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A B S T R A C T

Estimation of particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from daytime satellite
aerosol products is widely reported in the literature; however, remote sensing of nighttime surface PM2.5 from
space is very limited. PM2.5 shows a distinct diurnal cycle and PM2.5 concentration at 1:00 local standard time
(LST) has a linear correlation coefficient (R) of 0.80 with daily-mean PM2.5. Therefore, estimation of nighttime
PM2.5 is required toward an improved understanding of temporal variation of PM2.5 and its effects on air quality.
Using data from the Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) and hourly
PM2.5 data at 35 stations in Beijing, a mixed-effect model is developed here to estimate nighttime PM2.5 from
nighttime light radiance measurements based on the assumption that the DNB-PM2.5 relationship is constant
spatially but varies temporally. Cross-validation showed that the model developed using all stations predict daily
PM2.5 with mean determination coefficient (R2) of 0.87 ± 0.12, 0.83 ± 0.10, 0.87 ± 0.09, 0.83 ± 0.10 in spring,
summer, autumn and winter. Further analysis showed that the best model performance was achieved in urban
stations with average cross-validation R2 of 0.92. In rural stations, DNB light signal is weak and was likely
smeared by lunar illuminance that resulted in relatively poor estimation of PM2.5. The fixed and random
parameters of the mixed-effect model in urban stations differed from those in suburban stations, which indicated
that the assumption of the mixed-effect model should be carefully evaluated when used at a regional scale.

1. Introduction

Much attention has been paid to particulate matter (PM) since it
changes the radiative budget of earth-atmosphere system, reduces
surface visibility, and influences precipitation. More importantly, sur-
face PM with aerodynamic diameter less than 2.5 μm (PM2.5) has ad-
verse effects on human health. Long-term exposure to high PM2.5 con-
centrations may damage cardiovascular and respiratory systems, lead to
asthma, lung cancer and increase mortality (Pope and Dockery, 2006).

Measurements of PM2.5 concentration with high temporal and spa-
tial resolutions are required for improving our understanding of its ef-
fects on environment, climate and human health. Traditional ground
observations provide real-time PM2.5 measurements with high temporal
resolution. Regional networks have been established in developed
countries. However, ground observations still have limited spatial

coverage over the global land, especially over the developing countries.
In contrast, satellite remote sensing is one of the promising methods to
estimate surface PM2.5 with high spatial resolution at a regional and
even global scale, which has been widely suggested more than one
decade ago (An et al., 2007; Chu et al., 2003; Fernando et al., 2012; Liu
et al., 2009, 2007; Wang and Christopher, 2003). The most popular
satellite-derived product for estimating surface PM2.5 concentrations is
aerosol optical depth (AOD). AOD is indicative of the integrated light
extinction of particles in the atmosphere. In early work by Wang and
Christopher (2003), the potential of using satellite-based AOD from the
Moderate Resolution Imaging Spectroradiometer (MODIS) to derive
surface PM2.5 concentrations was demonstrated, but the importance of
other factors affecting such derivation including mixing layer depth and
relative humidity was also recognized. Further studies have attempted
to improve the PM2.5-AOD relationship through many linear and
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nonlinear statistical models in which additional parameters such as
local meteorology and land use information are introduced to develop
multiple linear regression model (Gupta and Christopher, 2009a),
geographically weighted regression model (Ma et al., 2014; Song et al.,
2014), nonlinear model (You et al., 2015), land use regression models
(Hoek et al., 2008; Ross et al., 2007), artificial neural networks (Gupta
and Christopher, 2009b), optimal estimation algorithm based on
transport model (Van Donkelaar et al., 2013), to name just a few. The
common feature of these methods is that the PM2.5-AOD relationship is
developed from short- or long-term simultaneous measurements of
PM2.5 and AOD as well as other spatiotemporally collocated para-
meters. Since aerosol properties and their vertical profiles vary day by
day, PM2.5-AOD relationship should vary temporally, which cannot be
completely captured by these linear or nonlinear methods. This is likely
one of the reasons why these methods generally predict< 60% of the
variability in PM2.5 (Hoff and Christopher, 2009).

Lee et al. (2011) introduced a novel mixed-effect model to explain
day-specific PM2.5-AOD relationship. The coefficient of determination
of the model (R2) can reach 0.92, indicating that this method is pro-
mising, especially in those regions with ground-based PM2.5 monitoring
network. Application of this method in Beijing showed good perfor-
mance with cross-validations R2 of 0.75–0.79 (Xie et al., 2015).

AODs applied in previous studies are retrieved from satellite mea-
surements of reflected sunlight. PM2.5 concentrations often have a
distinct diurnal cycle, which indicates that estimating nighttime PM2.5

is absolutely important (Li et al., 2014). Wang et al. (2016) initiated a
method to achieve this goal by using a multivariate regression model
with nighttime light radiance data from the Day/Night Band (DNB) of
the Visible Infrared Imaging Radiometer Suite (VIIRS). Compared to the
model considering meteorological variables only (R2 of 0.25), the
model with consideration of DNB data showed better performance (R2

of 0.45), which suggested that DNB had the potential for monitoring
PM2.5 concentrations. They further showed that PM2.5 mass con-
centration at VIIRS night-time overpass time (∼1:00, local standard
time (LST)) better represented daily-mean PM2.5 mass concentration
than the PM2.5 concentration measured during VIIRS or MODIS over-
pass time during the local noon time. Hence, deriving surface PM2.5

from DNB at night is of high value for air quality assessment because
daily-mean PM2.5 concentration is the parameter widely used by dif-
ferent environmental protection agencies around the world (Wang
et al., 2016).

Beijing, the capital of the largest developing country in the world,
China, has been suffering heavy air pollution in recent years, especially
in winter. For example, a persistent PM2.5 pollution event in winter of
2012–2013 was characterized by a maximum hourly PM2.5 concentra-
tion of 600 −μg m 3    (Zheng et al., 2015a). A regional PM2.5 network has
been established in Beijing and hourly PM2.5 concentrations have been
available since 2013, which provides opportunities to study seasonality
of PM2.5 (Zheng et al., 2015b), potential contribution of local emission

and long-range transport to heavy PM2.5 pollution (Yang et al., 2016).
The objective of this study is to develop a novel method to estimate

nighttime PM2.5 from space. While this topic has been addressed in
previous studies (Wang et al., 2016; McHardy et al., 2015), this paper
differs in following ways. We derived spatial distribution of AOD
and thereby mapped surface PM2.5 concentration based on VIIRS
DNB measurements for the first time in Beijing. Additionally, we
adopted a mixed-effect model to establish the relationship be-
tween VIIRS DNB derived AOD and PM2.5 concentration. Cross-
validations showed that the model could predict nighttime hourly
PM2.5 concentrations with average R2 of 0.85, indicating DNB's
potential in the monitoring of surface PM2.5 concentration. Ad-
vantages and disadvantages of this method are discussed in detail.

2. Data and method

2.1. Surface PM2.5 mass concentration data

Hourly PM2.5 data from 1st December in 2013 to 30th November in
2014 at 35 sites (Fig. 1) are obtained from the website (http://zx.
bjmemc.com.cn/). PM2.5 concentrations are measured by the Tapered
Element Oscillating Microbalance (TEOM). The TEOM's filter is heated
to avoid particle-bound water that may result in a slight under-
estimation of PM2.5 mass concentration owing to volatilization of semi-
volatile material (Grover et al., 2005). The data are checked for quality
according to the environmental protection standard of China. Inter-
comparison of PM2.5 concentrations from the Beijing U.S. diplomatic
post and the nearby Ministry of Environmental Protection site indicated
a good agreement.

2.2. VIIRS DNB data

The VIIRS, aboard Suomi National Polar-orbiting Partnership (S-
NPP), has 22-band channels with a high nominal spatial resolution of
375m in the five imagery bands (I-bands) and 750m in the 16 mod-
erate-resolution bands (M-bands). The outstanding feature of VIIRS is
that: (a) it is able to detect visible signal in both day and night by its
DNB (Polivka et al., 2016), and (b) the spatial resolution of the pixel is
increased only by a factor of ∼2 from nadir to the edge of the swatch
(while in case of MODIS, it is a factor of 8–10) (Polivka et al., 2015).
The VIIRS DNB is designed to have a broad spectral coverage
(500–900 nm), half maxima of the spectral response function at
700 nm, high spatial resolution of 0.74×0.74 km across a 3000-km-
wide swath. While the spectral coverage of DNB is wide, DNB is shown
to be sensitive to the change of aerosol loading and is not sensitive to
the water vapor in urban environment because the spectra of modern
city lights does not overlap with water vapor and oxygen absorbing
lines (Wang et al., 2016). DNB's amplification gain varies dynamically
from three simultaneously collecting stages (groups of detectors) and

Fig. 1. a) Annual PM2.5 mass concentrations at 35 sites (1:00 LST, VIIRS overpass time); b) spatial distribution of annual mean DNB radiance (10 − −nWcm sr2 1). The red line in panel (b)
denotes CALIOP ground track on 07 December 2013. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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these stages enable the DNB to cover the dynamic range of radiances
during the daytime, twilight, and nighttime. Compared with its pre-
decessor, the Operational Linescan System (OLS), the DNB has full ca-
libration, improved spatial resolution (0.74 km vs. 2.7 km) and in-
creased radiometric resolutions (14-bit vs. 6-bit) (Lee et al., 2006).

Three datasets of VIIRS were used in this research. The VIIRS Cloud
Cover/Layers Height Data Content Summary (VCCLO) was used to filter
cloud contamination. The VIIRS/DNB Sensor Data Record-SDR
(SVDNB) provided radiance values and quality flag information. The
VIIRS/DNB SDR Geolocation Content Summary (GDNBO) provided the
corresponding latitude, longitude, solar zenith angle, lunar zenith
angle, lunar illumination fraction, and satellite zenith angle data. The
data were downloaded from NOAA's Comprehensive Large Array-data
Stewardship System (CLASS) (https://www.class.ncdc.noaa.gov/saa/
products) (Johnson et al., 2013). A gridded data with 0.01° resolution

were produced from the cloud-screened DNB swath data. The mean and
standard deviation of the radiances of each 4×4 grids were calculated.
Hourly PM2.5 data close to the overpass time of VIIRS (1:00 LST) were
collocated with DNB radiances at each station.

2.3. Model development

A mixed-effect model with random intercepts and slopes for the
estimation of PM2.5 from AOD is as follows (Lee et al., 2011).

= + + + + +PM (α u ) (β v )AOD s εi,j j j i,j i i,j (1)

∑∼(u v N[(00), ])j j

where PMi,j represents PM2.5 value at site i on day j  ; α and β represent
fixed intercept and slope respectively, which are the conventional
linear regression part; uj and vj are the random intercept and slope,
which explain the day-to-day variations of the AOD-PM2.5 relationship
influenced by meteorology, pollution transportation, etc. Random ef-
fects have prior normal distributions with mean value of 0 and constant
variance (Pinheiro and Bates, 2000). si∼N (0, σs

2) and εi,j∼N (0, σ2)
represent the random intercept of site i and the error term at site i on
day j. σs

2 and σ2 denote the variances for si and εi,j. ∑ is the variance-
covariance matrix for the day-specific random effects. si accounts for
site-specific characteristics, such as topography and pollution emis-
sions.

DNB Radiance (Isat) is related to atmospheric optical depth (τ) as
follows if multiple scattering is neglected.

= −I I esat a
τ/μ (2)

where μ is the cosine of the satellite zenith angle and Ia is the upward
visible radiation from the surface. Ia can be generally estimated by Isat
from a moonless night with low aerosol loading during certain period.
Assuming that Ia at a given location is constant in time and taking the
spatial derivative of Equation (2), τ can be estimated using the fol-
lowing equation.

= − ⎛
⎝

⎞
⎠

τ μln ΔIsat
CΔIa (3)

Where ΔIsat and ΔIa are pixel-to-pixel differences in satellite-observed
radiance and upwelling radiance from surface artificial light source
(McHardy et al., 2015). Taking the same strategy as McHardy et al.
(2015), ΔIsat is represented by the standard deviations of satellite-ob-
served radiances within one grid (4–8 pixels of DNB). Assuming that
city light changes little within three months, the largest ΔIsat with the
lunar illumination fraction<50% is used to represent ΔIa for each
season. The rationale behind it is that the largest variance in city should
be observed during the night with the lowest aerosol loading and least
lunar illumination, which can be used to represent the variation of
upwelling radiance from surface artificial light source with little at-
mospheric contamination. Introduction of parameter C is to correct the
dependence of DNB radiance in the absence of cloud, moon and aerosol
on μ in some cases, as suggested by Johnson et al. (2013). The cor-
rection has been performed only if the coefficient of correlation be-
tween μ and DNB radiance in the absence of cloud, moon and aerosol
is > 0.6, otherwise, no correction has been performed.

τ derived from equation (3) is mainly attributable to aerosol, al-
though Rayleigh scattering exert somewhat effects (Wang et al., 2016).
We can obtain a new model to estimate PM2.5 from DNB radiance di-
rectly according to Equations (1) and (3) based on collocated PM2.5-
DNB data points.

⎜ ⎟= + + + ⎛

⎝
⎜− ⎛

⎝
⎞
⎠

⎞

⎠
⎟ + +PM (α u ) (β v ) μ ln

ΔI
C ΔIa

s εi,j j j i,j
i,j

i i,j
i i,j

(5)

To evaluate the performance of the model, a cross validation (CV)
was implemented (Wilks, 2011). Suppose that we have collocated PM2.5

Fig. 2. Diurnal variation (solid line) and daily mean (dot line) of hourly PM2.5 con-
centrations for different seasons. The diurnal variation is the mean of all sites within
region and overlaid (in black solid line) is the VIIRS overpass time at night.
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and DNB data at N stations, only data at N-1 stations are used to train
the model while the data at the remaining station are used to evaluate
the model each time. This leave-one-out process was repeated for each
of the N sites, which follows the same procedure as in past studies for
cross-validation (Wang et al., 2016; Xie et al., 2015). R2, mean pre-
diction error (MPE), and root-mean-square-error (RMSE) are used to
evaluate the performance of the model.

2.4. AOD validation

Two AOD datasets were adopted to validate the values derived from
the VIIRS DNB. From the AErosol RObotic NETwork (AERONET), we
chose the Level 2.0 data at Beijing site (116.38°, 39.98°) corresponding
to the study period. To be comparable with the AOD values of VIIRS
DNB, the nighttime τ values were calculated by taking the average of
before- and after-overpass AERONET data. The AERONET observations
adjacent the VIIRS nighttime overpass were not used if their time dif-
ference was more than 24 h (Johnson et al., 2013).

Fig. 3. Inter-comparison between daily-mean (x-axis) PM2.5 concentration and the corresponding PM2.5 concentration measured at 1:00 LST for four seasons.

Fig. 4. a) Comparison between the nighttime averaged AERONET AOD and VIIRS derived AOD at Beijing site during 2013–2014; b) Comparison between CALIPSO AOD and VIIRS
derived AOD.
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Apart from validation from ground measurements, Cloud-Aerosol
LIdar with Orthogonal Polarization (CALIOP) nighttime τ data are also
used. The equator crossing time of the CALIOP instrument aboard Cloud
and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations
(CALIPSO) is about 13:30 and 01:30 local time. CALIOP acquires ver-
tical profiles of elastic backscatter at two wavelengths (532 and
1064 nm) and provides new insight into the vertical distribution of
clouds and aerosols over the globe (Winker et al., 2010). In this study
the version 4.10 level 2, 5 km aerosol layer product is used, which
provides the layer AOD and the column AOD at wavelengths of
0.532 μm and 1.064 μm. The column AOD in the CALIPSO data pro-
ducts is computed by integrating all of the aerosol extinction coeffi-
cients with altitude. For comparisons, we consider only cloud-free and
quality-controlled aerosol products. That is, we require CALIPSO Ex-
tinction QC 532= 0, indicating that initial lidar ratio unchanged
during solution process. We also require cloud-aerosol discrimination
(CAD) score to be less than 0 and greater than −100, since negative
value signifies aerosol and the absolute value of CAD indicates a con-
fidence level.

Different from the AERONET Beijing's validation, there is a lack of
collocated CALIOP and VIIRS data pairs over Beijing area and the
matchups are usually located in rural area with no sufficient artificial
light sources (Fig. 1b). To obtain more data for the comparison, we
expand the comparison area to the entire rectangular area. In temporal
collocation, we choose CALIPSO closest-approaches that are within 2-h
of a VIIRS measurement.

3. Results

3.1. Diurnal and seasonal variations of PM2.5 concentration

Annual mean PM2.5 measured at 35 sites is 90.8 −μg m 3  . Seasonal
averaged PM2.5 concentrations for spring, summer, autumn and winter
are 82.2 ± 5.1 −μg m 3  , 69.0 ± 3.1 −μg m 3  , 97.3 ± 9.0 −μg m 3  and
116.3 ± 15.2 −μg m 3  , respectively. The seasonal variations can be at-
tributable to seasonal variations of emission and meteorological con-
ditions. For example, heavy pollution in winter is likely associated with
coal burning for heating and shallow boundary layer depth (Li et al.,
2014). Spatially, there is a gradient of surface PM2.5 from south to north
due to specific topography and population distribution in Beijing
(Fig. 1a). Northwest of Beijing is surrounded by mountains, while south
sites are more influenced by local anthropogenic emissions of aerosols
and long-range transport of aerosols from south of Beijing.

Diurnal characteristics of PM2.5 concentrations vary with seasons
(Fig. 2). The variations in spring and winter appear a flat “W” shape
with relative lower value at 06:00–07:00 LST and 15:00–17:00 LST.
There is an increasing trend of concentrations during 7:00–10:00 LST
that is likely associated with enhanced anthropogenic activities during
rush hour. The decreasing trend at 10:00–15:00 LST in winter can be
explained as follows. The boundary layer usually begins to form after
sunrise and the depth grows gradually into the afternoon. The increase
of boundary layer depth provides a larger volume for the dilution of
pollutants, resulting in a reduction of PM2.5 concentrations in the
afternoon. Although emission and removal of particles by deposition
decrease during night, PM2.5 concentration increases as the boundary
layer depth decreases (Miao et al., 2009). Different from that in

Fig. 5. Box plots of R2 (left) and MPE ( −μg m 3  ) (right) derived from the mixed-effect model with all 35 sites (upper) and 28 sites (lower).
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autumn and winter, a flat diurnal variation was observed in
spring, which was likely a reflection of a faint variation of the
boundary layer depth. The second peak in spring was corre-
sponded to rush-hour or cooking time. The smallest diurnal fluc-
tuation was observed in summer, which was likely associated with
strong dispersion and deposition.

In diurnal variation patterns, PM2.5 concentrations during VIIRS

overpass time at night (1:00 LST) are representative of daily-mean
PM2.5 with bias percentages of 4.1%, 3.0%, 10.9% and 17.4% for four
seasons, respectively. Besides, it should be noted that PM2.5 con-
centrations in mid-morning (10:00 LST, MODIS/Terra overpass time)
and early-afternoon (13:00 LST, MODIS/Aqua daytime overpass) are
also representative of daily mean of PM2.5 (Wang et al., 2016; Wang
and Christopher, 2003). Further analysis (Fig. 3) shows that PM2.5 at
1:00 LST is correlated with corresponding daily-mean PM2.5 (R= 0.80)
with mean RMSE of 52.7 −μg m 3  , which indicates the potential of PM2.5

derived from VIIRS DNB at night for assessing daily-mean air quality.

3.2. AOD validation

Fig. 4a shows VIIRS-retrieved AOD against the corresponding
straddling daytime-averaged AERONET AOD for Beijing site
(R= 0.61). As daytime AOD may not be the ideal dataset for valida-
tion, Fig. 4b presents the results of VIIRS-derived AOD against CALIPSO
AOD (R=0.60, MPE of 0.51). The limited sample number (N=11) is
due to insufficient data pairs of collocated CALIOP and VIIRS. Though
the performances of both validation methods are some similar, it should
be noted that the areas for comparison are different. The former is a
comparison over one site and the main uncertainty may come from the
averaged AERONET AOD representing nighttime τ. The latter is a
comparison over different grid cells and the uncertainty is mainly due
to no sufficient artificial lights for VIIRS retrieving. Furthermore, AOD
from CALIOP also have uncertainties of 0.1 (Kittaka et al., 2011), and
can be up to 0.3 in heavy polluted cases (Ma et al., 2013).

3.3. Establishment of the mixed-effect model

Table 2 presents cross validation results from 35 sites and 28 sites (7
sites are eliminated since values of Rm < 0.4). The fixed slope shows a
clear seasonal dependence. More specific, the slope in winter is nearly
twice larger than that in summer, indicating that a fixed linear or
nonlinear model cannot capture the real complicated PM2.5-AOD re-
lationships, especially based on long-term collocated data. Seasonal R2

ranges from 0.80 to 0.86. However, a significant spatial variation of
R2 is observed and the site-specific R2 ranges from 0.11 to 0.98
(Fig. 5). Abnormally low R2 values are derived in sites with weak up-
welling radiance, for example, at BDL, a site close to the Great Wall.
The signal of DNB radiance at this site is probably affected by lunar
illumination, which is supported by the fact that Rm exceeds 0.4. This
indicates that caution should be taken to use DNB to estimate PM2.5 in
rural areas where artificial light is limited. The model is established
after 7 sites (MYSK, BDL, DGC, DL, LLH, YF and YG where Rm > 0.4 in
Table 1) are excluded. The obvious improvement of the model perfor-
mance is clearly shown in Table 2 and Fig. 5. The overall MPE and
RMSE are 40.9 −μg m 3  and 32.4 −μg m 3  , respectively, 23.1% and 9.5%
lower than the values from the model established using data at all 35
sites. Annual average R2 is 0.85 and the seasonal average R2 of spring,
summer, autumn and winter are 0.87 ± 0.12, 0.83 ± 0.10, 0.87 ± 0.09,
0.83 ± 0.10, respectively. Compared with the daytime mixed-effect
model in Beijing (R2 of 0.75−0.79) (Xie et al., 2015), our nighttime
model performs better. This is likely because a well-mixed aerosols
within a shallow nocturnal boundary layer during midnight is
favorable for a stable AOD-PM2.5 relationship. This is also likely
due to more collocated DNB and PM2.5 data points than those from
daytime AOD and PM2.5.

The model performance after 7 stations are excluded in the model
establishment still shows a clear spatial dependence (Fig. 6). Urban area
within black rectangular box in Fig. 6 ( °116.15 E- °116.50 E,

°39.80 N- °40.00 N) is characterized by higher R2 of 0.91 ± 0.04 than that
in rural area (0.78 ± 0.10).

To investigate the site location's effects on the results, analysis is
then conducted separately with sites in urban area (14 sites) and rural
area (14 sites). Compared with the mixed-effect model with 28 sites, R2

Table 1
Site information of 35 monitoring sites in Beijing.

Site Lon (°) Lat (°) N Radiance PM2.5± STD
( −μg m 3  )

Rm

MYSK 116.91 40.50 203 1.4 ± 17.8 53.5 ± 57.6 0.50
BDL 115.99 40.37 286 2.0 ± 15.9 50.4 ± 51.8 0.59
DL 116.22 40.29 258 2.4 ± 14.8 54.6 ± 66.8 0.51
DGC 117.12 40.10 276 2.8 ± 16.0 70.9 ± 66.0 0.53
ZWY 116.21 40.01 247 3.6 ± 19.7 68.65 ± 73.0 0.37
LLH 116.00 39.58 233 3.6 ± 15.4 133.5 ± 110.2 0.57
YF 116.30 39.52 244 4.3 ± 7.0 104.4 ± 81.6 0.54
YLD 116.78 39.71 262 6.4 ± 4.1 121.5 ± 111.8 0.37
YG 116.15 39.82 272 9.4 ± 2.9 85.2 ± 81.3 0.41
BBXQ 116.17 40.09 274 9.7 ± 12.8 81.8 ± 74.0 0.34
HR 116.63 40.33 256 13.5 ± 3.9 63.1 ± 63.1 0.30
YQ 115.97 40.45 291 14.1 ± 11.0 69.5 ± 63.3 0.19
DX 116.40 39.72 276 17.1 ± 7.6 114.9 ± 104.3 0.20
PG 117.10 40.14 276 18.7 ± 7.5 76.2 ± 74.9 0.28
FS 116.14 39.74 269 20.8 ± 14.5 100.5 ± 89.4 0.22
WL 116.29 39.99 250 22.9 ± 12.3 88.4 ± 79.3 0.21
SY 116.65 40.13 281 23.2 ± 9.1 85.4 ± 77.0 0.19
MY 116.83 40.37 276 25.6 ± 17.8 68.5 ± 75.5 0.15
MTG 116.11 39.94 261 28.2 ± 11.0 67.6 ± 69.2 0.21
YDMN 116.39 39.88 269 29.3 ± 7.7 101.4 ± 83.8 0.19
XZMB 116.35 39.95 260 30.4 ± 6.6 90.7 ± 82.1 0.17
GC 116.18 39.91 274 30.9 ± 11.4 81.6 ± 72.0 0.17
DSH 116.48 39.94 266 33.0 ± 7.2 103.9 ± 99.9 0.18
TZ 116.66 39.89 253 34.1 ± 2.4 124.8 ± 115.9 0.20
CP 116.23 40.22 267 34.2 ± 2.1 66.3 ± 70.2 0.06
YZ 116.51 39.79 268 35.1 ± 1.9 112.9 ± 96.7 0.16
NSH 116.37 39.86 252 36.4 ± 2.3 104.5 ± 89.6 0.11
FTHY 116.28 39.86 271 37.8 ± 3.4 101.1 ± 92.9 0.14
NZG 116.46 39.94 275 39.9 ± 3.1 93.6 ± 90.5 0.16
GY 116.34 39.93 269 40.0 ± 2.7 86.5 ± 75.0 0.16
WSXG 116.35 39.88 267 40.2 ± 16.1 88.5 ± 80.2 0.10
DS 116.42 39.93 278 43.9 ± 8.9 87.9 ± 80.2 0.18
TT 116.41 39.89 272 44.8 ± 9.9 84.7 ± 74.7 0.16
QM 116.39 39.9 269 45.2 ± 12.9 99.0 ± 87.6 0.16
ATZX 116.40 39.98 271 48.9 ± 10.3 88.4 ± 77.8 0.09

(Noted: N represents day number with collocated PM2.5 and DNB data. ±PM STD2.5  

represents mean and standard deviation of PM2.5 concentrations during the overpassing
time of VIIRS. Rm is the linear correlation coefficient between DNB radiance and the lunar
illumination fraction. The unit of radiance is − −nWcm sr2 1).

Table 2
Model performance of cross validation based on result from all 35 sites and 28 sites with
Rm > 0.4, respectively.

Slopea Interceptb

(P < 0.00001)
R2 MPEc

−(μg m )3 
RMSEd

−(μg m 3  )

35 sites (all sites)
Spring 76.63 ± 7.79 1.60 ± 1.74 0.86 46.1 25.5
Summer 62.24 ± 5.38 2.61 ± 1.10 0.80 41.1 12.4
Autumn 89.80 ± 10.51 4.66 ± 2.89 0.83 57.9 41.2
Winter 122.58 ± 12.66 2.57 ± 2.39 0.80 56.2 52.3
28 sites (sites with Rm <0.4 only)
Spring 75.69 ± 8.12 5.23 ± 2.61 0.87 34.2 23.7
Summer 62.91 ± 5.48 4.15 ± 1.44 0.83 35.5 20.7
Autumn 90.77 ± 11.00 4.14 ± 2.17 0.87 48.1 36.6
Winter 127.58 ± 12.88 −0.10 ± 2.60 0.83 45.7 48.4

(Slopea and Interceptb are the fixed terms of regression slope and regression intercept.
MPEc and RMSEd are the absolute differences and the root mean squared differences
between predicted and measured PM2.5 concentrations.).
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increases and MPE, RMSE decrease in urban area (R2 of 0.92–0.94,
RMSE of 15.3–24.3 −μg m 3  , MPE of 14.5–32.5 −μg m 3  ) (Table 3). While
the performance of rural sites is relatively poor. The averaged R2 over
four seasons is 0.77 ± 0.10, which is even lower than result obtained
from 28 sites (0.85). Worse performance in rural area is possibly due to
low DNB signal/noise ratio, a large spatial variation of AOD- PM2.5

relationship and low sample density. 14 sites in rectangular box are
almost located in area with strong artificial lights (Fig. 1) and close
to each other in space. Hence, the model constructed with these
sites will have better performance.

3.4. Predicted surface PM2.5

Mapping surface PM2.5 concentrations with valid DNB data was
carried out at pixels with Rm <0.4. The site term was replaced by each

grid's position based on following reasons. First, site information was
not available for each 0.04° resolution grid. Second, higher cross vali-
dation R2 in urban area indicated that the model could be used to
predict PM2.5 in grids without ground-site measurements. Taking sea-
sonal variation into consideration, we calculated seasonal PM2.5 con-
centrations (Fig. 7). Averaged satellite-derived PM2.5 concentrations
were 85.5 −μg m 3  , 71.5 −μg m 3  , 99.7 −μg m 3  and 125.5 −μg m 3  for spring,
summer, autumn and winter, respectively, which shared the same
seasonal properties with site-observed PM2.5 concentrations. With fine
resolution of PM2.5 concentration map, we could see a fine spatial
variation of PM2.5.

4. Discussion and conclusions

Pronounced diurnal variation of PM2.5 concentrations in Beijing is
found and nighttime shows some different features against daytime. In
addition, PM2.5 concentration derived from VIIRS DNB at night, similar
with PM2.5 derived from MODIS, can be applied to assess daily-mean
PM2.5 with a R of 0.80. It is therefore worthwhile to retrieve nighttime
PM2.5 concentrations, which would undoubtedly improve our under-
standing of diurnal variation of PM2.5. This study developed a mixed-
effect model to estimate nighttime PM2.5 concentrations from VIIRS
DNB measurements of artificial light radiance, which was approved to
be a promising method to estimate nocturnal PM2.5 from space. The
VIIRS-derived AODs were also compared with CALIPSO AODs. Cross-
validation showed that the mixed-effect model could predict hourly
PM2.5 (1:00 LST) with R2 exceeding 0.8. Further analysis showed that
the best model performance was achieved in urban stations with R2 of
0.92. Gridded PM2.5 with spatial resolution of 0.04° was produced in
Beijing.

One of important advantages of using VIIRS DNB in the estimation

Fig. 6. Spatial variation of R2 from the mixed-effect model based on data in 28 sites. Rectangular box in Figure indicates urban area.

Table 3
The fixed terms of the mixed-effect models and their performance over 14 urban sites and
14 rural sites, respectively.

Model Type Slopea Interceptb

(P < 0.00001)
R2 MPEc

−(μg m )3 
RMSEd

−(μg m 3  )

14 sites in urban area
Spring 82.74 ± 8.52 −2.12 ± 3.69 0.92 21.2 18.6
Summer 69.39 ± 5.84 3.02 ± 1.96 0.92 15.3 14.5
Autumn 99.01 ± 12.72 1.06 ± 2.47 0.94 24.2 25.7
Winter 120.60 ± 12.13 4.24 ± 3.14 0.92 23.4 32.5
14 sites in rural area
Spring 68.58 ± 8.04 7.59 ± 2.55 0.84 43.2 26.9
Summer 56.33 ± 5.92 4.63 ± 1.79 0.75 52.5 25.7
Autumn 81.69 ± 11.92 7.71 ± 3.70 0.77 69.2 48.8
Winter 124.58 ± 14.71 2.28 ± 3.58 0.73 73.7 64.9
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of PM2.5 was that it could provide more valid estimations than MODIS.
The collocated DNB-PM2.5 data points during the studied period were
3.0, 1.3, 1.8 and 3.7 times larger than MODIS/AOD-PM2.5 points from
spring to winter. Fewer MODIS AOD retrievals in winter were likely due
to misclassification of heavy aerosol pollution to cloud and occasional
snow events.

Limitations of this method should also be kept in mind. First, DNB
nighttime radiance measurements are associated with not only surface
light emissions but also other factors, for example, lunar illuminance.
The model can only be applied in areas with considerable surface light
emissions, which limits the spatial coverage of the method. Second,
multiple scattering of artificial light needs further study that requires
comprehensive radiative transfer model simulations.
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