming, the largest city in Yunnan Province) and some areas which have decreased
emissions (e.g., Pu’er Prefecture). From 2005 to 2010, decreases of NOx emissions are seen in large areas of
Yunnan Province, Guangdong Province, Fujian Province, and Jiangxi Province (Figure 11b). Since 2011, more
decreases (compared to 2010) are detected in Beijing, Tianjin, Hebei Province, Henan Province, Shandong
Province, Hubei Province, and Pearl River Delta area (Figure 11c). These suggest effective pollution control
measures in these regions during China’s eleventh “Five Year Plan” (2006–2010) and twelfth “Five Year Plan”
(2011–2015), which specified for the first time a commitment to reduce NOx emissions by 10%.

In addition to changes in NOx emissions, trends in NO2 columns can be influenced by meteorology. In Figure 8,
initial NO2 column densities (magenta line) are simulated with the same anthropogenic emissions and only
slightly different natural emissions (as shown in Figure 1) over the whole period (the sum of emissions from all
sectors are shown in black in Figure 9), but over China, meteorology is found to cause a 9.3% decrease in 2006
and a 7.7% increase in 2012 even though NOx emissions actually increase from 2005 to 2006 and decrease
from 2011 to 2012. Similar behavior is also seen in other years and in other studied regions. The maximum
magnitude of meteorological contribution to annual changes in NO2 columns ranges from 6.0% (in Xinjiang)
to 29.6% (in Guizhou). This influence from meteorology leads to different trends of NO2 columns and trends
of NOx emissions, suggesting that studies looking at trends in NO2 column densities without accounting for
physical processes like transport, chemistry, and meteorology may incorrectly imply trends of NOx emissions.

Besides differences in trends, posterior NOx emissions also have changes that can be different in magnitude
from changes in posterior NO2 columns from 2005 to 2012, as we have seen in the pseudo-observation test
in section 3.4. A comparison of NO2 column changes and NOx emission changes in major cities is shown in
Table 4. In the urban center of Xi’an, Qingdao, Quanzhou, and Taipei, changes in NOx emissions are about 1
order of magnitude different from changes in NO2 columns. In the urban center of Tianjin, Fuzhou, Hangzhou,
Suzhou, and Shanghai, NOx emissions have increased from 2005 to 2012, but NO2 columns show a decreasing
trend. However, a decreasing trend can be found in surrounding grid cells except for Hangzhou, Suzhou, and
Shanghai. This further shows the influence of atmospheric transport; scaling emissions based on local column
density may not be able to catch the correct trend in emissions.

The seasonality of total NOx emissions and that of natural and anthropogenic contributions are shown in
Figures 12 and 13. In grid cells dominated by anthropogenic emissions, where contribution from anthro-
pogenic sources represents more than 90% of the sum of emissions from all sectors in that grid cell, the peak
of total NOx emissions occurs in winter, when heating leads to increased combustion and emissions. In places
dominated by natural emissions, where contribution from natural sources are more than 90% of the sum of
emissions from all sectors in that grid cell, the peak of total NOx emissions occurs in the summer, when higher
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Table 4. Percentage Change of NOx Emissions and NO2 Column Densities
From 2005 to 2012 in Major Cities (Compared to 2005 Level)a

City NOx Emission (%) NO2 Column Density (%)

Emissions and Column Densities Change in the Same Direction

Beijing 15.96 4.66

Wuhan 45.28 12.25

Xi’an 53.03 2.09

Zhengzhou 29.62 17.05

Dalian 47.59 14.43

Shenyang 40.91 52.50

Quanzhou 23.87 1.13

Emissions and Column Densities Change in Different Direction

Tianjin 39.17 −43.49

Fuzhou 22.24 −32.25

Hangzhou 12.92 −20.21

Suzhou 3.00 −35.72

Shanghai 19.49 −32.67

Qingdao 29.04 −1.68
aChanges of emissions and column densities are calculated at the single

grid cell located at the center of each city.

temperatures lead to more emissions from soil and fertilizer, and lightning occurs more often. Overall, the
summertime peak of total NOx emissions (Figure 12) is dominated by contributions from natural sources.

5. Posterior Evaluations
5.1. Emission Reductions During Beijing Olympic Games
To test the ability of our hybrid inversion to detect variability and trends in NOx emissions, we evaluate
NOx emissions during the Beijing Olympic Games and Paralympic Games period (July to October 2008) and
compare them to emissions in other years (Figure 14). NOx emissions decrease in Beijing (10–30%) and the

Figure 12. Comparison of monthly total posterior NOx emissions from
the hybrid inversion with the sum from bottom-up inventories for all
sectors. The black and green dotted lines are anthropogenic emissions
from HTAP inventory in 2008 and 2010, respectively. The black and green
solid lines show the total bottom-up emissions. The red and blue lines
are posterior emissions from the hybrid inversion in 2008 and 2010.

surrounding provinces (2–14%) start-
ing from 1 month before the Beijing
Olympic Games (July) and lasting until
1 month after the Beijing Paralympic
Games (October). These decreases can
be explained by the several pollution
control strategies implemented during
the Beijing Olympic (8–24 August) and
Paralympic (6–17 September) Games,
when road space rationing and prohibi-
tion of vehicles not meeting standards
led to a 46% reduction of NOx emis-
sions from mobile source [Wang et al.,
2010], and power plants were required
to reduce their emissions by 30% from
June levels. Several heavily polluting
factories as well as all construction activ-
ities were also temporarily ceased dur-
ing this period.

From our top-down estimate, total
NOx emissions in Beijing decreased by
29.5% in July, 10.0% in August, 28.7%
in September, and 22.3% in October

QU ET AL. MONTHLY TOP-DOWN NOX EMISSIONS FOR CHINA 4617



Journal of Geophysical Research: Atmospheres 10.1002/2016JD025852

Figure 13. Posterior NOx emissions (from hybrid inversion) summed
from grid cells dominated by anthropogenic (blue line) and natural (red
line) sources. Each month’s emissions are the average value over the
period of 2005–2012. Vertical bars show the standard deviation of
monthly emissions over 8 years.

compared to average emissions for these
months in other years. In July 2008,
our optimized total monthly emission
in Beijing has reduced by 30% (1.9 ×
106 kg N mon−1) compared to average
July emissions in other studied years.
The relative magnitude of this reduc-
tion is fairly consistent with reductions in
bottom-up anthropogenic emissions of
∼25% (8.3 × 105 kg N mon−1), after the
emission limits measures implemented
in late July of 2008 [Wang et al., 2010]. Dis-
crepancies can be explained by the inclu-
sion of natural emissions in our studies.

5.2. Comparisons With Other
Top-down Studies, Bottom-Up
Inventories and In Situ Measurement
Our optimized national NOx emission in
2007 (7.2 Tg N yr−1) is about 4% less than

the top-down fossil fuel NOx emission of 7.5 Tg N yr−1 based on an inversion in July 2007, by Zhao and
Wang [2009]. Our posterior emission in 2008 (7.0 Tg N yr−1) is 3% larger than the estimate of 6.8 Tg N yr−1 in
Lin et al. [2010], which is based on an inversion in July 2008. Discrepancy between our posterior and estimates
from these two studies can be caused by differences in inversion method, prior emissions, and studied period,
i.e., our annual budget is calculated by averaging monthly emissions in each year, whereas estimates in these
two studies are extrapolated based only on emissions in July. The contribution of Taiwan’s annual emission to
the national annual emission is between 1.4% to 2.5% during the studied period, and therefore, exclusion of
Taiwan’s emission in this study would not be a key contributor to the difference between our result and those
in other studies.

We find a generally increasing trend of NOx emissions in western China, which is consistent with Cui et al.
[2016] in terms of contributions of anthropogenic emissions to observed NO2 column trends, even though
we are using different retrieval products which have different trends as shown in Figure 8 and described in
section 4.2. The anthropogenic contributions they reported are less influenced by meteorology and are more
directly comparable to our posterior emissions. We also find an increase of emissions from 2011 to 2012 in
Xinjiang and Yunnan, supporting the implication in Cui et al. [2016] of an underestimate in the official emis-
sion inventory. The year-to-year variations (e.g., decrease of emissions in 2008 over China and Beijing) are
more clear in our posterior than in Cui et al. [2016], since we present variations on annual time scales. When

Figure 14. Monthly hybrid NOx posterior emissions in Beijing and surrounding city and provinces (Tianjin, Hebei
Province, Shandong Province, and Shanxi Province) in 2008 and average of other years. The vertical bars show the
standard deviation of monthly emissions in other years.
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compared to top-down emissions from Mijling et al. [2013] using GOME-2 observations and the Daily Emission
estimates Constrained by Satellite Observations (DECSO) algorithm (cyan line in the first panel of Figure 9),
our posterior NOx emissions are 10% to 19% larger from 2007 to 2009, almost the same in 2010, and 8%
smaller in 2011. The growth rates of our posterior over East China are also smaller than that from Mijling et al.
[2013] over the same region. The 16% increase of posterior NOx emissions from 2005 to 2012 is close to the
22–23% increase reported in Miyazaki et al. [2017] in the same period, although they are using a different
model (MIROC-Chem), different satellite observations (assimilate multiple species from multiple sensors), and
a different inversion approach (ensemble square root filter) than our study. The average posterior of 2008
and 2010 from Miyazaki et al. [2017] (6.19 Tg N yr−1) is also lower than our posterior mean of these two years
(7.27 Tg N yr−1 ). Trends of our emissions and NO2 columns in several cities, such as Beijing, Shanghai, and
Tianjin, are not exactly the same as the trends in Duncan et al. [2016], even after performing the multivariate
linear regression method described in Lamsal et al. [2015], because trends in different regions across the area
we define for each city can be different, and our resolution of 0.5∘ × 0.667∘ covers larger areas than those in
their study (0.1∘ × 0.1∘).

Comparison of our total posterior emissions with total bottom-up emissions are shown in the first plot of
Figure 9. We consider the anthropogenic bottom-up inventories from the MEIC [Xia et al., 2016], and natural
emissions from the bottom-up inventory described in section 2.1. Over China, a generally increasing trend of
our posterior emission from 2005 to 2011 is fairly consistent with the trend in the bottom-up inventory, which
increases from about 7.65 Tg N yr−1 in 2005 to 9.90 Tg N yr−1 in 2010 (29% increase) based on MEIC anthro-
pogenic emissions, and increases from 6.96 Tg N yr−1 in 2005 to 10.31 Tg N yr−1 in 2011 (48% increase) based
on Xia et al. [2016]. Our posterior shows a 2% decrease from 2007 to 2008 as a consequence of the Olympic
Games and economic recession, although only a slower growth rate of emissions during this period are
evident in the bottom-up inventories. Starting from 2011, both the hybrid posterior and emissions from
Xia et al. [2016] start to decrease. The bottom-up estimates shown in Figure 9 have both larger emissions and
emission growth rates than our estimates, but our posterior emissions in 2006 (6.81 Tg N yr−1) are larger than
the bottom-up estimate of 6.33 Tg N yr−1 from INTEX-B for the same year [Zhang et al., 2009]. Our underesti-
mates can be attributed to the weighting of satellite error in our hybrid inversions and the tendency of our
posterior to underestimate the growth rate as described in section 3.4. The lower values from the top-down
emissions from our study, Mijling et al. [2013] and Miyazaki et al. [2017] could also be influenced by factors such
as model resolution errors in representing NO2 columns at the satellite footprint scale [Valin et al., 2011], sys-
tematic low biases in tropospheric OMI NO2 retrievals from, e.g., use of spatially coarse prior profiles [Laughner
et al., 2016] and possibly high biased estimates of emissions and growth rate in the bottom-up inventory.

We also compare total optimized top-down NOx emission in 2008 and 2010 with the sum of NOx emissions
from bottom-up inventories in corresponding years. In Figure 12, our posterior emissions have a general
increasing trend from 2008 to 2010, whereas this trend is evident in the HTAP inventory but not in the total
bottom-up (including natural sources) emissions. Top-down emissions are more consistent with bottom-up
emissions during summertime but have lower values the rest of the year. This is similar to the difference in
column density observed by satellite and simulated by GEOS-Chem, suggesting that prior emissions or mete-
orology are better in summertime. In wintertime, longer NOx lifetime may also lead to larger uncertainties
and differences between the model and OMI observations.

We also attempt to evaluate the trend of our total posterior NOx emission in Beijing in August from 2006 to
2010 with ground-based measurements by Zhang et al. [2014], located at (39.99∘N, 116.31∘E), although the
findings are limited. The surface measurement of NO2 concentration in Zhang et al. [2014] show a 5% decrease
from 2006 to 2007, a 41% decrease in 2008, a 48% increase in 2009 and a 5% decrease in 2010. Our posterior
NO2 surface concentration has a very different trend compared to this in situ measurement (R = −0.54 for
prior, R = 0.33 for posterior), likely as our posterior concentration averaged over a grid cell are not directly
comparable with surface measurements at one single site. However, our posterior emission have the same
decrease in August 2008, as the ground-based measurement, which reflects the emission reduction during
the Beijing Olympic Games inside and surrounding Beijing.

6. Conclusions and Discussions

In this study we combine two traditional inversion methods to facilitate more accurate decadal-scale NOx

emission inversions in China. When the initial guess and true emissions follow the same spatial structure,
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performance of a newly derived mass balance approach has smaller NMSE (<25%) than a 4D-Var inversion
with off-diagonal error covariance matrix. NMSE of the 4D-Var posterior is even smaller than that of the mass
balance posterior when the initial guess is spatially different from the true emissions (67% smaller when the
initial guess is low, and 96% smaller when the initial guess is high). We then develop a hybrid inversion with
4D-Var method applied first to improve emissions in a base year, followed by further improvement in each indi-
vidual year using the mass balance approach. This hybrid method only takes one eighth of the time needed
by standard 4D-Var to finish an 8 year inversion and can better capture trends and spatial variability of NOx

emissions as demonstrated through pseudo inversions than mass balance (R = 0.977 using hybrid versus
R = 0.920 using mass balance when initial guess is low, and R = 0.968 using hybrid versus R = 0.965 using
mass balance when initial guess is high), and leads to better correlation with OMI column density over China
(R=0.948 using hybrid inversion versus R=0.911 using mass balance).

Using this hybrid inversion approach, an overall increase of both NO2 column densities (by 9%) and NOx emis-
sions (by 16%) in China is detected; however, we also find important regional variations in these trends, as well
as regions in which trends in emissions and NO2 columns are not synchronized. The former is evident in emis-
sion trends, in particular, grid cells that are unique from their surroundings, such as the increase of emissions
in Beijing in contrast to the decrease of emissions in Mentougou district of Beijing. The latter, owing to the
influence from meteorology, has important implications for emissions trend studies. Meteorological factors
are found to cause a maximum of 29.6% annual change in NO2 columns and lead to a 7.7% increase of national
NO2 column density in 2012 (compared to 2011 level), even though NOx emissions decreased between these
years. Within our studied period, NOx emissions generally rise in the Yangtze River Delta Economic Zone
(8%), decrease in Guangdong Province (6%), and both increase and decrease in Beijing, depending on the
year. Overall, emissions decrease by 10–26% in major cities (e.g., Mentougou district of Beijing, Guangzhou,
Shenzhen, Zhuhai, Hong Kong, and Macau) from 2005 to 2012, whereas emissions increase in the rest of
China. From 2010 to 2012, decreases of NOx emissions occur in the broader area of Beijing, Tianjin, Hebei
Province, Henan Province, Shandong Province, Hubei Province, and Pearl River Delta area, coinciding with
China’s enforcement of its twelfth “Five Year Plan,” which specified for the first time a national commitment
to reduce NOx emissions. Decreases of NOx emissions (by ∼10.0–29.5%) are also found during the Beijing
Olympic and Paralympic Games, suggesting effective pollution control strategies, during that period, and
consistency between our results and previous studies [e.g., Wang et al., 2010].

We evaluate the hybrid inversion and its ability to detect variation of NOx emissions by comparing posterior
emissions with bottom-up inventories and in situ NO2 concentration measurements. Our posterior estimates
of anthropogenic NOx emissions are 7–20% smaller and have smaller growth rate when compared to the
MEIC inventory. Monthly posterior emissions have the same seasonality in 2008 and 2010 with the HTAP
inventory but have more interannual variations.

The inversion is based on the assumption that observations are unbiased. We do not estimate hybrid poste-
rior uncertainty in this study because it depends on uncertainty of 4D-Var posterior emissions in 2010, which
is difficult to estimate rigorously [Bousserez et al., 2015]. NASA standard and DOMINO products for OMI NO2

retrievals can be different by 50% over densely populated area in the studied domain. Based on this discrep-
ancy in retrieval products and differences caused by data processing approaches, we recognized that our
posterior emissions are more robust in Yangtze River Delta, Xinjiang, Ningxia, and Inner Mongolia. Several
factors leading to uncertainties in our top-down emission inventory are as follows:

1. Uncertainties in CO, SO2 and other species’ emissions on NO2 columns are not considered when performing
the inversion. Also, all changes of NOx emissions are penalized according to uncertainties in anthropogenic
emissions. However, neither of these factors likely lead to large uncertainties since sensitivities of NO2

columns to other species and sectors are more than 2 orders of magnitude smaller than sensitivities to
anthropogenic NOx emissions, except in summertime (when sensitivity with respect to lightning NOx has
the largest value) when the prior model performs well, regardless.

2. The simple mass balance approach is found to have considerable error, owing to transport and chemistry.
However, other more sophisticated mass balance methods that change emissions iteratively [e.g., Ghude
et al., 2013] account for the nonlinear response of NO2 column by a perturbation approach [e.g., Lamsal et al.,
2011] and use a kernel to account for the influence of transport [e.g., Toenges Schuller et al., 2006; Boersma
et al., 2008] may perform better.
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3. We use an error covariance matrix with a constant error correlation length scale across all grid cells. Future
refined estimates should consider variable length scales that more realistically reflect correlation of NOx

emissions from different sectors in different regions.
4. The amount of satellite observations available each year are different after data filtering, as there are more

observations affected by row anomalies after 2009, which implies that posterior emissions in the first few
years may be more reliable.

5. The tropospheric OMI NO2 retrievals we employed in this study are likely to have low biases owing to the
use of spatially coarse prior profiles [Laughner et al., 2016].

6. The relative coarse model resolution used in this study could lead to uncertainties in NO2 loss rate and
therefore biases in predicted NO2 columns [Valin et al., 2011].

Appendix A: Derivation of Mass Balance Equations

Here we derive mass balance equations according to maximum likelihood estimation given prior emission
Ea(i, j) and top-down estimate Et(i, j) (defined in equation (A1)), which are assumed to have lognormally
distributed errors. These are different from the original equations from Martin et al. [2003a], wherein the
mean and standard deviation of this lognormal distribution were assumed (incorrectly) be ln(E) and ln(𝜇),
respectively. In the simplest case, a top-down NOx emission at (i, j) is

Et(i, j) = Ea(i, j)
SCDobs(i, j)
SCDGC(i, j)

. (A1)

We derive our mass balance equation for emissions scaling factors based on maximum likelihood estimation,
which weights top-down and bottom-up emissions by their uncertainties. We define a random variable X ,
where

X =
{

1 if E(i, j) is the true emission
0 if E(i, j) is not the true emission

(A2)

Assuming log-normal distribution for emissions, the probability that a given value E(i, j) is the true emission
can therefore be expressed as follows:

P(X = 1) = 1√
2𝜋E(i,j)𝜎a(i,j)

exp
[
−(ln E(i,j)−𝜇a(i,j))2

2𝜎2
a (i,j)

]
× 1√

2𝜋E(i,j)𝜎t(i,j)
exp

[
−(ln E(i,j)−𝜇t(i,j))2

2𝜎2
t (i,j)

] (A3)

𝜇a(i, j) = ln
Ea(i, j)√

1 + 𝜖2
a(i, j)

(A4)

𝜇t(i, j) = ln
Et(i, j)√

1 + 𝜖2
t (i, j)

(A5)

𝜎
2
a(i, j) = ln (1 + 𝜖

2
a(i, j)) (A6)

𝜎
2
t (i, j) = ln (1 + 𝜖

2
t (i, j)) (A7)

where 𝜖t and 𝜖a are relative errors, 𝜇t and 𝜇a are location parameters, and 𝜎t and 𝜎a are scale parameters of
the top-down and prior emissions, respectively. Since error in top-down emissions mainly come from satellite
observations, we use an average uncertainty of these observations (∼20%) for 𝜖t . 𝜖a is set as 40% following
assumptions in section 3.1.1. To account for instrument detection limits, the mass balance inversion is only
applied to grid cells in which the observed column density is greater than 1.5 × 1015 molecules cm−2. This
value is higher than the detection limit in 4D-Var assimilation, because we are calculating limit for monthly
averaged NO2 column density here, whereas in 4D-Var the limit corresponds to individual observations.
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An emission from maximum likelihood estimation (MLE) has the greatest probability to be the true state given
prior and top-down emission, and would satisfy

d ln P(X = 1)
dE

= 0. (A8)

Solving this equation, we get

E(i, j) = exp

⎡⎢⎢⎢⎣
ln (1 + 𝜖2

t (i, j)) × ln Ea(i,j)√
1+𝜖2

a (i,j)
+ ln (1 + 𝜖2

a(i, j)) × ln Et(i,j)√
1+𝜖2

t (i,j)

ln (1 + 𝜖2
t (i, j)) + ln (1 + 𝜖2

a(i, j))

−
2 ln (1 + 𝜖2

a(i, j)) ln (1 + 𝜖2
t (i, j))

ln (1 + 𝜖2
t (i, j)) + ln (1 + 𝜖2

a(i, j))

]
.

(A9)

This optimized emission balances bottom-up and top-down emissions by weighting these two estimates in
terms of their relative errors. The emission scaling factor of this approach can then be expressed as

𝜎mb(i, j) =
E(i, j)

Ea(i, j)
. (A10)

If considering the local column at (i, j) is influenced by both its own emissions and transport of emissions from
surrounding cells, we can apply an averaging kernel K following Toenges Schuller et al. [2006] and Boersma
et al. [2008]. Here

K = 1
k + 8

⎡⎢⎢⎣
1 1 1
1 k 1
1 1 1

⎤⎥⎥⎦ (A11)

The smoothing parameter k is set to be 8 since it maximizes the correlation between smoothed emissions
and simulated column density in East Asia. The weight of changes in emissions considering transport from
adjacent cell is

w =
Ea

i,j

Σ1
m=−1Σ

1
l=−1Kl,mEb

i+l,j+m

(A12)

In the tests of this study, we only apply this weight w to the difference of SCDobs

SCDGC
from unity. Define r = SCDobs

SCDGC
,

the top-down emission is therefore

Et =
⎧⎪⎨⎪⎩
((r − 1) × w + 1) × Ea (r > 1)
Ea (r = 1)
(1 − (1 − r) × w) × Ea (r < 1)

(A13)

We recognized that the sum of the modes of the lognormal distributions in each grid cell is not strictly
the mode of the distribution of the aggregate emissions, but for this step we approximate the grid cell
distributions as being normally distributed.

References
Beirle, S., K. F. Boersma, U. Platt, M. G. Lawrence, and T. Wagner (2011), Megacity emissions and lifetimes of nitrogen oxides probed from

space, Science, 333(6050), 1737–1739, doi:10.1126/science.1207824.
Bey, I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. Li, H. Y. Liu, L. J. Mickley, and M. G. Schultz (2001), Global modeling

of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106(D19), 23,073–23,095,
doi:10.1029/2001JD000807.

Bhatnagar, A. (2006), Environmental cardiology studying mechanistic links between pollution and heart disease, Circ. Res., 99(7), 692–705,
doi:10.1161/01.RES.0000243586.99701.cf.

Boersma, K. F., D. J. Jacob, E. J. Bucsela, A. E. Perring, R. Dirksen, R. J. van der A, R. M. Yantosca, R. J. Park, M. O. Wenig, and T. H. Bertram (2008),
Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the eastern United
States and Mexico, Atmos. Environ., 42(19), 4480–4497, doi:10.1016/j.atmosenv.2008.02.004.

Acknowledgments
Z.Qu, D.K.Henze, Y.Wang, X.Xu, and
J.Wang gratefully acknowledge
support from National Aeronautics
and Space Administration grant
NNX13AK86G and Nicolas Bousserez
for valuable discussion. This work
utilized the Janus supercomputer,
which is supported by the National
Science Foundation (award
CNS-0821794) and the University
of Colorado Boulder. The Janus
supercomputer is a joint effort of
the University of Colorado Boulder,
the University of Colorado Denver,
and the National Center for
Atmospheric Research. Janus is
operated by the University of
Colorado Boulder. The data used
in this paper can be obtained from
the corresponding author through
e-mail (zhen.qu@colorado.edu).

QU ET AL. MONTHLY TOP-DOWN NOX EMISSIONS FOR CHINA 4622

http://dx.doi.org/10.1126/science.1207824
http://dx.doi.org/10.1029/2001JD000807
http://dx.doi.org/10.1161/01.RES.0000243586.99701.cf
http://dx.doi.org/10.1016/j.atmosenv.2008.02.004


Journal of Geophysical Research: Atmospheres 10.1002/2016JD025852

Bousserez, N., D. K. Henze, A. Perkins, K. W. Bowman, M. Lee, J. Liu, F. Deng, and D. B. A. Jones (2015), Improved analysis-error covariance
matrix for high-dimensional variational inversions: Application to source estimation using a 3D atmospheric transport model,
Q. J. R. Meteorol. Soc., 141(690), 1906–1921, doi:10.1002/qj.2495.

Bucsela, E. J., E. A. Celarier, M. O. Wenig, J. F. Gleason, J. P. Veefkind, K. F. Boersma, and E. J. Brinksma (2006), Algorithm for NO2 vertical col-
umn retrieval from the ozone monitoring instrument, IEEE Trans. Geosci. Remote Sens., 44(5), 1245–1258, doi:10.1109/TGRS.2005.863715.

Bucsela, E. J., N. A. Krotkov, E. A. Celarier, L. N. Lamsal, W. H. Swartz, P. K. Bhartia, K. F. Boersma, J. P. Veefkind, J. F. Gleason, and
K. E. Pickering (2013), A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: Applications
to OMI, Atmos. Meas. Tech., 6(10), 2607–2626, doi:10.5194/amt-6-2607-2013.

Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu (1995), A Limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16(5),
1190–1208, doi:10.1137/0916069.

Castellanos, P., and K. F. Boersma (2012), Reductions in nitrogen oxides over Europe driven by environmental policy and economic
recession, Sci. Rep., 2, 265, doi:10.1038/srep00265.

Castellanos, P., K. F. Boersma, and G. R. van der Werf (2014), Satellite observations indicate substantial spatiotemporal variability in biomass
burning NOx emission factors for South America, Atmos. Chem. Phys., 14(8), 3929–3943, doi:10.5194/acp-14-3929-2014.

Celarier, E. A., et al. (2008), Validation of Ozone Monitoring Instrument nitrogen dioxide columns, J. Geophys. Res., 113, D15S15,
doi:10.1029/2007JD008908.

Chan, A. W. H., M. N. Chan, J. D. Surratt, P. S. Chhabra, C. L. Loza, J. D. Crounse, L. D. Yee, R. C. Flagan, P. O. Wennberg, and J. H. Seinfeld (2010),
Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation, Atmos. Chem. Phys., 10(15), 7169–7188,
doi:10.5194/acp-10-7169-2010.

Crutzen, P. J. (1979), The role of NO and NO2 in the chemistry of the troposphere and stratosphere, Annu. Rev. Earth Planet. Sci., 7(1),
443–472, doi:10.1146/annurev.ea.07.050179.002303.

Cui, Y., J. Lin, C. Song, M. Liu, Y. Yan, Y. Xu, and B. Huang (2016), Rapid growth in nitrogen dioxide pollution over Western China, 2005–2013,
Atmos. Chem. Phys., 16(10), 6207–6221, doi:10.5194/acp-16-6207-2016.

de Foy, B., J. L. Wilkins, Z. Lu, D. G. Streets, and B. N. Duncan (2014), Model evaluation of methods for estimating surface emissions and
chemical lifetimes from satellite data, Atmos. Environ., 98, 66–77, doi:10.1016/j.atmosenv.2014.08.051.

Ding, J., R. J. van der A, B. Mijling, P. F. Levelt, and N. Hao (2015), NOx emission estimates during the 2014 Youth Olympic Games in Nanjing,
Atmos. Chem. Phys., 15(16), 9399–9412, doi:10.5194/acp-15-9399-2015.

Driscoll, C. T., G. B. Lawrence, A. J. Bulger, T. J. Butler, C. S. Cronan, C. EAGAR, K. F. Lambert, G. E. Likens, J. L. Stoddard, and K. C. Weathers
(2001), Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies,
BioScience, 51(3), 180–198, doi:10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2.

Duncan, B. N., Y. Yoshida, B. de Foy, L. N. Lamsal, D. G. Streets, Z. Lu, K. E. Pickering, and N. A. Krotkov (2013), The observed response of Ozone
Monitoring Instrument (OMI) NO2 columns to NOx emission controls on power plants in the United States: 2005–2011, Atmos. Environ.,
81, 102–111, doi:10.1016/j.atmosenv.2013.08.068.

Duncan, B. N., L. N. Lamsal, A. M. Thompson, Y. Yoshida, Z. Lu, D. G. Streets, M. M. Hurwitz, and K. E. Pickering (2016), A space-based,
high-resolution view of notable changes in urban NOx pollution around the world (2005–2014), J. Geophys. Res., 121, 976–996,
doi:10.1002/2015JD024121.

Evans, M. J., and D. J. Jacob (2005), Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen
oxides, ozone, and OH, Geophys. Res. Lett., 32, L09813, doi:10.1029/2005GL022469.

Ghio, A. J., C. Kim, and R. B. Devlin (2000), Concentrated ambient air particles induce mild pulmonary inflammation in healthy human
volunteers, Am. J. Respir. Crit. Care Med., 162(3), 981–988, doi:10.1164/ajrccm.162.3.9911115.

Ghude, S. D., G. G. Pfister, C. Jena, R. J. van der A, L. K. Emmons, and R. Kumar (2013), Satellite constraints of nitrogen oxide (NOx ) emissions
from India based on OMI observations and WRF-Chem simulations, Geophys. Res. Lett., 40, 423–428, doi:10.1002/grl.50065.

Giglio, L., J. T. Randerson, and G. R. Werf (2013), Analysis of daily, monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4), J. Geophys. Res. Biogeosci., 118, 317–328, doi:10.1002/jgrg.20042.

Gu, D., Y. Wang, C. Smeltzer, and K. F. Boersma (2014), Anthropogenic emissions of NOx over China: Reconciling the difference of inverse
modeling results using GOME-2 and OMI measurements, J. Geophys. Res. Atmos., 119, 7732–7740, doi:10.1002/2014JD021644.

Gu, D., Y. Wang, R. Yin, Y. Zhang, and C. Smeltzer (2016), Inverse modelling of NOx emissions over eastern China: Uncertainties due to
chemical non-linearity, Atmos. Meas. Tech., 9(10), 5193–5201, doi:10.5194/amt-9-5193-2016.

Haagen-Smit, A. J. (1952), Chemistry and physiology of Los Angeles Smog, Ind. Eng. Chem., 44(6), 1342–1346, doi:10.1021/ie50510a045.
Hansen, P. C., (1999), The L-curve and its use in the numerical treatment of inverse problems, IMM Tech. Rep. 15/1999, Kongens Lyngby,

Denmark.
Henze, D. K., A. Hakami, and J. H. Seinfeld (2007), Development of the adjoint of GEOS-Chem, Atmos. Chem. Phys., 7(9), 2413–2433,

doi:10.5194/acp-7-2413-2007.
Henze, D. K., J. H. Seinfeld, and D. T. Shindell (2009), Inverse modeling and mapping US air quality influences of inorganic PM2.5 precursor

emissions using the adjoint of GEOS-Chem, Atmos. Chem. Phys., 9(16), 5877–5903.
Herron-Thorpe, F. L., B. K. Lamb, G. H. Mount, and J. K. Vaughan (2010), Evaluation of a regional air quality forecast model for tropospheric

NO2 columns using the OMI/Aura satellite tropospheric NO2 product, Atmos. Chem. Phys., 10(18), 8839–8854.
Huang, X., Y. Song, M. Li, J. Li, Q. Huo, X. Cai, T. Zhu, M. Hu, and H. Zhang (2012), A high-resolution ammonia emission inventory in China,

Global Biogeochem. Cycles, 26, GB1030, doi:10.1029/2011GB004161.
Ialongo, I., J. Herman, N. Krotkov, L. Lamsal, K. F. Boersma, J. Hovila, and J. Tamminen (2016), Comparison of OMI NO2 observations and their

seasonal and weekly cycles with ground-based measurements in Helsinki, Atmos. Meas. Tech., 9(10), 5203–5212.
Jiang, Z., D. B. A. Jones, H. M. Worden, and D. K. Henze (2015), Sensitivity of top-down CO source estimates to the modeled vertical structure

in atmospheric CO, Atmos. Chem. Phys., 15(3), 1521–1537, doi:10.5194/acp-15-1521-2015.
Janssens-Maenhout, G., et al. (2015), HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study

hemispheric transport of air pollution, Atmos. Chem. Phys., 15(19), 11,411–11,432, doi:10.5194/acp-15-11411-2015.
Jin, X., and T. Holloway (2015), Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring

Instrument, J. Geophys. Res. Atmos., 120, 7229–7246, doi:10.1002/2015JD023250.
Keller, C. A., M. S. Long, R. M. Yantosca, A. M. Da Silva, S. Pawson, and D. J. Jacob (2014), HEMCO v1.0: A versatile, ESMF-compliant

component for calculating emissions in atmospheric models, Geosci. Model Dev., 7(4), 1409–1417, doi:10.5194/gmd-7-1409-2014.
Kim, S. W., A. Heckel, S. A. McKeen, G. J. Frost, E. Y. Hsie, M. K. Trainer, A. Richter, J. P. Burrows, S. E. Peckham, and G. A. Grell (2006),

Satellite-observed U.S. power plant NOx emission reductions and their impact on air quality, Geophys. Res. Lett., 33, L22812,
doi:10.1029/2006GL027749.

QU ET AL. MONTHLY TOP-DOWN NOX EMISSIONS FOR CHINA 4623

http://dx.doi.org/10.1002/qj.2495
http://dx.doi.org/10.1109/TGRS.2005.863715
http://dx.doi.org/10.5194/amt-6-2607-2013
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1038/srep00265
http://dx.doi.org/10.5194/acp-14-3929-2014
http://dx.doi.org/10.1029/2007JD008908
http://dx.doi.org/10.5194/acp-10-7169-2010
http://dx.doi.org/10.1146/annurev.ea.07.050179.002303
http://dx.doi.org/10.5194/acp-16-6207-2016
http://dx.doi.org/10.1016/j.atmosenv.2014.08.051
http://dx.doi.org/10.5194/acp-15-9399-2015
http://dx.doi.org/10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2
http://dx.doi.org/10.1016/j.atmosenv.2013.08.068
http://dx.doi.org/10.1002/2015JD024121
http://dx.doi.org/10.1029/2005GL022469
http://dx.doi.org/10.1164/ajrccm.162.3.9911115
http://dx.doi.org/10.1002/grl.50065
http://dx.doi.org/10.1002/jgrg.20042
http://dx.doi.org/10.1002/2014JD021644
http://dx.doi.org/10.5194/amt-9-5193-2016
http://dx.doi.org/10.1021/ie50510a045
http://dx.doi.org/10.5194/acp-7-2413-2007
http://dx.doi.org/10.1029/2011GB004161
http://dx.doi.org/10.5194/acp-15-1521-2015
http://dx.doi.org/10.5194/acp-15-11411-2015
http://dx.doi.org/10.1002/2015JD023250
http://dx.doi.org/10.5194/gmd-7-1409-2014
http://dx.doi.org/10.1029/2006GL027749


Journal of Geophysical Research: Atmospheres 10.1002/2016JD025852

Konovalov, I. B., M. Beekmann, A. Richter, and J. P. Burrows (2006), Inverse modelling of the spatial distribution of NOx emissions on a
continental scale using satellite data, Atmos. Chem. Phys., 6(7), 1747–1770, doi:10.5194/acp-6-1747-2006.

Kopacz, M., D. J. Jacob, D. K. Henze, C. L. Heald, D. G. Streets, and Q. Zhang (2009), Comparison of adjoint and analytical Bayesian inversion
methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of CO columns, J. Geophys. Res.,
114, D04305, doi:10.1029/2007JD009264.

Krotkov, N. A., et al. (2016), Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16(7),
4605–4629, doi:10.5194/acp-16-4605-2016.

Kurokawa, J., T. Ohara, T. Morikawa, S. Hanayama, G. Janssens-Maenhout, T. Fukui, K. Kawashima, and H. Akimoto (2013), Emissions of air
pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2, Atmos.
Chem. Phys., 13(21), 11,019–11,058, doi:10.5194/acp-13-11019-2013.

Lamsal, L. N., R. V. Martin, A. Padmanabhan, A. van Donkelaar, Q. Zhang, C. E. Sioris, K. Chance, T. P. Kurosu, and M. J. Newchurch (2011),
Application of satellite observations for timely updates to global anthropogenic NOx emission inventories, Geophys. Res. Lett., 38,
L05810, doi:10.1029/2010GL046476.

Lamsal, L. N., B. N. Duncan, Y. Yoshida, N. A. Krotkov, K. E. Pickering, D. G. Streets, and Z. Lu (2015), U.S. NO2 trends (2005–2013): EPA Air
Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI), Atmos. Environ., 110, 130–143,
doi:10.1016/j.atmosenv.2015.03.055.

Laughner, J. L., A. Zare, and R. C. Cohen (2016), Effects of daily meteorology on the interpretation of space-based remote sensing of NO2,
Atmos. Chem. Phys., 16(23), 15,247–15,264, doi:10.5194/acp-16-15247-2016.

Lee, D.-G., et al. (2011), Korean national emissions inventory system and 2007 air pollutant emissions, Asian J. Atmos. Environ., 5(4), 278–291,
doi:10.5572/ajae.2011.5.4.278.

Li, M., et al. (2015), MIX: A mosaic Asian anthropogenic emission inventory for the MICS-Asia and the HTAP projects, Atmos. Chem. Phys.,
15(23), 34,813–34,869, doi:10.5194/acpd-15-34813-2015.

Likens, G. E., F. H. Bormann, and N. M. Johnson (1972), Acid rain, Environ. Sci. Policy Sustainable Dev., 14(2), 33–40,
doi:10.1080/00139157.1972.9933001.

Lin, J. T., M. B. McElroy, and K. F. Boersma (2010), Constraint of anthropogenic NOx emissions in China from different sectors: A new
methodology using multiple satellite retrievals, Atmos. Chem. Phys., 10(1), 63–78, doi:10.5194/acp-10-63-2010.

Lin, J. T., and M. B. McElroy (2011), Detection from space of a reduction in anthropogenic emissions of nitrogen oxides during the Chinese
economic downturn, Atmos. Chem. Phys., 11(15), 8171–8188, doi:10.5194/acp-11-8171-2011.

Liu, H., D. J. Jacob, I. Bey, and R. M. Yantosca (2001), Constraints from 210Pb and 7Be on wet deposition and transport in a global
three-dimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res., 106(D11), 12,109–12,128,
doi:10.1029/2000JD900839.

Liu, F., Q. Zhang, R. J. van der A, B. Zheng, D. Tong, L. Yan, Y. Zheng, and K. He (2016), Recent reduction in NOx emissions over China:
Synthesis of satellite observations and emission inventories, Environ. Res. Lett., 11(11), 114002, doi:10.1088/1748-9326/11/11/114002.

Lu, Z., Q. Zhang, and D. G. Streets (2011), Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010,
Atmos. Chem. Phys., 11(18), 9839–9864, doi:10.5194/acp-11-9839-2011.

Lu, Z., D. G. Streets, B. de Foy, L. N. Lamsal, B. N. Duncan, and J. Xing (2015), Emissions of nitrogen oxides from US urban
areas: Estimation from Ozone Monitoring Instrument retrievals for 2005–2014, Atmos. Chem. Phys., 15(18), 10,367–10.383,
doi:10.5194/acp-15-10367-2015.

Martin, R. V., D. J. Jacob, K. Chance, T. P. Kurosu, P. I. Palmer, and M. J. Evans (2003a), Global inventory of nitrogen oxide emissions constrained
by space-based observations of NO2 columns, J. Geophys. Res., 108(D17), 4537, doi:10.1029/2003JD003453.

Martin, R. V., D. J. Jacob, R. M. Yantosca, M. Chin, and P. Ginoux (2003b), Global and regional decreases in tropospheric oxidants from
photochemical effects of aerosols, J. Geophys. Res., 108(D3), 4097, doi:10.1029/2002JD002622.

McKeen, S. A., E. Y. Hsie, and S. C. Liu (1991), A study of the dependence of rural ozone on ozone precursors in the eastern United States,
J. Geophys. Res., 96(D8), 15,377–15,394, doi:10.1029/91JD01282.

Mijling, B., and R. J. van der A (2012), Using daily satellite observations to estimate emissions of short-lived air pollutants on a mesoscopic
scale, J. Geophys. Res., 117, D17302, doi:10.1029/2012JD017817.

Mijling, B., R. J. van der A, and Q. Zhang (2013), Regional nitrogen oxides emission trends in East Asia observed from space, Atmos. Chem.
Phys., 13(23), 12,003–12,012, doi:10.5194/acp-13-12003-2013.

Miyazaki, K., H. J. Eskes, and K. Sudo (2012), Global NOx emission estimates derived from an assimilation of OMI tropospheric NO2 columns,
Atmos. Chem. Phys., 12(5), 2263–2288, doi:10.5194/acp-12-2263-2012.

Miyazaki, K., H. Eskes, K. Sudo, K. F. Boersma, K. Bowman, and Y. Kanaya (2017), Decadal changes in global surface NOx emissions from
multi-constituent satellite data assimilation, Atmos. Chem. Phys., 17, 807–837, doi:10.5194/acp-17-807-2017.

Müller, J. F., and T. Stavrakou (2005), Inversion of CO and NOx emissions using the adjoint of the IMAGES model, Atmos. Chem. Phys., 5(5),
1157–1186, doi:10.5194/acp-5-1157-2005.

Murray, L. T., D. J. Jacob, J. A. Logan, R. C. Hudman, and W. J. Koshak (2012), Optimized regional and interannual variability of lightning in a
global chemical transport model constrained by LIS/OTD satellite data, J. Geophys. Res., 117, D20307, doi:10.1029/2012JD017934.

Nel, A. (2005), Air pollution-related illness: Effects of particles, Science, 308(5723), 804–806, doi:10.1126/science.1108752.
Ohara, T., H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, and T. Hayasaka (2007), An Asian emission inventory of anthropogenic

emission sources for the period 1980–2020, Atmos. Chem. Phys., 7(16), 4419–4444, doi:10.5194/acp-7-4419-2007.
Park, R. J., D. J. Jacob, B. D. Field, R. M. Yantosca, and M. Chin (2004), Natural and transboundary pollution influences

on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy, J. Geophys. Res., 109, D15204,
doi:10.1029/2003JD004473.

Pickering, K. E., Y. Wang, W. K. Tao, C. Price, and J. F. Müller (1998), Vertical distributions of lightning NOx for use in regional and global
chemical transport models, J. Geophys. Res., 103(D23), 31,203–31,216, doi:10.1029/98JD02651.

Platt, U., and J. Stutz (2008), Differential Optical Absorption Spectroscopy, Phys. of Earth and Space Environ., Springer, Berlin,
doi:10.1007/978-3-540-75776-4.

Price, C., and D. Rind (1992), A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res., 97(D9),
9919–9933, doi:10.1029/92JD00719.

Russell, A. R., L. C. Valin, and R. C. Cohen (2012), Trends in OMI NO2 observations over the United States: effects of emission control
technology and the economic recession, Atmos. Chem. Phys., 12(24), 12,197–12,209, doi:10.5194/acp-12-12197-2012.

Ryerson, T. B., et al. (2001), Observations of ozone formation in power plant plumes and implications for ozone control strategies, Science,
292(5517), 719–723, doi:10.1126/science.1058113.

QU ET AL. MONTHLY TOP-DOWN NOX EMISSIONS FOR CHINA 4624

http://dx.doi.org/10.5194/acp-6-1747-2006
http://dx.doi.org/10.1029/2007JD009264
http://dx.doi.org/10.5194/acp-16-4605-2016
http://dx.doi.org/10.5194/acp-13-11019-2013
http://dx.doi.org/10.1029/2010GL046476
http://dx.doi.org/10.1016/j.atmosenv.2015.03.055
http://dx.doi.org/10.5194/acp-16-15247-2016
http://dx.doi.org/10.5572/ajae.2011.5.4.278
http://dx.doi.org/10.5194/acpd-15-34813-2015
http://dx.doi.org/10.1080/00139157.1972.9933001
http://dx.doi.org/10.5194/acp-10-63-2010
http://dx.doi.org/10.5194/acp-11-8171-2011
http://dx.doi.org/10.1029/2000JD900839
http://dx.doi.org/10.1088/1748-9326/11/11/114002
http://dx.doi.org/10.5194/acp-11-9839-2011
http://dx.doi.org/10.5194/acp-15-10367-2015
http://dx.doi.org/10.1029/2003JD003453
http://dx.doi.org/10.1029/2002JD002622
http://dx.doi.org/10.1029/91JD01282
http://dx.doi.org/10.1029/2012JD017817
http://dx.doi.org/10.5194/acp-13-12003-2013
http://dx.doi.org/10.5194/acp-12-2263-2012
http://dx.doi.org/10.5194/acp-17-807-2017
http://dx.doi.org/10.5194/acp-5-1157-2005
http://dx.doi.org/10.1029/2012JD017934
http://dx.doi.org/10.1126/science.1108752
http://dx.doi.org/10.5194/acp-7-4419-2007
http://dx.doi.org/10.1029/2003JD004473
http://dx.doi.org/10.1029/98JD02651
http://dx.doi.org/10.1007/978-3-540-75776-4
http://dx.doi.org/10.1029/92JD00719
http://dx.doi.org/10.5194/acp-12-12197-2012
http://dx.doi.org/10.1126/science.1058113


Journal of Geophysical Research: Atmospheres 10.1002/2016JD025852

Sauvage, B., R. V. Martin, A. van Donkelaar, X. Liu, K. Chance, L. Jaeglé, P. I. Palmer, S. Wu, and T. M. Fu (2007), Remote sensed and in situ
constraints on processes affecting tropical tropospheric ozone, Atmos. Chem. Phys., 7(3), 815–838, doi:10.5194/acp-7-815-2007.

Singh, K., M. Jardak, A. Sandu, K. Bowman, M. Lee, and D. Jones (2011), Construction of non-diagonal background error covariance matrices
for global chemical data assimilation, Geosci. Model Dev., 4(2), 299–316, doi:10.5194/gmd-4-299-2011.

Stavrakou, T., J. F. Müller, K. F. Boersma, I. De Smedt, and R. J. van der A (2008), Assessing the distribution and growth rates of NOx emission
sources by inverting a 10-year record of NO2 satellite columns, Geophys. Res. Lett., 35, L10801, doi:10.1029/2008GL033521.

Stavrakou, T., J. F. Müller, K. F. Boersma, R. J. van der A, J. Kurokawa, T. Ohara, and Q. Zhang (2013), Key chemical NOx sink uncertainties and
how they influence top-down emissions of nitrogen oxides, Atmos. Chem. Phys., 13(17), 9057–9082, doi:10.5194/acp-13-9057-2013.

Streets, D. G., et al. (2003), An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res., 108(D21), 8809,
doi:10.1029/2002JD003093.

Toenges Schuller, N., O. Stein, F. Rohrer, A. Wahner, A. Richter, J. P. Burrows, S. Beirle, T. Wagner, U. Platt, and C. D. Elvidge (2006), Global
distribution pattern of anthropogenic nitrogen oxide emissions: Correlation analysis of satellite measurements and model calculations,
J. Geophys. Res., 111, D05312, doi:10.1029/2005JD006068.

Turner, A. J., D. K. Henze, R. V. Martin, and A. Hakami (2012), The spatial extent of source influences on modeled column concentrations of
short-lived species, Geophys. Res. Lett., 39, L12806, doi:10.1029/2012GL051832.

Valin, L. C., A. R. Russell, R. C. Hudman, and R. C. Cohen (2011), Effects of model resolution on the interpretation of satellite NO2
observations, Atmos. Chem. Phys., 11(22), 11,647–11,655, doi:10.5194/acp-11-11647-2011.

Valin, L. C., A. R. Russell, and R. C. Cohen (2014), Chemical feedback effects on the spatial patterns of the NOx weekend effect: A sensitivity
analysis, Atmos. Chem. Phys., 14(1), 1–9, doi:10.5194/acp-14-1-2014.

van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. v. Leeuwen (2010),
Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys.,
10(23), 11,707–11,735, doi:10.5194/acp-10-11707-2010.

Vinken, G. C. M., K. F. Boersma, J. D. Maasakkers, M. Adon, and R. V. Martin (2014a), Worldwide biogenic soil NOx emissions inferred from
OMI NO2 observations, Atmos. Chem. Phys., 14(18), 10,363–10,381, doi:10.5194/acp-14-10363-2014.

Vinken, G. C. M., K. F. Boersma, A. van Donkelaar, and L. Zhang (2014b), Constraints on ship NOx emissions in Europe using GEOS-Chem and
OMI satellite NO2 observations, Atmos. Chem. Phys., 14(3), 1353–1369, doi:10.5194/acp-14-1353-2014.

Wang, S., M. Zhao, J. Xing, Y. Wu, Y. Zhou, Y. Lei, K. He, L. Fu, and J. Hao (2010), Quantifying the air pollutants emission reduction during the
2008 Olympic Games in Beijing, Environ. Sci. Technol., 44(7), 2490–2496, doi:10.1021/es9028167.

Wang, Y., D. J. Jacob, and J. A. Logan (1998), Global simulation of tropospheric O3-NOx -hydrocarbon chemistry: 3. Origin of tropospheric
ozone and effects of nonmethane hydrocarbons, J. Geophys. Res., 103(D9), 10,757–10,767, doi:10.1029/98JD00156.

Wang, Y., M. B. McElroy, R. V. Martin, D. G. Streets, Q. Zhang, and T. M. Fu (2007), Seasonal variability of NOx emissions over east
China constrained by satellite observations: Implications for combustion and microbial sources, J. Geophys. Res., 112, D06301,
doi:10.1029/2006JD007538.

Wells, K. C., et al. (2015), Simulation of atmospheric N2O with GEOS-Chem and its adjoint: Evaluation of observational constraints,
Geosci. Model Dev., 8(10), 3179–3198, doi:10.5194/gmd-8-3179-2015.

Xia, Y., Y. Zhao, and C. P. Nielsen (2016), Benefits of China’s efforts in gaseous pollutant control indicated by the bottom-up emissions and
satellite observations 2000–2014, Atmos. Environ., 136, 43–53, doi:10.1016/j.atmosenv.2016.04.013.

Xu, X., J. Wang, D. K. Henze, W. Qu, and M. Kopacz (2013), Constraints on aerosol sources using GEOS-Chem adjoint and MODIS radiances,
and evaluation with multisensor (OMI, MISR) data, J. Geophys. Res. Atmos., 118, 6396–6413, doi:10.1002/jgrd.50515.

Yienger, J. J., and H. Levy (1995), Empirical model of global soil-biogenic NOx emissions, J. Geophys. Res., 100(D6), 11,447–11,464,
doi:10.1029/95JD00370.

Zhang, Q., et al. (2007), NOx emission trends for China, 1995–2004: The view from the ground and the view from space, J. Geophys. Res., 112,
D22306, doi:10.1029/2007JD008684.

Zhang, Q., et al. (2009), Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9(14), 5131–5153,
doi:10.5194/acp-9-5131-2009.

Zhang, Q., B. Yuan, M. Shao, X. Wang, S. Lu, K. Lu, M. Wang, L. Chen, C. C. Chang, and S. C. Liu (2014), Variations of ground-level O3 and its
precursors in Beijing in summertime between 2005 and 2011, Atmos. Chem. Phys., 14(12), 6089–6101, doi:10.5194/acp-14-6089-2014.

Zhao, B., S. X. Wang, H. Liu, J. Y. Xu, K. Fu, Z. Klimont, J. M. Hao, K. B. He, J. Cofala, and M. Amann (2013), NOx emissions in China: Historical
trends and future perspectives, Atmos. Chem. Phys., 13(19), 9869–9897, doi:10.5194/acp-13-9869-2013.

Zhao, C., and Y. Wang (2009), Assimilated inversion of NOx emissions over east Asia using OMI NO2 column measurements, Geophys. Res.
Lett., 36, L06805, doi:10.1029/2008GL037123.

Zheng, F., T. Yu, T. Cheng, X. Gu, and H. Guo (2014), Intercomparison of tropospheric nitrogen dioxide retrieved from ozone monitoring
instrument over china, Atmos. Pollut. Res., 5(4), 686–695.

Zhu, C., R. H. Byrd, P. Lu, and J. Nocedal, (1994), L-BFGS-B: A limited memory FORTRAN code for solving bound constrained optimization
problems, Tech. Rep. No. NAM-11, EECS Dept., Northwestern Univ., Evanston, Ill., [Available at users.iems.northwestern.edu.]

QU ET AL. MONTHLY TOP-DOWN NOX EMISSIONS FOR CHINA 4625

http://dx.doi.org/10.5194/acp-7-815-2007
http://dx.doi.org/10.5194/gmd-4-299-2011
http://dx.doi.org/10.1029/2008GL033521
http://dx.doi.org/10.5194/acp-13-9057-2013
http://dx.doi.org/10.1029/2002JD003093
http://dx.doi.org/10.1029/2005JD006068
http://dx.doi.org/10.1029/2012GL051832
http://dx.doi.org/10.5194/acp-11-11647-2011
http://dx.doi.org/10.5194/acp-14-1-2014
http://dx.doi.org/10.5194/acp-10-11707-2010
http://dx.doi.org/10.5194/acp-14-10363-2014
http://dx.doi.org/10.5194/acp-14-1353-2014
http://dx.doi.org/10.1021/es9028167
http://dx.doi.org/10.1029/98JD00156
http://dx.doi.org/10.1029/2006JD007538
http://dx.doi.org/10.5194/gmd-8-3179-2015
http://dx.doi.org/10.1016/j.atmosenv.2016.04.013
http://dx.doi.org/10.1002/jgrd.50515
http://dx.doi.org/10.1029/95JD00370
http://dx.doi.org/10.1029/2007JD008684
http://dx.doi.org/10.5194/acp-9-5131-2009
http://dx.doi.org/10.5194/acp-14-6089-2014
http://dx.doi.org/10.5194/acp-13-9869-2013
http://dx.doi.org/10.1029/2008GL037123
file:users.iems.northwestern.edu

	Abstract
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


