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a b s t r a c t

This paper describes the second part of a series of investigation to develop algorithms for simultaneous
retrieval of aerosol parameters and surface reflectance from the future hyperspectral and geostationary
satellite sensors such as Tropospheric Emissions: Monitoring of POllution (TEMPO). The information
content in these hyperspectral measurements is analyzed for 6 principal components (PCs) of surface
spectra and a total of 14 aerosol parameters that describe the columnar aerosol volume Vtotal, fine-mode
aerosol volume fraction, and the size distribution and wavelength-dependent index of refraction in both
coarse and fine mode aerosols. Forward simulations of atmospheric radiative transfer are conducted for
5 surface types (green vegetation, bare soil, rangeland, concrete and mixed surface case) and a wide
range of aerosol mixtures. It is shown that the PCs of surface spectra in the atmospheric window channel
could be derived from the top-of-the-atmosphere reflectance in the conditions of low aerosol optical
depth (AOD ≤ 0.2 at 550 nm), with a relative error of 1%. With degree freedom for signal analysis and the
sequential forward selection method, the common bands for different aerosol mixture types and surface
types can be selected for aerosol retrieval. The first 20% of our selected bands accounts for more than 90%
of information content for aerosols, and only 4 PCs are needed to reconstruct surface reflectance.
However, the information content in these common bands from each TEMPO individual observation is
insufficient for the simultaneous retrieval of surface’s PC weight coefficients and multiple aerosol
parameters (other than Vtotal). In contrast, with multiple observations for the same location from TEMPO
in multiple consecutive days, 1–3 additional aerosol parameters could be retrieved. Consequently, a self-
adjustable aerosol retrieval algorithm to account for surface types, AOD conditions, and multiple-con-
secutive observations is recommended to derive aerosol parameters and surface reflectance simulta-
neously from TEMPO.

& 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Atmospheric aerosol properties, especially aerosol optical
depth (AOD), have been retrieved routinely from satellite remote
sensing since 1990s [1]. While various algorithms have been de-
veloped, one of the common and most challenging component in
these algorithms is the decoupling of the surface and atmospheric
contributions (or path radiance) from the satellite-observed
l and Biochemical Engineer-
earch, The University of Iowa,

.

reflectance spectra at the top of atmosphere (TOA), after which
aerosol properties can be derived from the path radiance with the
correction of Rayleigh scattering and gas absorption [2]. This de-
coupling is often more complicated over the land than over the
ocean for the reason that the contribution of land surface to the
radiance measured at the top-of-atmosphere (TOA) is much larger
and has various spatial variability in general [3]. Consequently, as
shown in Table 1 (for expansion of different satellite acronyms),
past algorithms have avoided to conduct retrievals at the spectrum
where surface reflectance are high, and instead, focused on the
retrieval from use of the spectrum with low land surface re-
flectance, such as the MODIS visible bands over the vegetated dark
target (DT) surfaces [4,5], the MODIS and SeaWiFS “deep blue”
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Table 1
Aerosol parameters have been retrieved from satellite remote sensing.a

Senor Full name Parameters
retrieved

Assumptions Spectral used References

MERIS Medium Resolution Imaging Spectrometer α ρs estimated by linear mixing of
different basic spectra with NDVI

412, 443, 665, 865 nm [11,12]

SCIAMACHY Scanning Imaging Absorption spectrometer
for Atmospheric Chartography

AT Global ρs derived from GOME
observation

364, 387, 429, 683 nm [10]

OMI Ozone Monitoring Instrument AT, ω, H , PSD ρs from MISR 15 bands for 330 to 500 nm [8,9]

τa
nm388 , ω nm388 ρs from TOMS, dust height from

GOCART
354, 388 nm [9]

SeaWiFS Sea-Viewing Wide Field-of-View Sensor α Global ρs dataset, BRDF 412, 490, 670 nm [7]
MODIS Moderate Resolution Imaging

Spectroradiometer
α Global ρs dataset, BRDF 412, 470, 650 nm [6,7]
α , η The empirical relationship of ρs at

0.47 (0.66) μm with 2.12μm
0.47, 0.55, 0.66, 0.86, 1.24, 1.64,
2.12 μm

[4,5]

SEVIRI Spinning Enhanced Visible and Infrared
Imager

reff , AT, S nm550 MODIS BRDF as a priori 0.64, 0.81, 1.64 μm [17]

AATSR Advance Along Track Scanning Radiometer reff , AT MODIS BRDF as a priori 0.55, 0.67, 0.87, 1.6μm, 2 views [17]
MISR Multi-angle Imaging SpectroRadiometer AT, MC, SP BRDF model 446, 558, 672, 866 nm,

9 views
[13–16]

POLDER Polarization and Directionality of the Earth’s
Reflectance

α Log-normal PSD (fine), 490, 670, 865 nm, up to 16
views and polarization

[19–21]
a priori surface BRDF

AIRS Atmospheric Infrared Sounder τ μm
a
10 reff , 8–12 μm [22–24]

Height

a The following symbols and acronyms are used in the table as follows. τa: AOD, ρs: surface reflectance, η: fine mode weighting, α: Ångström exponent, ω: single scatter
albedo (SSA), reff : effective radius, H: height, S: bi-hemispherical albedo, PSD: particle size distribution, AT: aerosol type, MC: mixture of components, SP: (non-) spherical
particles.
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bands over the urban and semi-arid regions [6,7], and the OMI and
SCIAMACHY’s ultraviolet (UV) spectrum over ice-free and snow-
free land surfaces [8–10]. Besides, some algorithms estimated the
surface reflectance by linear mixing of different basic spectra of
green vegetation and bare soil with the normalized different ve-
getation index (NDVI), such as Bremen Aerosol Retrieval (BAER) for
MERIS [11,12]. Furthermore, measurements of polarization and/or
from multi-angles are shown to make the derivation of path ra-
diance relatively easier, even over the spectrum where surface
reflectance is higher. Examples include the empirical orthogonal
functions (EOF) algorithm for MISR [13–16], dual-view retrieval
algorithm for AATSR [17,18], and polarized retrieval algorithm for
POLDER [19–21]. In addition, the thermal infrared (TIR) atmo-
spheric window in 8-12 mm also can be used for characterizing
large aerosol particles (such as dust), such as the AIRS’s algorithm
[22–24]. Table 1 lists the major algorithms for remote sensing of
aerosols, including their respective bands, assumptions for deriv-
ing surface reflectance, and the aerosol retrieval parameters.

While many progresses were made with past algorithms to-
ward charactering aerosols properties from space, most reliable
quantity being retrieved routinely is AOD that is normally char-
acterized at the limited wavelengths or bands. This limitation in
part is because that most of these satellite measurements are
radiometers with scanning capability in limited number of bands
(up to 36 such as MODIS), and in part is restrained by the feasi-
bility to separate the path radiance from surface contributions in
various bands (as discussed in the last paragraph). However, a full
characterization of aerosol properties requires the retrieval of
spectral dependence of aerosol properties (including AOD and
absorption), which is also needed in the estimate of radiative
forcing of aerosols [25].

This paper presents the second part of a series of studies that
aim to develop a hyperspectral remote sensing method for aerosol
retrieval from a newly developed GEOstationary Trace gas and
Aerosol Sensor Optimization (GEO-TASO) airborne instrument
[26]. The GEO-TASO is the airborne version of the upcoming air
quality satellite instrument that will measure backscattered ul-
traviolet (UV), visible (VIS) and near-infrared (NIR) radiation from
geostationary orbit, such as Sentinel-4 and Tropospheric
Emissions: Monitoring of POllutin (TEMPO) [27,28]. TEMPO was
selected as the first Earth Venture Instrument by NASA in 2012 and
will be launched between 2019 and 2021 to measure atmospheric
pollution for greater North America from space by using hyper-
spectral UV and visible spectroscopy hourly and with high spatial
resolution at 4 ×4 km2 [27]. TEMPO will also join Geostationary
Environment Monitoring Spectrometer (GEMS) from Korea and
Sentianel-4 from Europe as part of the future geostationary sa-
tellite constellation [29]. Except for GEO-TASO and TEMPO, other
hyperspectral instruments, such as Hyperspectral Infra-Red Im-
ager (HyspIRI), are also under development by NASA [30,31].
Hence, it is necessary to explore and develop algorithms to re-
trieve aerosols from the hyperspectral measurements.

In the first part of this series of studies, we have developed the
theoretical framework of an inversion algorithm to simultaneously
retrieve the aerosol properties and surface reflectance. In this fra-
mework, it is assumed that surface reflectance spectra can be de-
composed into (six) different principal components (PCs) and the
wavelength-dependence of aerosol refractive index can be para-
meterized following a power-law function. These assumptions are
generally valid as being supported by the analysis of surface spectra
library and Aerosol Robotic Network (AERONET) retrievals [32].
Hence, instead of retrieving surface reflectance at each wavelength,
only weight coefficients for each PC are needed to be retrieved.

Based on the framework developed by Hou et al. [32] and the
optimal estimation (OE) theory [33], we continue the development
of the hyperspectral inversion algorithm by addressing the fol-
lowing feasibility questions: (1) is it possible to obtain the PCs of
surface reflectance from the hourly hyperspectral data measured
by the instruments (such as TEMPO) in the geostationary (GEO)
platform, especially over the surfaces covered by a mixture of
different types of canopy? (2) how many and what kind of aerosol
parameters can be possibly retrieved together with weighting
coefficients for PCs from the hyperspectral data? (3) how can we
use GEO’s multiple observations with the nearly same Earth-Sun-
Satellite geometry in several consecutive days to improve the re-
trieval? Addressing these questions can provide theoretical gui-
dance in implementing the operational algorithm for aerosol re-
trieval from GEO-TASO and future geostationary spectrometers.



Table 2
The aerosol scenarios used for synthetic simulations.a

Scenarios μ μ( )−V m mtotal
3 2 fmfV τa (550nm) SSA(550nm)

Fine dominated 0.149 (100%) 0.8 (0.5) 0.8 0.94
Well mixed 0.216 (100%) 0.5 (0.5) 0.8 0.93
Coarse dominated 0.394 (100%) 0.2 (0.5) 0.8 0.92

a Bracketed data represent a priori errors.
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Synthetic data simulated from the Unified Linearized Vector
Radiative Transfer Model (UNL-VRTM) [29] is used for the analysis
to address the questions above. By using the synthetic data cal-
culated for various surface and atmospheric conditions, we can
evaluate our proposed approach and analyze with known ‘ground
truth’ that is used in the generation of synthetic data. We briefly
describe the UNL-VRTM and the theoretic framework in Section 2,
present our approach and feasibility study of this approach to
retrieve PCs from hourly hyperspectral measurements at TOA in
Section 3, and conduct the analysis of aerosol information content
of these measurements in Section 4. Both Sections 3 and 4 start
with the description of background for the method we used.
Summary and conclusion are presented in Section 5.
Table 3
The aerosol parameters for fine and coarse modes.a

Mode μ( )r meff veff mr,0 br mi,0 bi

Fine 0.21 (80%) 0.25
(80%)

1.434
(0.15)

0.016
(0.04)

0.011
(0.01)

-0.266
(0.63)

Coarse 1.90 (80%) 0.41
(80%)

0.549
(0.15)

0.017
(0.04)

0.003
(0.005)

0.625
(0.63)

a Bracketed data represent a priori errors.
2. Synthetic data

Building on the UNL-VRTM [29], Hou et al. has completed the
following developments as part of the theoretical framework for
hyperspectral remote sensing of aerosols [32]: (a) integrating the
PC analysis (or PCA) of different surface reflectance dataset in the
UNL-VRTM, (b) computing the Jacobians of TOA reflectance with
respect to (w.r.t.) the PC’s weighting coefficients of surface re-
flectance, with account of the surface bidirectional reflectance
distribution function (BRDF), and (c) calculating the Jacobians of
TOA reflectance w.r.t the parameters used in the power-law ap-
proximation for describing the wavelength dependence of aerosol
refractive indices. With these developments, UNL-VRTM is used
here to simulate the TOA reflectance and the Jacobians of TOA
reflectance w.r.t. the aerosol parameters and the PC’s weighting
coefficients of surface reflectance for various aerosol conditions,
observation geometries and surface types.

In our theoretical framework for hyperspectral remote sensing
of aerosols [32], the retrieval parameters contain total aerosol
volume (Vtotal), fine volume fraction ( fmfV), particle size distribu-
tion parameters (r v r v, , ,eff
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eff
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eff
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where λ0 means the reference wavelength, subscripts r and i de-
note the real and imaginary part of refractive index, respectively.
In this study λ =550nm0 , thus mr,0 and mi,0 are corresponding to the
refractive index at 550 nm. Therefore, the state vector for the re-
trieval can be written as:
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Consequently, following the size and refractive index para-
meters for both coarse- and fine-mode aerosols in the work by Xu
and Wang [34] and also listed in Table 3, the synthetic data are
calculated by our forward model UNL-VRTM for a typical mid-la-
titude summer atmospheric profile for various aerosol scenarios
(as listed in Table 2). The aerosol properties in Xu and Wang [34] is
based on the analysis of AEROENT inversions in Beijing, with single
scattering albedo be around 0.92–0.94 in the mid visible. Since in
the visible spectrum, the aerosols that are more scattering will
have larger impact on the reflectance measured by the satellite, it
is expected that the analysis presented here serve as the baseline,
and TEMPO may have more information (than what we showed in
the paper) for North-American aerosols that are more scattering.
Ten different AOD (τa) values of 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6,
0.8, 1.0 at 550 nm are considered to represent the various aerosol
loadings. For τ =a 0.8 at 550 nm, the total aerosol volume (Vtotal)
can vary from 0.149, 0.216, to 0.394 μ μ −m m3 2 for the fine-domi-
nated, well-mixed and coarse-dominated aerosol scenarios, re-
spectively. Vtotal of other AOD value can be gained with linear
scaling. The corresponding prior errors of aerosol parameters for
the fine and coarse modes are included in Table 3. The fine-mode
particles are considered as water-soluble aerosols from OPAC da-
tabase [37], and the coarse-mode are corresponding to the large
spherical particles from the research of Patterson et al. [38] and
Wagner et al. [39].

In forward simulations, various solar zenith angles (θ0), viewing
zenith angles (θ = ° − °0 75v with the step of °1 ) and relative azi-
muth angles ( ϕ = ° − °0 180 with the step of °1 ) are considered.
The relative azimuth angle is defined such that ϕ = °180 means
the observer and Sun are in the same direction and in the same
side of the primary plane. Information content analysis shows that
the degree of freedom for signal (DFS) of retrieved aerosol para-
meters vary with scattering angle. However, this variation in terms
of the standard deviation of DFS is about 0.09, regardless of the
specific aerosol parameters, provided for the same aerosol condi-
tion and surface reflectances (as detailed in Section 4.3). Conse-
quently, the following analysis focus on the cases for θ = °400 ,
θ = °20v and ϕ = °20 because DFS results of this observation
geometry is representative of the average of DFS values in all
possible observation geometries. In other words, if one aerosol
parameter could be retrieved with this specific observation geo-
metry, this parameter could also be retrieved at other observation
geometries in most cases.

Simulations are conducted for spectral range of 400–700 nm
and 400–2400 nm, respectively. The former is the spectral range of
TEMPO, while the latter is the spectral range of HyspIRI or any
possible future (geostationary) satellite sensors. The simulations
are also conducted for various surface conditions with a Lamber-
tian assumption. Four basic surface types (green vegetation, bare
soil, rangeland, and concrete) are considered and their corre-
sponding spectra are adopted from the USGS spectral library [40]
and the ASTER spectral library [41] (as described in Hou et al. [32]).
In addition, we also consider a mixed surface type with reflectance
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value calculated by equally-weighted reflectance of green vegeta-
tion, bare soil, and concrete surface types. We note that the
spectral coverage of TEMPO indeed starts from 290 nm and the UV
spectral regions has rich information for aerosol height [9,42], but
due to the lack of knowledge in wavelength-dependence of surface
reflectance and aerosol refractive index in UV spectra as well as
the strong gas absorption (by O3, NO2 and SO2) in UV, a combined
use of UV and VIS spectra for analyzing the aerosol information
content will need a separate study in future.

Fig. 1(a)–(e) respectively shows the surface reflectance for the
green vegetation, bare soil, rangeland, concrete, and mixed surface
types at wavelengths from 400 nm to 2400 nm. Besides, Fig. 1
(f) presents the total gas transmission in the spectral range of 400–
2400 nm with 1 nm interval, and those bands with the gas
transmission larger than 94% are selected as the atmospheric
window channels in this study. This configuration results in 269
bands in the range of 400–700 nm and 752 bands in the range of
400–2400 nm as the window channels.

Once the forward simulation is conducted, 2.8% Gaussian
noises following the calibrating error of GEO-TASO are added to
the simulated TOA reflectance to consider the measurement and
calibration errors of the sensor. Hereafter, only AOD values at 550
nm are referred, although their spectral dependences are con-
sidered in the retrieval.
3. Deriving PCs from TOA reflectance spectra

As a geostationary satellite, TEMPO offers hourly observation
for each pixel, enabling more frequent sampling of the spectra at
the top-of-atmosphere in conditions with low AOD, and thus
better characterizing the surface spectra for that pixel. Indeed, past
studies have used the minimum (or second minimum) reflectance
Fig. 1. The spectral datasets and simulated gas transmission by UNL-VRTM. (a–e) Spectr
the green vegetation (a) and rangeland (c) datasets are adopted from the USGS spectral
smoothed, concrete (d) dataset is adopted from both of the spectral libraries, and the
vegetation, bare soil, and concrete. Besides, panel (f) plot the two-way total gas transm
θ = °400 and θ = °20v , in which the black horizontal line is used to distinguish the window
at each pixel taken by geostationary imager within a certain time
period (�20–25 days) as the surface reflectance in the aerosol
retrieval algorithm for GOES [43–48]. Analogically, with TEMPO’s
observation, a PC analysis of the backscattered spectra in low-AOD
conditions can be conducted to obtain the PCs for surface re-
flectance at each pixel. To evaluate the feasibility of this idea, we
first illustrate the relationship between surface and TOA re-
flectance as a function of AOD and aerosol/surface properties, and
then focus on feasibility analysis of deriving PCs from the synthetic
data in the condition of small AOD values.

In order to investigate the coupling contribution of aerosol and
surface to the TOA measurements for deriving PCs, the forward
simulations are also considered in the spectral range of 400–
2400 nm with different aerosol model and surface type. Fig. 2(a)–
(d) present the separate contributions of Rayleigh scattering,
aerosol contribution, surface reflectance (ρs), and gas absorption to
the TOA reflectance ( ρTOA) for four scenarios: the combination of
two aerosol scenarios (respectively for fine-mode and coarse-
mode aerosol dominated) over two surface types (green and yel-
low vegetation). In those four cases AOD at 550 nm is assumed 0.4.
In reference to the reflection of surface, the TOA reflectance can be
reduced by absorption with certain gases, and enhanced by scat-
tering with the gas molecules and aerosol particles. These effects
combine to produce the TOA reflectance spectral curve illustrated
in Fig. 2. The pronounced absorption features near 1.18, 1.4 and 1.9
μm, cased by water vapor and/or carbon dioxide, reduce incident
and reflected energy almost completely, so little useful informa-
tion could be obtained from the spectral bands in these regions. In
this region, O3 has a weak absorption (Chappuis band in which
absorption is about a factor of 104 smaller than in the UV) and O2

has strong absorption in around 0.688 and 0.763 μm [49].
Rayleigh scattering’s contribution to ρTOA dominates in the blue

spectrum (400–450 nm) and decreases sharply with the increase
a of surface reflectance for various surface types as indicated in the figure, in which
library, bare soil (b) dataset is adopted from the ASTER spectral library and further
mixed case (e) dataset is equally weighted by the surface reflectances of green

ission (from TOA to the surface then to the TOA) simulated by the UNL-VRTM with
channel bands with the gas transmission larger than 94%.



Fig. 2. Panels (a–d) present the contribution of Rayleigh scattering, path radiance and surface reflectance ρs to the TOA reflectance ρTOA simulated by UNL-VRTM with
consideration of gas absorption and AOD τ =0.4a at 550 nm. Each panel corresponds to a combination of one aerosol model (fine-dominated or coarse-dominated) and one
surface type (green vegetation or yellow vegetation). Spaces between adjacent spectral curves are shaded with different colors to highlight the separated contributions, in
which yellow shaded region represents the contribution of aerosol only (including the gas absorption), and green shaded region represents the coupled contribution of
surface and atmosphere to TOA reflectance. Correspondingly, panels (e–h) present the spectra of ρTOA with the different AOD τ =0,0.4,0.8a , in which the yellow and greed
shaded parts are used to highlight the scattering or absorption contributions with the increased AOD.
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of wavelength. As the wavelength increases, the coupled con-
tribution of surface and atmosphere (e.g., green shaded region)
accounts for over 90% of TOA reflectance in atmospheric window
channels. The wavelength-dependence of this coupled contribu-
tion, however, depends on the aerosol particle size as well as the
surface reflectance spectra. In principle, TOA reflectance increases
when surface reflectance increases and/or aerosol scattering in-
creases. In each of those four cases respectively for two surface
types (Fig. 2a–d), the inset figure shows that for the same AOD and
surface reflectance, the difference of ρTOA for different aerosol
scenarios can be up to 2.0%. For the same surface type, it is found
that the coupled contribution of surface and atmosphere has about
4.0% difference between the atmospheres of fine-mode dominated
aerosols and coarse-mode dominated aerosols.

Compared with the contribution from atmosphere-surface
coupling, the contribution solely from aerosol (yellow shaded
region in Fig. 2) to the TOA reflectance is very small. For the same
surface type, the contribution of coarse-mode dominated aerosols
is larger than that of fine-mode dominated aerosols in atmo-
spheric window channels from 550 nm to 2400 nm. Especially, in
spectral range of 2100–2400 nm, the contribution of coarse-mode
dominated aerosols is 4–5 times larger than the contribution of
fine-mode dominated aerosol. Therefore, knowledge or char-
acterization of surface reflectance in these wavelengths are needed
to retrieve properties of large aerosol particles [50]. From another
perspective, however, the strong influence of surface in radiative
transfer also renders strong similarities between ρTOA spectra and
ρs spectra, except in spectral regions of blue bands where surface
reflectance is low and Rayleigh scattering is significant. It is fore-
seeable that ρTOA spectra after the correction of Rayleigh scattering
can be used to derive the spectral variation of ρs, and hence, fre-
quent samples of ρTOA for a fixed location at a fixed view angle can



Fig. 3. Flowchart of testing the feasibility to extract the PCs from TOA reflectance.
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be used to derive the PCs that account for the spectral variation
of ρs.

To further study the spectral similarities between ρTOA data
(after Rayleigh correction) and ρs, we also simulate ρTOA for AOD
values of 0, 0.4, and 0.8. As seen from Fig. 2(e)–(h), aerosol scat-
tering leads to increase of reflectance in visible bands; the higher
AOD value yields higher ρTOA. But, as surface reflectance increases,
ρTOA is smaller than ρs at spectral wavelengths larger than 700 nm
because aerosol absorption is amplified due to the larger surface
reflectance (and stronger coupling between surface reflectance
and atmosphere). It is interesting that in atmospheric window
channels in the near-infrared region (such as 1640 and 2200 nm),
the ρTOA and ρs reflectance are nearly equal regardless of the
surface type or AOD [51,52]. Hence, Fig. 2(e)–(h) show that ρTOA

spectra (in most wavelengths of window channel) can be used to
derive the spectral variation of ρs after Rayleigh correction.

Fig. 3 gives the flowchart of testing the feasibility to identify
PCs of surface reflectance spectra from the TOA reflectance spectra.
For the forward simulation by UNL-VRTM, different aerosol models
(fine-dominated, well-mixed, and coarse-dominated), small AODs
(τa¼ 0.05, 0.1, 0.15, 0.2) and representative observation geometry
(θ = °400 , θ = °20v , ϕ = °20 ) are considered, as well as the surface
reflectance spectra in atmospheric window channel with different
surface types (green vegetation, bare soil, rangeland, concrete and
mixed case). After that, the simulated TOA reflectance spectra with
2.8% Gaussian noise are corrected for the Rayleigh scattering ac-
cording to the surface pressure, as described in Bodhaine et al. [53]
and Tomasi et al. [54]. Only those Rayleigh-corrected TOA spectra
in the window channel are used for the analysis of surface PCs.

Fig. 4 displays the scatterplot of 1st–6th PCs derived from TOA
reflectance versus those used in the forward simulation (“truth”) in
the spectral range of 400–2400 nm respectively for 5 different
surface types. In general, the derived PCs agree well with the
“truth” at each wavelength with coefficient of determination R2

larger than 0.99 in most cases. Similar agreements are also found
for these cases in the spectral range of 400–700 nm ( >R 0.992 in
most cases). In the practical retrieval, because land surface usually
is a mixture of different surface types, the true PCs of surface re-
flectance cannot be exactly obtained, and thus those derived PCs
from TOA can be used with the consideration of uncertainties in
these PCs. As in the discussion [32], surface reflectance can be
decomposed in different PCs, and these 6 PCs can reconstruct the
true surface reflectance with averaged relative error of 1%.
Nevertheless, based on the theoretical analysis here, if we use
these PCs derived from TOA spectra in low AOD conditions to re-
construct the surface reflectance, the reconstructed surface re-
flectance have the averaged relative error of 1% compared with the
results reconstructed by the PCs of true surface reflectance.
4. Information content analysis of aerosols

Previous analyses of aerosol information content from various
satellite measurements are briefly summarized in Section 4.1. The
sequential forward selection method is then used together with
the DFS analysis to obtain the common bands in the spectral range
of 400–700 nm and 400–2400 nm respectively for different aero-
sol models and surface types in Section 4.2. Using these common
bands (instead of all window bands) can facilitate the retrieval
process by lowering the computational cost. Subsequently, the
information content analysis for GEO-TASO and the geostationary
satellites such as TEMPO are conducted for single measurement at
these common bands in the spectral range of 400–700 nm in
subsection 4.3. At last, the constraints of multiple measurements
from geostationary satellites at the same time in the consecutive
days are presented in Section 4.4.

4.1. Background

Following the methodology of Rodgers [33], the information
content analysis can be conducted to exploit the spectrometer
measurements for aerosol parameters retrieval, and the number of
degrees of freedom for signal (DFS) is usually used to represent the
number of parameters that can be retrieved independently from
TOA reflectance measurements, provided that the surface re-
flectance and the prior error of retrieval parameters are char-
acterized. One important metric in the information content ana-
lysis is the averaging kernel matrix A , which characterizes the
changes in the retrieved stated vector x̂ to changes in the true
state vector x , that is

∂^

∂
= = ( )

x
x

A GK, 3

in which the retrieval Gain matrix

= ( + ) ( )ϵ
− − −

ϵ
−G K S K S K S , 4T T1

a
1 1 1

where the superscript “ T ” and “−1” represent the transpose and
inverse operator of matrix, respectively, ϵS is the observation error
covariance matrix, Sa is the error covariance matrix of the a priori
estimate xa, = ∂ ( )

∂
K

x
F x means the Jacobian matrix of forward model

( )F x with respect to x. The trace of A describes the amount of
independent pieces of information from the retrieval of mea-
surements, also called the degrees of freedom for signal (DFS).

Correspondingly, the a posteriori error covariance matrix Ŝ, is de-
fined as

^ = ( + ) ( )ϵ
− − −S K S K S , 5T 1

a
1 1

which represents the statistical uncertainties in retrieved x̂ caused
by measurement noise and smoothing [55]; the diagonal elements

of Ŝ
1
2 are the posterior errors. As for the observation error covar-

iance matrix ϵS , it contains two parts:

= + ( )ϵS S K S K , 6T
y b b b

in which Sy is the instrumental error covariance matrix, Sb re-
presents the error covariance matrix for a vector b of forward
model that are not contained in x but quantitatively influence the
measurements, Kb means the Jacobians matrix of measurements y
w.r.t. b.

Many studies have evaluated the information content from the
satellite measurements of the solar backscatter on aerosol in the
spectral range of UV to near infrared [56]. For example, 1–2
parameters of the particle size distribution could be retrieved from
MODIS using the multi-bands from 470 nm to 2130 nm [57], and



Fig. 4. Scatterplot of the 1st to 6th derived PCs from TOA versus true PCs for different surface types (green vegetation, bare soil, rangeland, concrete, mixed case respectively)
with 4 small AOD cases (τa¼ 0.05, 0.1, 0.15, 0.20) and one representative observation geometry (θ = °400 , θ = °20v , ϕ = °20 ), in which the blue dot represent the PC value at each
window channel band in the range of 400–2400 nm. For different surface types, there are 50 green surface spectra, 30 bare soil spectra, 70 rangeland spectra, 13 concrete
spectra and 50 mixed spectra used respectively for simulations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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3.5 to 5 independent pieces of information can be obtained from
the intensity measurements of GOME-2 from 300 nm to 800 nm
[58]. Veihelmann et al. [56] also found 2–4 DFS for aerosol para-
meters from OMI reflectance measurement, and the information
content further depends on the observation geometry and the
surface type. Besides, there are 2–4 parameters (including AOD,
aerosol type and surface reflectance) that could be retrieved from
10 synergetically-selected bands of AASTR and SCIAMACHY by
SYNergetic AErosol Retrieval (SYNAER) algorithm in the range of
415–675 nm [59,60]. In addition, the combined retrieval method of
aerosol and greenhouse gas has been investigated by Frankenberg
et al. [55]. They showed that the ability to retrieve aerosol prop-
erties in terms of DFS could be enhanced greatly by 2–3 with
multiple satellite viewing angles simultaneously. Furthermore,
retrieval of aerosol microphysical properties form AERONET are
also discussed by Xu and Wang [34], and the information content
analysis results show that adding polarization measurements can
increase the DFS by 2�5 with the solar principal plane radiances
and polarization. In our study, we analyze the information content
for aerosol parameters for a large number of scenarios for a given
observation geometry, different aerosol models, and surface types,
thus evaluating what kinds of aerosol parameters could be re-
trieved from hyperspectral remote sensing.

Due to the dense measurements with hundreds of spectral
channels in the visible to near-infrared wavelengths, hyperspectral
images contain more aerosol and surface information than
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traditional multispectral instruments. However, as the spectral
interval between the adjacent bands in hyper-spectra is very fine,
and the correlation between them is inevitable, there should be
considerable redundancy in hyperspectral data [61]. Therefore,
band selection methods based on information content analysis are
needed to reduce the dimensionality of hyperspectral imagery in
the inversion, and then the efficiency of aerosol retrieval could be
greatly improved with those best bands containing most of in-
formation content. Among a large group of band-selection algo-
rithms for hyperspectral data, we use the forward-searching
strategies such as the sequential forward selection (SFS) and se-
quential forward floating selection (SFFS) [62] to test all the pos-
sible combinations of hyperspectral bands.

4.2. DFS analysis for sequential forward selection of bands

Corresponding to our inversion theoretical framework, the
aerosol parameter and PC’ weighting coefficients ( w) of surface
reflectance need to be retrieved simultaneously. Thus, in the in-
formation content analysis, common bands for retrieval are
selected according to DFS values for aerosols in these bands.
The state vector can be set as
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The error matrix of state vector follows Hou et al. [32], and the
standard errors of weighting coefficients are also contained as
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in which, the prior errors corresponding to those parameters have
been listed in Tables 2 and 3. For the instrument error matrix,
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where ( ⋯)diag denotes to assign a vector on the main diagonal of
matrix, ei represents the relative error of measurements at each
wavelength. Following the calibrating error of GEO-TASO, ei is set
about 2.8%; here = ⋯i d1, , , where d represents the number of
wavelength bands used in analysis. For the calculation of in-
formation content with selected aerosol parameters, the prior er-
rors of the parameters in vector b corresponding to the state
vector are based on the AERONET retrieval errors following the
work of Dubovik et al. [63].

Combined with the information content analysis and total
aerosol DFS result, the sequential forward selection (SFS) method
can be used to select the best subset of the bands for retrieval.
Given a band set λ λ= { ⋯ }B , , d1 in the atmospheric window, a

subset B̂M is found to maximize the total DFS results as

{ } { }λ λ λ^ = ⋯ = = ⋯ ( )B DFS i d, , arg max 1, , 10M i i M i i,M M1

here the operator “arg max” stands for the argument of the max-
imum, and M is the number of selected bands subset. SFS algo-
rithm usually starts from an empty or a predefined bands subset,

and sequentially adds the band λ+ that maximize ( )λ^ + +DFS Bk

when combined with the bands B̂k that have already been se-
lected. The SFS’s steps are as the following:

Step 1: start with the predefined band set B̂0;
Step 2: select the next best band ( )λ λ= ^ ++

∉ ^
DFS Barg max

b B
k

k

;

Step 3: Update the bands subset λ^ = ^ ++
+B Bk k1 , and = +k k 1;

Step 4: Go to step 2 until =k M .
In this study, the predefined band set is always started
with following the central wavelength of MODIS [4], in

which { }^ =B 466, 553, 646nm0 for the range of 400–700 nm, and

{ }^ =B 466, 553, 646, 855, 1243, 1632, 2119nm0 for the range of
400–2400 nm. The main disadvantage of SFS is that once the band
is selected, it can’t be removed any more. Other feature selection
algorithms such as the plus-L minus-R selection or sequential
floating selection can avid this disadvantage. In this study, only the
SFS method is applied for band selection.

Fig. 5 shows the total DFS of aerosol retrieval as a function of
the number of wavelength sorted by SFS in the spectral range of
400–700 nm and 400–2400 nm, respectively. The corresponding
total DFS of 6 PCs’ weighting coefficients also have the similar
trend, and these figures are not shown here. With the growing
number of sorted wavelength bands, the total DFS value increases
relatively fast for the first 10% of bands; after that, DFS grows
slowly and approaches its maximum. In addition to the number of
selected bands, DFS values also depend surface type, aerosol
model, and aerosol loading. Among those five typical surface
types, the maximum values of DFS are over green vegetation,
which corresponds to the surface type for “dark target” algorithm.
For those sparsely green vegetated surfaces, including bare soil,
rangeland and mixed case, the information content for aerosols are
smaller and have similar DFS values. For the bright urban (mainly
concrete) surface, DFS value is decreased by 2 as compared to that
for the green vegetated surface. The DFS for coarse-mode domi-
nated aerosols is usually 1 larger than the that of fine-dominated
aerosols for the same AOD and surface type. The DFS value for
well-mixed case is between the results of fine-dominated and
coarse-dominated aerosol model. We note that a known fine-
mode aerosol volume fraction fmfV with associated uncertainty is
needed to generate synthetic measurements, and thereby the in-
formation content analysis is conducted through linearization of
radiative transfer calculation at this tangent point for fmfv. This is a
common practice in the framework of optimization and informa-
tion content analysis, and the underlying assumption is that with
many case analysis for different tangent points, the results will be
robust to reveal the information content in the measurements
[29]. In the practical inversion process, fmfV is an unknown
parameter in the state vector that is to be retrieved from spectral
measurements of radiances. A first guess of fmfV for practical re-
trieval can be obtained from AERONET [64], aerosol climatology
[65], or chemistry transport model simulation [48,66], etc.

For the total DFS values calculated by all the bands in the at-
mospheric window channel, in most cases, the contribution of the
first 20% sorted window channels can account for at least 90% of
total DFS, regardless of surface types or aerosol models. Thus, we
have totally 30 test cases here, including the combinations of
5 different surface types, 3 different aerosol models, and 2 differ-
ent AOD cases (τa¼ 0.2, 0.8). In other words, we can use those 20%
sorted bands to retrieve 90% of aerosol information. However,
those top 20% bands (in terms of DFS) do vary with surface types,
and they are not the same for all 30 test cases. Hence, we need to
find a method to determine those common bands for retrieval.

In those 30 test cases, considering the sorted top 20% and 36%
window channel bands for each case, we calculate the frequency of
each band, and select those bands corresponding to the frequency
larger than 20, which is 66.7% of the number of total test cases. In
this way, Fig. 6 shows the selected common bands for retrieval
over the spectral ranges of 400–700 nm and 400–2400 nm. From
the first 20% sorted window channel bands by SFS, we found that
at least 8% channel bands could be selected as the common bands,
which can account for about 80% of total information content;
while from the first 36% sorted window channel bands, at least
20% window channel bands with respect to those sorted bands



Fig. 5. Total DFS of aerosol retrieval as a function of the number of atmospheric window channels sort by sequence forward selection (SFS) method in 400–700 nm (a–f) and
400–2400 nm (g–l), respectively, for the case of 6 PC’s coefficients of surface reflectance are retrieved with the aerosol parameters together. The band set starts with
{ }466, 553, 646nm for the range of 400–700 nm, and { }466, 553, 646, 855, 1243, 1632, 2119nm for the range of 400–2400 nm. Left column is for cases of AOD ¼ 0.2 and right
column for AOD ¼ 0.8.
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could be obtained as the common bands, and account for more
than 90% of total DFS. These results suggest that there are available
common bands for retrieving aerosol properties, regardless of
varied surface types and aerosol models.

In order to study the information content and the hyperspectral
retrieval algorithm for GEO-TASO and TEMPO, we focus on the
visible bands in the this study, and use those selected top 20%
window channel bands as the common bands (about 50 wave-
lengths) over the spectral ranges of 400�700 nm to analyze the
information content. When only 50 common bands are con-
sidered, 4 PCs can cover more than 99.9% of variance contribution
and the averaged relative error of reconstructed reflectance is
smaller than 1% in most cases for the typical spectral datasets,
including the green vegetation, bare soil, rangeland, concrete, and
mix surface types. Therefore, in addition to retrieve aerosol para-
meters, only 4 PCs’ weighting coefficients need to be retrieved
from 50 common bands in the visible spectral range. Hereafter,
this strategy is used in the aerosol information content and surface
content analysis for individual and multiple measurements re-
spectively in Sections 4.3 and 4.4. Except for Vtotal and fmfV, we
only consider to retrieve the parameters for the aerosols that are
in the dominate mode (such as reff , mr,0, br for fine-dominated or
coarse dominated cases) due to the limited information; for the
well-mixed case, these parameters of fine-dominated model are
considered.

4.3. DFS analysis for individual observation in common bands

In order to determine what kind of aerosol parameters could be
combined for the retrieval with 4 PC’s weighting coefficients by
common bands, we take a serial selection approach. We first
consider to retrieve just one parameter (such as Vtotal) provided the
DFS for that retrieval is the largest and above 0.5. Indeed, we don’t
consider that parameter to be retrieved if DFS is less than 0.5. Once
the first retrievable parameter is selected, a second parameter will
be added into DFS analysis provided that the added aerosol



Fig. 6. Common spectral bands for aerosol retrieval selected by the SFS method for spectral ranges of 400–700 nm (a) and 400–2400 nm (b). Blue and red dots represent
selections of 8% and 20% of window channel bands, respectively.
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parameter has DFS value larger than 0.5 and has the largest the
DFS in the remaining parameters. We repeat these criteria to se-
quentially select and add the parameter into the state vector for
the retrieval, and thereby the appropriate retrieval combinations
could be determined.

For the individual observation, fifty green spectra from vege-
tated spectral dataset and ten AOD values (τa ¼ 0.05, 0.1, 0.15, 0.2,
0.3, 0.4, 0.5, 0.6, 0.8, 1.0) are considered, thus the averaged DFS and
standard deviation (error bar) could be calculated. Fig. 7 shows the
averaged DFS of retrieving aerosol parameters for individual ob-
servation with different aerosol models. When AOD τ ≥ 0.2a , one
aerosol parameter (Vtotal) can be first retrieved with the mean DFS
values of 0.94, 0.87, and 0.88 respectively for fine-dominated, well-
mixed, and coarse-dominated aerosol conditions (Fig. 7a). As we
consider to add one aerosol parameter in sequence with Vtotal,
Fig. 7b illustrates the total DFS for Vtotal and dominated-mode reff
Fig. 7. Mean and standard deviation of DFS for the retrieval of aerosol parameters with
400–700 nm. Panel (a) is for retrieving one aerosol parameter Vtotal when τ ≥0.2a , panel (b
τ ≥0.5a , and panel (c) represent the simultaneous retrieval of Vtotal and fmfV when τ ≥0.5a .
yellow for coarse-dominated. Here, the dominated-mode reff represent reff

f for fine-domi
dominated-mode m b,r,0 r presented in Figs. 10–12. (For interpretation of the references to
when τ ≥ 0.5a . If τ <0.5a , DFS of reff is small than 0.5 in most cases,
hence still cannot be retrieved with Vtotal. Similarly, Fig. 7c shows
the total DFS for Vtotal and fmfV when τ ≥ 0.5a . Here, the parameter
fmfV only could be retrieved together with Vtotal where atmosphere
is dominated by fine-mode aerosols. For other aerosol parameters,
the DFS results are all smaller than 0.5 and cannot be retrieved
together with Vtotal, regardless of limited information content. In
most cases, the total DFS for the weighting coefficients of four PCs
are larger than 0.85 (figure not shown).

Therefore, for the small AOD case (τ < 0.2a ), deriving Vtotal with
four weighting coefficients is still a difficult task, even over green
vegetation surface; while for the medium or large AOD case
( τ ≥ 0.5a ), the information content can be slightly richer and re-
trieval of fine-mode reff might be possible.

All the DFS analysis above is shown for observation geometry of
θ = °400 , θ = °20v , and ϕ = °20 . Can the DFS result of this
4 PC’s weighting coefficients by the common bands of observation in the range of
) is for simultaneous retrieval of Vtotal and reff of the dominated aerosol mode when
Aerosol models are indicated by blue for fine-dominated, green for well-mixed, and
nated and well-mixed cases, and represent reff

c for coarse-dominated case, so as the
color in this figure legend, the reader is referred to the web version of this article.)



Fig. 8. DFS results of retrieving one aerosol parameter (Vtotal) and 4 PC’s weighting coefficients (w1–w4) at various observation geometries for the small AOD case (τ =0.2a ) by
the selected common bands in 400–700 nm with fine-dominated aerosol. Panels (a–e) are the polar-plots of DFS for Vtotal, w1, w2, w3, w4, respectively. In these polar plots,
radius represents θv , polar angle indicates ϕ, and forward simulations are for θ =400

o. Panel (f) shows the DFS as a function of scattering angle for those five retrieval
parameters. Panel (g) is the histogram of mean and standard deviation of DFS of those five retrieval parameters for considered observation geometries.

W. Hou et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 192 (2017) 14–2924
observation geometry represent those results of other geometries?
Fig. 8 shows the polar-plot of DFS for the small AOD case ( τ = 0.2a )
with fine-mode aerosol dominated case for retrieving one aerosol
parameter only. For the retrieval of V0, DFS generally decrease with the
increasing of scattering angle; when the scattering angle Θ is around
170°, the DFS of V0 reaches the minimal value, and the standard de-
viation of DFS is about 0.09 for all of the scattering angles. For the
retrieval of PC’s weighting coefficient, the DFS shows little variation
with different observation geometries, and the standard deviation of
each weighting coefficient is all smaller than 0.04.

Contrary to Fig. 8, Fig. 9 shows the polar-plot of DFS for the
τ = 0.8a for the retrieval of two aerosol parameters together (V0

and reff ). The DFS value of each retrieval aerosol parameter also
decreases with the increasing of scattering angle, and reaches the
minimal at scattering angles around Θ = °170 ; the standard de-
viation is all smaller than 0.03. The DFS for PC’s weighting coef-
ficients are similar as Fig. 8, and the figures are not show here.

Consequently, information content analysis shows that the DFS
of retrieved aerosol parameters vary with scattering angle. How-
ever, this variation in terms of the standard deviation of DFS is
smaller than 0.1, and DFS results of given observation geometry
(θ = °400 , θ = °20v , and ϕ = °20 ) can be representative of the mean
DFS values in all possible observation geometries regardless of the
specific aerosol parameters, provided for the same aerosol condi-
tion and surface reflectance. Therefore, based on Fig. 8 and Fig. 9,
we can validate that the DFS result in the observation geometry
that we used in the above analysis ( θ = °400 , θ = °20v , and
ϕ = °20 ) can represent the results of other geometries.

4.4. DFS results for multiple observations in common bands

For geostationary satellites such as TEMPO, the TOA spectra can
be acquired for the same place at a given local time with a con-
stant view angle and nearly the same solar angle in multiple ad-
jacent days. Because the surface reflectance changes in a much
slower pace than the aerosol loading (or AOD) at the same location



Fig. 9. Similar to Fig. 8, but for DFS results of retrieving two aerosol parameter ({V r,0 eff } or { }V , fmf0 V ) together with four PC’s weighting coefficients (w1–w4) for the large
AOD case (τ =0.8a ) using the selected common bands in 400–700 nm with fine-dominated aerosol. Left panel is for V & r0 eff case, while right panel is for V & fmf0 V case. Panel
(c) and (f) represent the averaged DFS of retrieved aerosol parameters and standard deviation bar as a function of scattering angle. The DFS of w1–w4 is similar to the results
shown in Fig. 8 and are not shown here.
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[67], we can use observation at the same time in multiple days to
simultaneously retrieve the parameters of aerosol and surface
reflectance. Hence, we assume that the parameters of particle
size distribution ( )r v r v, , ,eff
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the surface reflectance have no change in those adjacent days.
With these assumptions, the varying Vtotal and fmfV (or equivalent
to AOD and fine-mode fraction of AOD) for each satellite ob-
servation, together with constant weighting coefficients w during
the multi-observations, can be retrieved. In other words, in the
retrieval, we assume no change of surface reflectance and aerosol
optical parameters for each mode of aerosols in multiple days, but
allow the change of total aerosol amount Vtotal and its fraction of
fine aerosols fmfV . Thus, while the PC’s weighting coefficients are
assumed as constant during the retrieval of multiple observations,
a moving time-window (say every 5 days) can be implemented in
the actual retrieval algorithm, thereby allowing that the weight
coefficients to gradually change with time to reflect the surface
change with time. A similar example is shown in Wang et al. [48]
in which a moving time-window of 20 days is used to derive VIS-
NIR surface reflectance ratio for polar-orbiting satellite, MODIS. For
Geostationary satellite, we expect that this time window can be
shortened to less than one week.

Same as for the simulation of those cases for analyzing in-
dividual observation, 50 vegetated spectra and 10 different AOD
from 0.05 to 1.0 (i.e., a total of 500 cases) are considered to si-
mulate the multiple observations. Therefore, the results for
3 multi-observations means that the analysis is conducted for
C10

3 ¼120 combinations of 3 AOD values out of 10 AOD values; only
the mean DFS and standard deviation from these 120 cases are
shown. In addition to the analysis for 3 multi-observation cases,
7 multi-observation cases are also shown.

Fig. 10 presents the mean DFS and standard deviation of re-
trieving { }r V, , fmfeff total V from three and seven multi-observation
cases. As long as τ ≥ 0.1a , at least 2 aerosol parameters (V r,total eff )



Fig. 10. Mean and standard deviation of DFS for the retrieval of aerosol parameters by the common bands of multi-observations cases in the range of 400–700 nm when
τ ≥0.1a . The dominated-mode reff and four PCs’ weighting coefficients are assumed as constant in the multi-observations, while Vtotal and fmfV vary in each observation. Left
panels are for 3 adjacent multi-observations and right panels are for 7 adjacent multi-observations. Panel (a) and (c) present the averaged DFS and standard deviation for
retrieval combination of { }r , V , fmfeff total V ; panel (c) and (d) present the mean and standard deviation of DFS as a function of AOD for multi-observations.
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could be retrieved, and the more observations (e.g., from three to
seven) are considered, the larger the DFS will be. For example,
when 3 multi-observations are considered, fmfV could be retrieved
with Vtotal and reff only for fine-mode aerosol dominated cases; but
fmfV could be retrieved for all cases by 7 multi-observations.

Similar as Fig. 10, Fig. 11 shows the averaged DFS and standard
deviation for retrieving { }r m b, V , ,eff total r,0 r . At least, three aerosol
parameters could be retrieved together with four weighting
coefficients. It is striking to find that the refractive index (m b,r,0 r,
that is assumed to be constant during the retrieval period) could
also be retrieved together with reff and varied Vtotal (that are also
constant in the retrieval period) in multiple observations for the
fine-dominated aerosol model. For coarse-dominated aerosol
model, the parameter br is still difficult to be retrieved due to the
Fig. 11. Similar as Fig. 10, but for the retrieval combination of { }r m b, V , ,eff total r,0 r . Varie
inadequate information content. For the results of four weighting
coefficients, the DFS values are all larger than 0.95 in most cases
(figure not shown).

In the analysis above, we have assumed that the aerosol
properties for the bi-modes and the surface reflectance are con-
stant during the multiple observations, and only the Vtotal and fmfV

vary in each observing time. While this assumption is reasonable
in most conditions, long-range transport of aerosols can make this
assumption invalid. For example, the smoke or dust particles may
occur in one day during multiple observations. How many aerosol
parameters could be retrieved in this case? To answer this ques-
tion, Fig. 12 show some cases of mean DFS to retrieve 2–3 aerosol
parameters with the assumption that the surface reflectance has
been obtained from previous days where AOD change follows
d Vtotal and constant dominated-mode { }r m b, ,eff r,0 r are assumed for the retrieval.



Fig. 12. Similar as Fig. 7, but for the retrieval of aerosol parameters given the surface reflectance is pre-determined.
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climatology and no smoke or dust particles are detected. Com-
pared with information content results shown in Fig. 7, the DFS in
this figure are significantly improved, for the reason that the sur-
face reflectance has been known and does not need to be re-
trieved. In this condition, as long as τ ≥ 0.05a , Vtotal could be easily
retrieved, with the DFS larger than 0.99 for all of the 3 aerosol
models; and if τ ≥ 0.1a , the combination of { }V r,total eff could be
further retrieved. When τ ≥ 0.2a , we can select to retrieve the
combination of { }V , fmfVtotal or { }V m b, ,total r,0 r in most cases, except
for the retrieval of br with coarse-dominated aerosol model.
Therefore, if the surface reflectance is determined prior to aerosol
retrieval, the information content can satisfy the retrieval of 1–3
aerosol parameters depend on the AOD value and the selection of
state vector.
5. Conclusion and discussion

As the second part of a series of studies for retrieving aerosol
properties from the hyperspectral radiances measured by new the
instrument GEO-TASO and future geostationary satellite TEMPO,
we conduct information content analysis for aerosol parameters
and principal components of surface spectra. Our findings can be
summarized into five parts, as follows.

(a) The PCs of hyperspectral surface spectra in the window
channels in the spectral range 400–2400 nm and its subset
(such as 400–700 nm) can be derived from TOA hyperspectral
reflectance after the Rayleigh correction in low AOD condi-
tions ( τ ≤ 0.2a ), no matter what kind of the land surface type
is. When these PCs derived from TOA spectra are used to re-
construct the surface reflectance spectra, the averaged relative
error of spectral reconstruction is about 1% in comparison with
the results reconstructed with ‘true’ surface PCs.

(b) The information content for aerosol depends on surface type,
observation geometries, wavelength bands, aerosol model and
the value of AOD. Among five typical surface types, the max-
imum values of DFS for aerosols are over green vegetation, and
the minimum values of DFS are over the urban bright surface
(mainly concrete). The dependence of DFS value with respect
to observation geometry overall is smaller than 0.1 for each
retrieval parameter.
(c) Common bands exist for hyperspectral measurements to re-

trieve aerosols and surface reflectance. In the visible spectrum,
it is shown that �50 common bands can be used to obtain 90%
total information content. With those common bands,
weighting coefficients for only 4 PCs are needed to char-
acterize surface reflectance, thereby improving the computing
efficiency for aerosol retrieval algorithm.

(d) Based on the common bands in the spectral range 400–
700 nm, DFS analysis for individual observation over various
surface types and AOD values have been investigated. For the
vegetated surface type, when AOD τ ≥ 0.2a , total aerosol vo-
lume Vtotal could be retrieved with 4 PC’s weighting coeffi-
cients, and if τ ≥ 0.5a , effective radius reff could be further
retrieved. However, fine-mode fraction fmfV can only be re-
trieved when τ ≥ 0.5a and is dominated by fine-mode aerosols.

(e) Retrievals respectively by using simultaneously three and se-
ven observations are considered over vegetated surface. With
multiple observations, 2–4 aerosol parameters can be re-
trieved together with 4 PC’s weighing coefficients. As long as
the AOD τ ≥ 0.1a , at least 2 aerosol parameters (V r,total eff ) could
be retrieved together. Using seven observations can retrieve
{ }r V, , fmfVeff total or { }r V m b, , ,eff total r,0 r .

The findings of this study have important implication to the
development of aerosol retrieval algorithm for TEMPO. TEMPO will
provide hourly observation for the same location in North Amer-
ica, enabling more frequent sampling of backscatter hyperspectral
radiance at the top of the atmosphere. According to our study
here, it is expected that the PCs of surface reflectance for each
TEMPO’s pixel could be approximately obtained from TOA mea-
surements at low AOD conditions. In addition to AOD, there is no
single set of aerosol parameters that should be and will be re-
trieved for all surface types and at aerosol conditions. We show
that more aerosol parameters can be retrieved from multiple
measurements at the same time during consecutive days, and
these retrievable parameters also depend on the number of
available observations during these consecutive days as well as
aerosol types and AOD. Hence, this study suggests that a self-ad-
justable retrieval algorithm is needed for TEMPO, which will be
the focus of our next study with real observations from GEO-TASO.
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