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Abstract Largely used in several independent estimates of fire emissions, fire products based on MODIS
sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including
(a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan
where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions.
To remedy these limitations, an empirical method is developed here and applied to correct fire emission
estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the
Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was
performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem
model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products
fromMODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an
30–50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern
of AOD with respect to observations) by the adjusted emissions that not only increases the original
emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire
emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission
across the study domain. Even with this improvement, a factor of two underestimations still exists in the
modeled AOD, which is within the current global fire emissions uncertainty envelope.

Plain Language Summary Polar-orbiting satellites sensors, such as MODIS, have limitations in
detecting fires under clouds or when viewing angles are large or in the gaps among satellites’ different
ground swaths. Here we developed an empirical method to mitigate the effect of these limitations in fire
emission estimate. The method is applied to a fire emission inventory (FEER) based on MODIS. We show
that, with our method, the adjusted emission inventory improves WRF-Chem simulation of smoke transport
and distribution.

1. Introduction

Emissions from biomass burning are generating growing interest from the scientific community and the gen-
eral public alike because worldwide biomass burning contributes large amounts of greenhouse gases and
other trace gases such as carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), and methane
(CH4), as well as particulates into the atmosphere (Andreae, 1991; Brass et al., 1996; Crutzen & Andreae,
1990; Hao & Liu, 1994; Heald et al., 2003; Ichoku & Ellison, 2014; Shi, Matsunaga, & Yamaguchi, 2015).
Gaseous and particulate emissions from biomass burning not only affect local air quality but are also trans-
ported in the atmosphere often over long distances to downwind regions, where they can contribute to
the degradation of visibility and air quality (Wang et al., 2006). Increased levels of particulate concentration
from biomass burning are believed to cause serious human health and public safety issues (Hyer, Wang, &
Arellano, 2012; Lighty, Veranth, & Sarofim, 2000). Furthermore, some of these emissions (particularly CO2,
CH4, and smoke particles) play a significant role in altering the regional and global climate (Crutzen &
Andreae, 1990; Wang et al., 2006). In addition to the effects of their emissions on atmospheric physical and
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chemical properties and climate, biomass burning interacts more broadly with the Earth’s biogeochemical,
hydrological, and energy cycles through a series of complex processes (Levine, 1991).

Most biomass burning occurs in the tropical regions (Brass et al., 1996; Hao & Liu, 1994), where fires are used
for a variety of purposes: deforestation, shifting cultivation, fresh forage growth, agricultural residue clear-
ing, and energy production for industrial and domestic use (Andreae, 1991; Hao & Liu, 1994; Ichoku &
Ellison, 2014). Thus, many studies conducted during the last few decades have shown biomass-burning-
related increases in the concentrations of O3, CO, and other trace gases over the tropics (Andreae et al.,
1988; Andreae & Merlet, 2001; Watson, Fishman, & Reichle, 1990). For instance, Shi et al. (2015) evaluated
the biomass burning emissions in three tropical regions (Central and South America, Africa, and South
and Southeast Asia), and their results show that vegetation burning, fuelwood combustion, and human
waste burning in 2010 contributed 74% (530 Tg), 23% (170 Tg), and 3% (19 Tg) of the total CO emissions
over these three regions respectively, as well as 64% (4 Tg), 32% (2 Tg), and 3% (0.2 Tg) of the total black
carbon (BC) emissions. That study also indicates that Africa is the largest emitter among three
tropical regions.

Africa, which is the region of interest in this study, is usually regarded as the single largest continental source
of biomass burning emissions (Roberts, Wooster, & Lagoudakis, 2009). African fires burn millions of square
kilometers of vegetated land every year, accounting for 30% to 50% of the total amount of emissions from
global biomass burning each year (Ichoku & Ellison, 2014; Roberts et al., 2009; Roberts & Wooster, 2008). To
quantify the effects of tropical biomass burning on climate, it is important to have accurate estimates of bio-
mass burning emissions. However, due to several factors including the spatially and temporally variable nat-
ure of fires, estimations of fire emissions have large uncertainties and were recently found to differ by up to a
factor of 10 among different emission inventories at the regional scale in Africa (Zhang et al., 2014). Since in
situ or ground-based observations cannot provide measurements of fire emissions routinely around the
globe (Ichoku, Kahn, & Chin, 2012; Roberts et al., 2009; Zhang et al., 2014), satellite remote sensing is often
used as a means of analyzing and evaluating smoke emissions at regional-to-global scales (Ichoku et al.,
2012). In addition, geostationary satellites have received significant attention because of their relatively high
frequency of fire observations in regions over which they are located (Ichoku et al., 2012; Reid el al., 2009;
Zhang et al., 2012). However, they typically observe fires at relatively coarse spatial resolutions, often resulting
in significant underestimation of emissions (e.g., Roberts & Wooster, 2008). To date, existing global fire emis-
sion inventories rely on data from polar-orbiting satellite sensors such as Terra- and Aqua-Moderate
Resolution Imaging Spectroradiometer (MODIS) (Darmenov & da Silva, 2013; Ichoku et al., 2008; Kaiser
et al., 2012; Wiedinmyer et al., 2011). One such emission inventory is the NASA Fire Energetics and
Emissions Research (FEER: http://feer.gsfc.nasa.gov/data/emissions/), whose current version (FEERv1.0) is
based on fire radiative power (FRP) and aerosol optical depth (AOD) retrievals from MODIS (Ichoku &
Ellison, 2014; Ichoku & Kaufman, 2005). However, in a single day, one MODIS sensor has only 16 pole-to-pole
orbits, each covering a swath width of ~2,300 km on the ground, with significant gaps between these
swaths in the equatorial region (e.g., Freeborn, Wooster, & Roberts, 2011). Furthermore, fires located
under thick clouds cannot be detected from space (Justice et al., 2002; Peterson et al., 2013; Polivka
et al., 2016), and MODIS fire detection sensitivity decreases toward the edge of scans where the ground
pixel sizes are considerably larger than at nadir (almost a factor of 10 larger at the edge of scan, Peterson
& Wang, 2013).

These observational gaps and off-nadir detection limitations in MODIS fire products result in missing
and discontinuous information about fires, thereby leading to the underestimation of total biomass
burning emissions in regional (Wang et al., 2006, 2013; Saide et al., 2015) and global (Reid et al.,
2009) transport models. When such underestimated emission interacts with other components of an
atmospheric transport and chemistry model, such as the Weather Research and Forecast model coupled
with Chemistry (WRF-Chem) (Grell et al., 2005, 2011), the resulting simulated smoke-induced aerosol
loading amount and distribution in the atmosphere are adversely affected (Wang et al., 2006; Zhang
et al., 2014).

This paper presents an algorithm for mitigating the emission biases caused by three factors: (a) cloud cover,
(b) reduction in the satellite off-nadir fire observation sensitivity, and (c) satellite observing gaps in the tro-
pics, when using pixel-level FRP data to derive FEER emissions. As described in section 2, several past
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studies have attempted to make corrections for factors (a) and/or (c) (Wiedinmyer et al., 2011), but not all
three factors at the same time. We have applied and evaluated this algorithm in the Northern sub-Saharan
African (NSSA) region where the biomass combustion is a large contributor to gaseous and particulate emis-
sions during the dry season. Our previous study also based on WRF-Chem simulations and satellite data ana-
lyses showed that the intense man-made burning of grassland, cropland, shrubs, and wood in the dry season
(October to March) generates large amounts of smoke particles that in some cases tend to mix with Saharan
dust near the surface between the equator and 10°N, although the smoke plumes may be transported above
the dust layer and can subsequently spread farther to the north and south at 700 hPa or higher altitudes
(Yang et al., 2013). In addition, a sensitivity study using seven different fire emission inventories showed that
smoke emissions can differ by up to a factor of 12 over NSSA, which can lead to a difference in estimates of
smoke instantaneous radiative effects by a factor of 33 (Zhang et al., 2014). Hence, this study examines emis-
sion uncertainties due to the satellite-based fire detection limitations from cloud cover, off-nadir view, and
orbit gaps over NSSA.

Specifically, our correction algorithm is applied and evaluated for a customized, high-resolution daily FEER
emission inventory (FEERv1.0-Mp6), which was generated by multiplying the FEERv1.0 emission coefficients
directly with the pixel-level MODIS collection 6 FRP product at 1 km nadir resolution. Hereafter, the
FEERV1.0-Mp6 emission product prior to and after the application of the correction algorithm is called the ori-
ginal inventory and adjusted inventory, respectively. The emissions calculated by multiplying the ratio of
total emission between adjusted and original inventory to the original inventory is named “scaled” inventory,
and such scaling is done on a daily basis. Each of the three inventories was ingested into the WRF-Chem
model, which was used to simulate transport of smoke particles over NSSA in January 2010 to evaluate our
correction method. The evaluation is done by investigating particle loading in the atmosphere caused by bio-
mass burning over this region. Since 5–10% of the total smoke aerosol mass is contributed by BC and 50–60%
is from organic carbon (OC) (Reid et al., 2005; Tosca et al., 2014), only BC and OC from smoke particle emis-
sions are treated as smoke emissions in this study, similar to our past work (Yang et al., 2013; Wang et al.,
2013; Zhang et al., 2014). It is noted that the mass of organic particulate matter is about 40–70% more than
OC mass (Wang et al., 2006). Therefore, in our WRF-Chem simulations, OC mass is multiplied by a factor of 1.7
to convert it to organic particulate matter, which, according lab data, normally makes up 80–90% of the
smoke particle mass (Reid et al., 2005).

In section 2, we briefly introduce the history of fire and fire emission estimation, focusing on key uncertainties
due to the inherent limitations in the polar-orbiting satellite observations. In section 3, we describe the data
and model used in this study. The emission correction method and the result evaluation are described in
sections 4 and 5, respectively. In section 6, we provide a summary and discussion about this work.

2. A Brief Survey of Common Uncertainty Sources in Fire Emission Estimation

Plants have been known to provide a significant amount of combustible organic matter for fires since the
Silurian Period, 420 million years ago (Andreae, 1991; Bowman et al., 2009; Scott & Glasspool, 2006). The
advent of grazers on the Earth altered the relatively simple relationship between plants and wildfires by their
consumption of combustible material (Andreae, 1991; Schüle, 1990). After the era of dinosaur dominance and
demise, the evolution of hominids caused fire frequency changes, and Earth’s ecology became profoundly
affected by human-caused fires used for deforestation, shifting agriculture, agricultural waste burning, cook-
ing, and heating (Andreae, 1991; Bowman et al., 2009; Crutzen & Andreae, 1990). Measurements of charcoal
and elemental carbon in sedimentary archives, while valuable for us to have as a qualitative description of the
fire history on Earth (as described above), are often insufficient to establish a quantitative and robust analysis
of biomass burning before the 1960s (Andreae, 1991; Andreae & Merlet, 2001; Bird & Cali, 1998; Power et
al., 2008).

Darley et al. (1966) were among the earliest to conduct the pioneering work of estimating biomass burning
emissions. They used a burn tower to simulate an open combustion situation at the University of California,
Riverside. Their gas sampling and analysis instruments were placed in the stack of a tower to measure con-
centrations of hydrocarbon, CO, and CO2. These data were then analyzed with total dry matter mass burned
to derive the emission factor (EF), based on the following relationship:

Ms ¼ βs ·Mdry (1)
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where βs is the EF of species s, in units of grams of s per kg of dry fuel burned for a given biome type (Andreae
& Merlet, 2001); Mdry is the amount of dry fuel burned; and Ms is the total emission for s (Darmenov & da
Silva, 2013).

Indeed, equation (1) was used in the earliest biomass burning emission studies that started from laboratory
investigations of EF. In the 1960s and 1970s, such laboratory experiments were systematically used to inves-
tigate fire emissions from agricultural wastes that were burned and their corresponding EFs (Boubel, Darley, &
Schuck, 1969; Darley et al., 1966; Gerstle & Kemnitz, 1967; Sandberg, Pickford, & Darley, 1975). Those studies
found that EFs have high spatial and temporal variabilities, even for the same biome, and the lab measure-
ments of EFs may not provide representative values for realistic fires (Reid et al., 2005). Thus, in the late
1970s, field measurements were gradually adopted in fire emission investigations. By collecting trace gas
samples in stainless-steel containers in flights through two smoke plumes, Crutzen et al. (1979) measured
and summarized the ratios of various gases to CO2. The emission ratios were then used to roughly estimate
emission of trace gases from global biomass burning by multiplying them to the gross CO2 amount
(estimated as 2–4 × 1015 g C yr�1) (Seiler & Crutzen, 1980). This approach was followed by most of the early
studies in which emission of a certain species was estimated by multiplying the corresponding EF for that
species with either its known gross fuel amount or CO2.

Another important parameter in equation (1) is Mdry, which was formulated by Seiler and Crutzen (1980) as
follows:

Mdry ¼ A·B·C (2)

where A is total land area burned annually (m2 yr�1), B is the fuel load above the ground (g m�2), and C is the
fraction of the above-ground biomass that is burned (usually referred to as combustion completeness or the
combustion factor). Seiler and Crutzen (1980) also summarized parameters in equation (2) from past litera-
ture for different types of biomes and estimated the global annual total dry fuel burned.

Following the development of equations (1) and (2) in the 1960s–1980s, the first monthly comprehensive
database that describes the spatial distribution of global fire emission was developed by Hao and Liu
(1994). Their study discovered the places with high frequency burning over the tropics and the peak burning
months in different parts of the world. The study, however, relied upon ground-based reports of biomass
burning amounts in tropical America, Africa, and Asia during the 1970s and was not estimated for any
particular year.

Emission inventories at higher temporal resolutions (e.g., daily or hourly) were not available until the routine
detection of fires from satellite was possible. While operational detection of fires from satellites started in late
1980s and early 1990s (Flannigan & Haar, 1986; Prins & Menzel, 1992; Prins & Menzel, 1994; Robinson, 1991),
the first operational and global estimate of fire emissions, namely, Fire Locating and Modeling of Burning
Emissions (FLAMBE), did not start until the 21st century (Reid et al., 2004). FLAMBE provides global hourly
emissions with 1–5 km spatial resolution based on fire hot spot data detected by the Geostationary
Operational Environmental Satellite (GOES) series and the MODIS sensors aboard the Terra and Aqua
polar-orbiting satellites (Reid et al., 2004, 2005, 2009).

Further advancement in satellite remote sensing of fires also led to new ways to estimate fire emission
(e.g., Darmenov & da Silva, 2013; Ichoku & Ellison, 2014; Ichoku & Kaufman, 2005; Ito & Penner, 2004;
Kaiser et al., 2012; Reid et al., 2009; van der Werf et al., 2010; Wiedinmyer et al., 2011). In particular, the fire
radiative energy (FRE), or integration of fire radiative power (FRP) with time, was introduced as a concept in
the late 1990s, and FRP began to be retrieved from MODIS in early 2000s (Justice et al., 2002; Kaufman
et al., 1998). The linear relationship between FRE and the dry fuel burned was subsequently established
(Wooster, 2002):

Mdry ¼ α·FRE (3)

where α is the radiative energy combustion factor that can be derived from in situ measurements. Hence, the
emission rate of species s per unit area, Es, can be expressed as

Es ¼ βsMdry

A·Δt
¼ α·βs ·

F
A

(4)
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where F is FRP (or FRE/ Δt) that is measured from satellite in units of MW per satellite pixel, A is the area of the
satellite pixel, and F/A is FRP area density (Ichoku et al., 2008). Hence, this emission rate is estimated with
respect to the pixel area. Note, the product of α · βs for total particulate matter is referred to as the FRE-based
emission coefficient for smoke particles or Ce (Ichoku et al., 2008; Ichoku & Ellison, 2014; Ichoku &
Kaufman, 2005).

The estimates based on equations (1) and (2) are often considered as satellite estimates without using FRP,
while those based on FRP or equations (3) and (4) often require the use of satellite-based FRP to estimate
the total amount of biomass burned. Table 1 provides a brief description of various satellite-based emission
inventories without using FRP and how each one obtains the different parameters from satellite measure-
ments. It further shows the detailed comparison of the data sources for common parameters needed in esti-
mates of fire emissions based on satellite observations of fire-pixel counts and/or burned area, as well as how
the sampling biases caused by cloud or satellite geometry were considered in those emission inventories.
The emission inventories by GWEM (Hoelzemann et al., 2004), GFED4, and FINN are estimated with special
consideration of undetected fires in the satellite swath gap region. However, none of these estimates cor-
rected the biases caused by large viewing zenith angle (VZA) and cloud cover. Table 2 lists data sources
and correction of biases in some emission inventories based on MODIS FRP data. As seen from Table 2, these
emission estimates were corrected for cloud cover and swath gaps (in some cases), but no correction is made
for the bias due to large viewing zenith angles either.

Here we present a method to correct the emission biases introduced by (a) satellite limitations in detecting
fires obscured by thick clouds, (b) low fire detection sensitivity at the edge of MODIS scans where viewing
angles and MODIS pixel sizes are much larger than at nadir, and (c) data gaps between MODIS ground swaths
in tropical regions. We applied this method to the pixel-level FEER BC and OC estimations at 1 km resolution
in the NSSA region and evaluated its performance within the context of WRF-Chem simulations of
smoke transport in this region. We note (and detailed in Appendix A) that the pixel-level FEER data
(FEERv1.0-Mp6) do not make any corrections for cloud cover or swath gaps or large VZA.

Table 1
Comparisons of Different Global Smoke Emission Inventories Based on Burned Biomass Estimates From Fire-Pixel Counts and/or Burned Areas Using Satellite Data (e.g.,
Estimates Without Using FRP)

FLAMBEa GWEMb GFEDc FINNd

Parameters
Land cover USGSe IGBPh and MODIS MODIS IGBPh and MODIS
Fuel load (kg/m2) Reid et al. (2005)f Vegetation model Vegetation model Literaturel

Burn area (m2) Satellite active fireg Satellite burn scari Satellite burn scarj Satellite active firem

EF (g/kg) Reid et al. (2005)f Andreae and Merlet (2001) Andreae and Merlet (2001) Literaturen

Combustion completeness Reid et al. (2005)f Reid et al. (2005) van der Werf et al. (2006)k Literatureo

Bias correction
Swath gap No Yesi Yesj Yesg

Large VZA No No No No
Cloud cover No No No No
Reference Reid et al. (2004, 2009) Hoelzemann et al. (2004) van der Werf et al. (2010, 2017) Wiedinmyer et al. (2011)

aFire locating and modeling of burning emissions. bGlobal Wildland Fire Emission Model. cGlobal Fire Emissions Database. dFire emission from NCAR.
eUSGS 1 km AVHRR Global Land Cover Characterization (GLCC) database and classified all original 99 categories of land surface types into 10 bulk categories:
bare/water, light grasses, grasslands/savannah, low woody shrub and cerrado, crops, temperate and boreal forest-low fuel load, temperate forest-high fuel load,
tropical forest, wetland, and boundary regions. fOriginal data based on literature survey. gFor eachMODIS-detected fire pixel, burn area of 0.63 km2 is used. For
GOES detected fire pixel (Prins et al., 1998), burn area is assumed to be the same as the retrieved fire size; if fire size not retrieved, 0.005 km2 is used.
hInternational Geosphere Biosphere Programme (IGBP) Land Cover Classification. iThe product is at the monthly resolution based on ASTR daytime data, and
ASTR nighttime active fire counts is used to adjust burn area in gap regions where burn area estimates are not available. jMODIS daily 500 m burn scar product
is aggregated intomonthly resolution at 0.25° resolution globally (Giglio et al., 2013). Monthly estimate of emission is first estimated and then distributed into daily
resolution following MODIS active fire counts. While swath gaps have little effect on MODIS monthly burn scar product, it has the effect on daily resolution pro-
duct, and to minimize this effect, a 3 day center mean smoothing filter is used. Furthermore, in places where fires are detected but not shown in the burn area, the
detected fire counts are multiplied by the ratio between nearby burn area and the number of fire pixels in that burn area to obtain the fire area. kMinimum and
maximum values for each fuel types are provided based on literature. These values together with moisture (and other ancillary data) are used to adjust combus-
tion completeness for a specific month and location. lLiterature primarily based on the vegetation model (as in Hoelzemann et al., 2004) for each surface type.
mFor each MODIS-detected fire pixel, 0.75 km2 is assumed for grass/savannas and 1 km2 for other surface types. They are further scaled accordingly to the
percentage of nonbare cover in that pixel. nBased on Akagi et al. (2011), Andreae and Merlet (2001), and McMeeking (2008) for each fuel type.
oParameterize the burn area percentage for each satellite-detected fire pixel as a function of tree cover in that pixel.
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3. Model and Satellite Data Processing for Model Evaluation

The WRF-Chem simulations were conducted by using the FEERV1.0-Mp6 original emissions, adjusted emis-
sions, and scaled emissions. The impact of the correction was then analyzed by comparing the simulated
results with AOD data from AERONET, MODIS, and CALIPSO.

3.1. WRF-Chem Model

The WRF-Chem model (Fast et al., 2006; Grell et al., 2005), which is a fully coupled meteorology-chemistry-
aerosol model, is used in this study to investigate how the method for correcting emission inventory biases
due to satellite fire observation limitations may affect the simulation of atmospheric aerosol loading.
The model configuration options, which are similar to those of our previous studies in the NSSA region
(Yang et al., 2013; Zhang et al., 2014), are listed in Table 3. In brief, radiation schemes used in this study
include the Goddard two-stream multiband scheme with ozone from climatology and cloud effects (Chou
et al., 1998) for short wave and the Rapid Radiative Transfer Model (RRTM) scheme for long wave (Mlawer
et al., 1997). The Regional Acid Deposition Model, version 2 (RADM2) chemical mechanism (Stockwell et al.,
1990) is adopted in this study. The aerosol modules are Modal Aerosol Dynamics Model for Europe (MADE)
(Ackermann et al., 1998) and Secondary Organic Aerosol Model (SORGAM) (Schell et al., 2001). We have also
used the Noah Land Surface Model with soil temperature and moisture in four layers, fractional snow cover,
and frozen soil physics (Chen & Dudhia, 2001) in this study. The Yonsei University (YSU) scheme (Hong et al.,
2006) is selected as the boundary layer parameterization. A sophisticated microphysics scheme (Lin et al.,
1983) that has ice, snow, and graupel processes, which are suitable for real-data high-resolution simulations,
and the New Grell cumulus scheme (G3) (Grell & Dévényi, 2002) were also used in our model configuration.

The initial and boundary conditions for WRF-Chem model were pro-
vided by the Global Final Analysis (FNL) data from the National
Centers for Environmental Prediction/National Center for
Atmospheric Research (NCAR) data set. The FNL data, which include a
variety of variables, are available for 00:00, 06:00, 12:00, and 18:00
UTC at 1°×1° horizontal resolution and 26 vertical levels (Kalnay et al.,
1996). The FNL data used for this study has been obtained from
http://rda.ucar.edu/datasets/ds083.2/. This study focuses on a month
(January 2010) with intense biomass burning in NSSA.

The first week of the WRF-Chem simulation is set as the model spin-up
time. A double-nested grid configuration of WRF-Chem is used, with
the fine grid of 130×85 points and 27 km grid spacing covering NSSA

Table 2
Comparisons of Different Smoke Emission Inventories Based on Satellite Fire Radiative Power (FRP) Measurements

GFASa QFEDa FEERc FEERv1.0-Mp6d

Parameters
FRP (W) MODIS MODIS MODISf MODIS
Land cover map Heil et al. (2010, 2012) IGBP FEER BB-LCT v1g,h FEER BB-LCT v1g,h

EF (g/kg) Andreae and Merlet (2001) and Christian et al. (2003) Andreae and Merlet (2001) Andreae and Merletg,i Andreae and Merletg,i

αi (kg/MJ) Heil et al. (2010, 2012) Kaiser et al. (2009) N/A N/A
Ce

k (kg/MJ) N/A N/A FEERv1.0 Ce FEERv1.0 Ce
Bias correction
Swath gap Yes Yes No No
Large VZA No No No No
Cloud cover Yese Yese Yese No
References Kaiser et al. (2012) Darmenov and Da Silva (2013) Ichoku and Ellison (2014) Ichoku and Ellison (2014)

aGlobal Fire Assimilation System. bQuick Fire Emission Data Set. cFire Energetics and Emissions Research emission that is estimated at spatial resolution of
0.5°. dThis particular version of FEER is customized for this modeling study where emission is estimated at pixel level and no correction for swath gap and cloud
cover is made. eClear-sky FRP density stands for whole grid box having the size consistent with spatial resolution of emission data product. fGridded based on
Kaiser et al. (2012). gThe land cover map and EF data were used only for conversion from total particulate matter to other species and are not used as part of the
core algorithm. hThe FEER Biomass Burning Land Cover Type product uses the IGBP classifications from the MODIS MCD12Q1 product, with consideration of fire
detections from the MODIS MOD14/MYD14 active fire product. iAndreae and Merlet (2001) with 2014 updates (personal communication) for converting from
total particulate matter (TPM) to other species. jα is a conversion factor that links FRP to dry matter combustion rate. kCe is a conversion factor that links
FRP to particulate matter emission rate.

Table 3
Configuration Options Employed by WRF-Chem in This Study

Atmospheric processes Model options

Shortwave radiation Goddard (Chou et al., 1998)
Longwave radiation RRTM (Mlawer et al., 1997)
Gas-phase mechanism RADM2 (Stockwell et al., 1990)
Aerosol model MADE/SORGAM (Schell et al., 2001)
Land surface model Noah (Chen & Dudhia, 2001)
Boundary layer scheme YSU (Hong, Noh, & Dudhia, 2006)
Microphysics Lin, Farley, and Orville (1983)
Cumulus New Grell (Grell & Dévényi, 2002)
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nested within a coarse grid of 259×133 points and 81 km grid spacing. The lower left corners for these two
domains are (21.88°S, 29.42°W) and (13.24°S, 16.55°W), respectively. These model domain grid settings are
the same as that in our previous study (Zhang et al., 2014), and both horizontal grids use 27 vertical levels.
BC and OC from the FEERV1.0-Mp6 emission inventory were used as the fire emission input into the model.
As implemented in our prior study on the same domain (Yang et al., 2013), the smoke injection height was set
at 650 m, such that the smoke emissions are treated as well mixed in the model layers below this injection
height. No dust emission is considered in this study, and consequently, our analysis focuses on the smoke
dominated region (see details in section 5).

3.2. AERONET Data

The optical ground-based Aerosol Robotic Network (AERONET), established by the National Aeronautics and
Space Administration (NASA) in collaboration with a number of other organizations, has hundreds of sites
distributed across the world to measure direct and sky light radiance from the Sun (Holben et al., 1998).
The Sun-sky scanning radiometer at each site measures spectral radiances that are used to derive aerosol
optical properties (e.g., aerosol spectral optical depth (AOD), Angstrom exponent, and aerosol size distribu-
tion) (Dubovik et al., 2000). We use AERONET cloud-screened and quality assured (Level 2.0) AOD whose
uncertainty is about 0.01–0.02 (Eck et al., 1999; Levy et al., 2010). To facilitate the use of AERONET AOD as
ground truth in this paper to compare with satellite and model simulation results, we used the Angstrom
exponent based on AOD at 0.44 μm and 0.675 μm to interpolate AOD at 0.55 μm. Three AERONET sites that
are close to the high biomass burning activity region and having valid Level 2 data in our study time period
were selected in this study to evaluate MODIS AOD data. The three AERONET sites are Ilorin (8.3°N, 4.3°E),
Djougou (9.8°N, 1.6°E), and Kibale (0.6°N, 30.3°E).

3.3. CALIOP Data

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is a two-wavelength polarization active lidar
aboard the CALIPSO satellite, launched in April 2006 (Winker et al., 2010). The data used in this study include
CALIOP lidar level 2 aerosol profile products and have a horizontal resolution of 5 km and a vertical resolution
of 60 m, up to 20 km. CALIOP Level 2 data were derived in two steps, first by separating the aerosol and cloud
layers based on an algorithm developed by Liu et al. (2004, 2009), and then by retrieving the profiles of par-
ticle backscatter and extinction coefficients using a hybrid extinction retrieval algorithm (Liu et al., 2004, 2009;
Winker et al., 2010). CALIOP extinction profile was used to evaluate WRF-Chem simulations at night, when
AOD retrieval is not possible from passive remote sensing techniques.

3.4. MODIS Data, Processing Method, and AOD Evaluation

AOD, fire, and cloud products from MODIS instruments on Terra and Aqua are used in this paper. The Terra
satellite (launched in 1999) passes across the Equator at 10:30 a.m. local time, and the Aqua satellite
(launched in 2002) at 1:30 p.m. Active fire products from MODIS are based on the algorithm that uses bright-
ness temperature measurements at 3.96 μm and 11.0 μm wavelengths to detect active fires and other ther-
mal anomalies (Giglio, 2010; Justice et al., 2002). Each MODIS Level 2 fire product granule covers a region of
approximately 2,340 × 2,030 km in the along-scan and along-track directions, respectively. It has a 1 km reso-
lution at nadir and contains the FRP and flags that identify fires and other relevant pixels (Giglio, 2010).
MODIS Level 2 daily cloud product, MOD/MYD_06 (Ackerman et al., 1998; Platnick et al., 2017), from the
Terra and Aqua satellites is also used in this paper for MODIS AOD quality control and in the emission correc-
tion algorithm. MOD/MYD_06 products provide cloud fraction at 1 km resolution.

MODIS AOD data are retrieved over land at 0.47, 0.55, 0.66, and 2.13 μmwavelengths and over ocean at 0.48,
0.55, 0.66, 0.87, 1.20, 1.60, and 2.13 μm. The newest MODIS Collection 6 (C6) aerosol products have three
parts: (1) “Dark Target” (DT) over ocean, (2) DT over vegetated or otherwise dark land surfaces, and (3)
“Deep Blue” (DB) over bright land surfaces (Levy et al., 2013). For MODIS-retrieved C6 AOD (at 0.55 μm) from
the DT algorithm, the expected error is ±(0.03 + 5%) over ocean and ±(0.05 + 15%) over land (Levy et al., 2010,
2013; Remer et al., 2008). The highest quality AOD (at 0.55 μm) from the DB algorithm has an absolute uncer-
tainty of 0.03 + 20% (Sayer et al., 2013). In this study, we use both Terra (MOD_04) and Aqua (MYD_04) C6
AOD data at 0.55 μm wavelength and 10 km spatial resolution to evaluate the model performance resulting
from applying the emission correction method.
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Figure 1. (a1–a9): Monthly Terra DT, Aqua DT, Terra AquaMean DT, Terra DB, Aqua DB, Terra Aqua DB, Terra DTB, Aqua DTB,
and Terra Aqua DTB AOD at 0.55 μm before QA in January 2010. (b1–b9) are similar to Figures 1a1–1a9 but for AODs after
QA. The filled circles in Figure 1b9 indicate AERONET monthly average AOD at 0.55 μm.

Journal of Geophysical Research: Atmospheres 10.1002/2017JD026840

WANG ET AL. REDUCE FIRE EMISSION SAMPLING ERROR 514



Since our current emission correction method aims at the NSSA land
region, only MODIS land AOD is used in this paper to evaluate the
impact of our emission correction on the WRF-Chem simulation of
AOD. Several quality assurance (QA) filters are used in this work to
reduce DT and DB AOD errors, including the use of QA flags, body
checks (for smoothness), and removal of AOD retrieved at large scatter-
ing angles (Hyer, Reid, & Zhang, 2011; Vermote & Roy, 2002; Zhang &
Reid, 2006). DB data QA processing is similar to that of DT (Shi
et al., 2013).

Averages of DT and DB AOD are also calculated and defined as “DTB” in
this study. Figure 1 shows the monthly average of Terra DT, Aqua DT,
Terra and Aqua mean DT, Terra DB, Aqua DB, Terra and Aqua mean
DB, Terra DTB, Aqua DTB, and Terra and Aqua mean DTB AOD at
0.55 μm before and after applying the QA filtering procedures.
AERONET monthly AOD values at six stations in the study region are

also overlaid in Figure 1b9. AERONET daily average data are computed for days that have two or more obser-
vations. The monthly average of MODIS AOD is then calculated when the number of days with valid data is
greater than 5 in that month. Before QA, Terra MODIS AOD tends to be higher than Aqua MODIS AOD
between 2°N and 11°N. The QA process removed 20–30% of data points in the study region no matter which
group of AOD was checked, particularly along the coastal and dense tropical forest regions. The removal of
high AOD along the coast is primarily due to low QA assurance in the MODIS products. Since we lack
AERONET sites along the coast, it is challenging to determine whether some QA flags in MODIS products
can be universally applied, although our past study has shown that MODIS DT retrieval over coastal regions
overall has larger uncertainties than either over the open ocean or in-land areas (Anderson et al., 2013).
Furthermore, the removal of high AOD values below 5°N and the coast is likely due to cloud contamination.
Clouds are persistent in the regions centered around (2.5°S, 30°E), as we can see from Figures 1a and 1b (true
color images), and indeed, the cloud fraction as retrieved from MODIS is in the range of 60–100% in these
regions (Figure 2). Nevertheless, a high AOD zone with significant contributions from the biomass burning
region is prominent on the map (0°–10°N). The monthly average AERONET AOD is consistent with MODIS
AOD outside of the burning region, whereas at the Ilorin station (which is closest to the intense biomass burn-
ing region), it is higher than the monthly MODIS AOD. Further checks show that the AERONET site in Ilorin
only has 2 days of valid AOD data at level 2, but 17 days of valid AOD data at level 1.5, suggesting that this
is a site that also has high cloud contamination, consistent with MODIS cloud fraction data (Figure 2).

Given the large spread of MODIS AOD between different algorithms and their combinations for January 2010,
we further evaluated the MODIS AOD data before and after QA procedures using the available 2003–2016
January AERONET data. The satellite and AERONET collocation follows the spatiotemporal method proposed
by Ichoku et al. (2002). The collocated data statistics are calculated only when there are at least five valid AOD
data points from MODIS and two valid data points of possibly four to five AERONET data points within
±30 min (Levy et al., 2010). Figure 3 shows that, for different group comparisons, the MODIS AOD overall
has better correlation and smaller RMSE after QA. Based on the results in Figure 3, we decided that Terra
and Aqua DB mean AOD after QA filtering are most suited for evaluating the model performance over
NSSA in January 2010 because, when compared to other groups, it (Figure 1b6) has one of the highest cor-
relations and the lowest RMSE with respect to AERONET AOD. Furthermore, to enable data evaluation at Aqua
gaps and large VZA regions, Terra AOD is also required. Terra DB after QA is selected as “truth” data for model
evaluation at Aqua gaps and large VZA regions because of its relatively low RMSE and high correlation com-
pared to the other Terra groups.

4. Emission Data Processing and Correction

Figure 4 shows the flowchart of our emission correction method. First, the FEERv1.0-Mp6 pixel-level (1 km)
data were lumped into four groups: (1) Terra daytime, (2) Terra nighttime, (3) Aqua daytime, and (4) Aqua
nighttime, and the corresponding emission data are summed for each WRF-Chem gridbox, following the
gridding procedure by Kaiser et al. (2012). Second, a two-step correction approach is used to update the

Figure 2. Distribution of cloud fraction averaged in January 2010, based on
MODIS/Terra day-time cloud products (MOD08, collection 6, Platnick et al., 2017).
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Figure 3. Regional comparisons between daily MODIS AOD and AERONET AOD at 0.55 μm. (a1–a9) Terra DT, Aqua DT, Terra Aqua Mean DT, Terra DB, Aqua DB, Terra
Aqua DB, Terra DTB, Aqua DTB, and Terra Aqua DTB AOD before QA; (b1–b9) MODIS AOD after QA.

Figure 4. Flowchart of emission bias correction method.
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baseline emissions, as described below, one for correcting the cloud
effect and another for the large view-angle effect and satellite orbital
gaps. As shown in the time series of BC and OC original emissions from
the aforementioned four groups (Figure 5), Aqua daytime consistently
shows the largest emission on a day-to-day basis, producing a daily-
mean emission value of 89.82 Gg, which differs significantly with the
daily-mean emissions from Aqua nighttime, Terra daytime, and Terra
nighttime of 3.98, 33.02, and 5.10 Gg, respectively. Thus, for simplicity,
the two-step correction approach is illustrated below by using Aqua
daytime observations only.

4.1. Emission Correction for Cloud

The assumption in the emission correction for the cloud effect is that at
each WRF-Chem gridbox (27 km), the spatial distribution function of

fire emission or fraction of fire (FOF) is the same between cloudy and cloud-free areas under similar condi-
tions (Cardoso et al., 2003; Darmenov & da Silva, 2013; Giglio, Csiszar, & Justice, 2006; Giglio, Kendall, &
Mack, 2003; Heald et al., 2003; Roberts et al., 2005; Robinson, 1991; Schroeder, Csiszar, & Morisette, 2008).
While this assumption may lead to the possibility of overestimating emission if fires are prone to occur over
cloud-free conditions, no fire data underneath the clouds are available to evaluate this possibility, and
furthermore, this assumption is only applied at the gridbox level. In other words, the uncertainties from this
assumption are only limited at these gridboxes that, according to MODIS data, are partially cloudy and have
fire pixels. With this assumption, the amount of emission estimated by FEER in cloud-free conditions can be
used to estimate emission under cloudy conditions, after the FOF is computed from fire pixel counts (Nf), the
number of pixels obscured by clouds (Ncld), and the total number of nonwater MODIS pixels (Nt).

FOF ¼ Nf

Nt � Ncld
¼ Nf

Nclr
(5)

where Nclr is the number of nonwater cloud-free (or clear-sky pixels). The MODIS L2 MOD/MYD35 cloud mask
products are used to derive Nt and Ncld, while the active fire product is used to derive Nf. Consequently, for
the WRF-Chem grid, the new emission after the correction for cloud is

E ¼ E0 þ E0
Ncld·FOF

Nf

� �
¼ E0 1þ Ncld

Nclr

� �
(6)

In (4), E0 is the original emission at WRF-Chem grid, E is the new emission after cloud correction, and Nclr is the
number of clear-sky nonwater pixels (or the difference between Nt and Ncld) by MODIS.

4.2. Emission Correction for Large View Angle and Gap Filling

To illustrate the view angle effect on fire detection and emission estimates, we show in Figure 6 the Aqua-
MODIS true color image overlaid with the satellite detected daytime fires (red dots), and Terra Aqua mean
DB AOD, on 1 and 2 January 2010. The white solid, dotted, and dashed lines in Figures 6c and 6d stand for
Aqua swath borders, ground boundaries for viewing angle θ = 35°, and center (nadir) of the satellite view.
On 1 January, regions with θ > 35° have much fewer fire pixels detected by satellite (yellow boxes in
Figure 6a), although the AOD retrievals reveal that nearly the same amount of smoke AOD exists in the
scan-edge regions as in the nadir views (Figure 6c); similar mismatch can also be found on 2 January (e.g.,
for the region marked as red box in Figures 6b and 6d). In contrast, the fire density in the same region (of
yellow box with low number of fire pixels) is clearly higher on 2 January when MODIS provides a nadir view
for this region (Figure 6b). Such contrast can be found routinely in the analysis of satellite fire products and
thus needs to be corrected. Furthermore, as marked in Figure 6a, there is no fire information at the gap
between the two continuous ground tracks of MODIS Aqua observation. Yet even within the same day, valid
and large AOD retrievals from MODIS Terra can be found in these Aqua gap regions, suggesting a high prob-
ability of fires in these gap regions (Figure 6a versus Figure 6c for yellow box). A previous study based on
SEVIRI FRP data records over Africa at 15 min temporal interval (Roberts et al., 2009) also suggests that such
apparent absence of fires at MODIS swath gaps and off-nadir regions, and presence of fires the next day when
the gap moves to a different location, is not authentic. Hence, from fire emission point of view, the swath
gaps and the regions having large VZAs should and are treated similarly in our correction approach.

Figure 5. Time series of inner domain total BC + OC emission respectively from
MODIS Terra and Aqua for either day or night.
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The bias caused by viewing angle on fire detection is also exemplified
in Figure 7 showing the time series of (a) Aqua total pixel count (Nt), (b)
daytime averaged VZA, and (c) the fraction of fire (FOF) in an arbitrary
WRF-Chem grid (9.0°N, 9.4°W) over NSSA in January of 2010. As
expected, when the VZA increases, the total pixel count can decrease
rapidly, which also affects the FOF calculation. Due to this decrease in
the total number of pixels toward the edge of swath, high FOF values
may occur when VZA values are relatively large. For example, as shown
in Figure 7, the three largest FOF values (up to 0.018) occur when VZA is
larger than 40°, which apparently is not realistic. It is understood that
when VZA increases, MODIS sensitivity to small fires rapidly decreases
(Peterson & Wang, 2013) and the total number of pixels (within a
WRF-Chem gridbox) also decreases (and in some cases, at a much faster
rate), which explains why in some cases with large VZAs, unrealistic FOF
can be found (and should be corrected).

To correct the viewing angle effect on the low bias in fire emission esti-
mation, we need to select a threshold value belowwhich the fire detec-
tion is relatively less sensitive to the view angle. From our analysis in
Figure 7 above and Figure 8 below, this threshold, θt, is empirically
defined as 35°. Selection of θt requires consideration of the satellite
revisit time, the accuracy of fire detection, and fire persistence.
Figure 8 clearly shows that the pixel size increases and the sensitivity
for detecting fires decrease within a factor of two when VZA changes
from nadir to 40° (pixel area changes from 1 to 2 km2). But, from 40°
to 65°, the pixel size increases and the sensitivity of fire detection
decreases by up to a factor of 6–9 (as compared to the nadir).

Figure 6. (a and b) Aqua MODIS true color image overlaid with daytime fires (red dots) on 1 and 2 January 2010. (c and d) MODIS Terra and Aqua DBmean AOD after
QA at 0.55 μm on the same days as Figures 6a and 6b. The white solid, dot, and dash lines in Figures 6c and 6d stand for Aqua swath borders, Aqua boundaries
for θ = 35°, and the center (nadir) of satellite observations. The rectangle in yellow shows an example of swath gap and large VZA regions on 1 January 2010; the same
region is large AOD and fire pixels on the next day. The rectangle in red shows an example of the regions where large AOD is retrieved and only few fire pixels are
detected.

Figure 7. Time series of (a) Aqua total pixel number (Nt), (b) daytime averaged
view zenith angle (VZA), and (c) the fraction of fire (FOF) in a model grid at
NSSA in January 2010 for a WRF-Chem gridbox. See text for details.
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Therefore, selecting θt below 40° can significantly reduce the uncer-
tainty in emission estimation. Ideally, it would be best to completely
eliminate such large uncertainties resulting from off-nadir observa-
tions, which would require using only pixels that are as close to nadir
as possible. However, if we select only near-nadir observations (say
for VZA less than 5°), we would need to assume fire persistence of more
than 5–8 days to be able to update the emissions for a given region
(because MODIS’s repeat cycle is 14 days). Incidentally, 5–8 days of per-
sistence is not realistic for agricultural fires, as previous studies have
shown that agriculture fires normally last for 1–2 days (Kauffman et al.,
2003). To balance these factors—fire detection sensitivity, MODIS revi-
sit time, and the realistic number of fire persistence days—it is clear
that VZA of 35° is a reasonable threshold that enables us to have con-
sistent fire detection data to update the emissions within ±2 days.
Indeed, 71% of MODIS-detected fire pixels have VZA less than 35° or
pixel area less than 1.7 km2 (Figure 8). The assumption of a 2 day fire
persistence is also consistent with a 3 day center mean smoothing used
in GFED to avoid swath gaps (van der Werf et al., 2010). Future satellite
fire observation from geostationary satellites that provide similar spa-

tial resolutions (of ~1 km) to MODIS at hourly to subhourly temporal frequencies (such as GOES-R over the
U.S., Schmit et al., 2016) can help us further address the issues related to the MODIS fire detection accuracy
as a function of VZA and fire persistence.

Consistent with the above reasoning, for any gridbox with θ > θt (including swath gaps), we replace the cur-
rent emission E of this gridbox with that corresponding to the smallest VZA observed at the same location
within ±2 days; otherwise, no correction is made for view angle effects. This does not necessarily assume
the persistence of the same fire for several days, since the fires in our region are typically small man-made
fires (e.g., Ichoku et al., 2016). Rather, it assumes persistence in burn patterns within homogeneous local
areas/villages, as each 1 km MODIS pixel likely contains several small fires.

5. Evaluation of Emission Correction for WRF-Chem Simulation

We evaluate our emission correction approach by applying the following three sets of emissions into the
WRF-Chem simulation of smoke transport for January 2010: (a) the original emission, (b) the adjusted
emission, and (c) the scaled emissions. The difference between using (a) and (b) in simulations of smoke
transport can reveal the impact of correcting for the effect of view angle on fire observation. To avoid cases
where dust may make a significant contribution to the columnar AOD (Yang et al., 2013), we restrict our ana-
lysis to the 0–10°N latitude band, where biomass burning is most highly concentrated within our domain.
Furthermore, we only conducted the intercomparison between modeled and satellite-retrieved AOD in
regions where Angstrom exponent of the AOD retrieved by MODIS is larger than 1.2, to ensure that the aero-
sols are dominated by smoke particles.

In Figure 9 we first show the modeling results and evaluation on the same days as in Figure 6. The adjusted
emission distribution corresponds well with the smoke locations observed from satellite true color imagery
(Figures 6a and 6b). It clearly shows that the data gaps at the Aqua-MODIS off-nadir regions have been filled
in the adjusted emission, whereas the scaled emission simply increased the total emission amount with the
same relative spatial distributions as the original one. The total BC + OC emission amounts in the study region
increased from 41 (40) Gg to 92 (82) Gg for 1 (2) January 2010. In the scaled emission case, while the total
emission amounts increased to the same values as in the new case, the agreement between simulated
(Figure 9) and MODIS AOD distribution (Figure 6) is not as good as the agreement between those simulations
with adjusted emission and MODIS AOD distribution. The AOD simulated with the adjusted emission has an
improved spatial pattern and reduced biases in satellite off-nadir and swath gap regions.

Quantitatively, based on the 2 day simulation results, Taylor diagrams in Figure 10 show how the emission
correction method improves WRF-Chem simulated AOD. The centered root-mean-square (RMS) difference
(normalized with respect to the standard deviation of observation) between WRF-Chem and MODIS AOD

Figure 8. Cumulative density function (CDF) of MODIS-detected number of fire
counts as a function of pixel area (bottom x axis) and view zenith angle (top x
axis). Note, to correspond to the bottom x axis scale that is linear, the top x axis is
not in linear scale.
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is proportional to the distance to the point on the x axis identified as “REF” in Figure 10. “REF” is our reference
or “true value” (MODIS retrievals in the present case). When using the simulated daily AOD (averaged for
08:00–20:00) compared with MODIS (Terra and Aqua) mean DB AOD over NSSA’s high fire-frequency
region (0°–10°N), the case with adjusted emission has reduced the center RMS error and standard
deviation difference and increased the correlation. The scaled emission case only resulted in closer
standard deviation values to the MODIS retrievals.

Further assessment of our emission correction approach for WRF-Chem simulation is conducted for the
whole month of January 2010. Figure 11 shows the monthly (January 2010) average column total AOD at
0.55 μm simulated by WRF-Chem using the three (original, adjusted, and scaled) emissions. Though the over-
all simulated AOD magnitude (based on the adjusted emission) is smaller over the study domain (as com-
pared to MODIS AOD), the new simulated AOD pattern clearly shows improvements in some regions
relative to the scaled emission case. When compared with monthly Terra and Aqua mean DB AOD
(Figure 1b6), the simulation using the adjusted emissions captures the relatively high AOD pattern in the
regions marked as yellow box in Figure 6. The low bias of simulated AOD (even after the emission adjust-
ment) is likely in part due to (a factor of two or larger) uncertainties from other sources (see Table 2).

The adjusted emission improvements to the model performance are further shown in the Taylor diagrams in
Figure 12. WRF-Chem simulated daily column total AOD values at 0.55 μm are compared with Terra and Aqua
mean DB after QA in Figure 10a for all VZA, and the results are shown in Figure 12a, while only a similar com-
parison at Aqua regions with θ > θt (including gap regions) is shown in Figure 12b. In both cases, the simula-
tion results are better than the one with the original emission, in terms of correlation, centered RMS error, and
normalized data standard deviation. By comparing the adjusted results with the scaled results, we find that
the model performance improvement was not simply caused by increased emission amounts but also
resulted from spatial filling of the emission inventory. Indeed, in these gap-filled and large VZA regions,

Figure 9. (a–c) Original, adjusted, scaled BC + OC emission on 1 January 2010 at WRF-Chem grid. (d–f) WRF-Chem simulated column total AOD at 0.55 μm using the
emission of Figures 9a–9c during Aqua pass period (12:00–14:00 UTC). (g–l) Same as Figures 9a–9f but for 2 January 2010. The white solid, dot, and dash lines in
Figures 9c and 9d stand for Aqua swath borders, Aqua boundaries for θ = 35°, and the center (nadir) of satellite observations.
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over half of the cases based on adjusted emission data are better than the scaled results. Figures 12c and 12d
further show the comparison of WRF-Chem column total AOD at 0.55 μm in the whole month of January with
Terra/Aqua mean AOD after QA over the heavy smoke loading zone (0–10°N) and over regions with θ > θt,
respectively. Overall, the adjusted emission has increased WRF-Chem simulation in aerosol loading when
compared with the original and scaled cases. Using the original case as the reference, the correlation is
improved from ~0.42 to 0.6, centered RMS error reduced from 1 to 0.7 (or ~30%), and the normalized data
standard deviation increased from 0.5 to 0.75 or a 50% improvement (Figures 12c and 12d).

To further investigate the emission correction improvements, the model results were evaluated using Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) 5 km aerosol extinction products. Nighttime CALIOP data for three different dates were
selected to represent situations when CALIPSO overpasses the same day’s Aqua daytime gap and θ > θt
regions. Since our emission correction methods focus on this area, the vertical profile comparison is neces-
sary to evaluate how the changes of daytime emission affect the nighttime model simulations.

Figure 13 shows the comparison of nighttime CALIOP-derived vertical profiles of aerosol extinction coeffi-
cient at 532 nm (second row) and WRF-Chem simulated vertical profiles of smoke concentration along the
corresponding CALIPSO ground track using the original (third row), adjusted (fourth row), and scaled emis-
sions (fifth row). Data for the 3rd, 4th, and 22nd of January 2010 are represented on the first to the third
column. Due to cloud cover, the lidar signal was heavily attenuated over some regions. All of the three model
simulated results using different emissions roughly capture the patterns of vertical aerosol profiles. The
smoke particles can reach altitudes of 3 to 6 km. It is noted that the scaled emission has no effect on the aero-
sol vertical distribution changes but simply increases the aerosol amount on the basis of the original case. The
red ovals in Figures 13a1, 13b1, and 13c1 indicate where the adjusted emission input changed the model

Figure 10. Taylor diagram for WRF-Chem simulated column total AOD at 0.55 μm compared with Terra and Aquamean DB
after QA in (a) 1 and (b) 2 January and 2010 over high smoke loading region. REF represents the MODIS observations. The
colors filled in symbols indicate the biases between model and MODIS.

Figure 11. Monthly average WRF-Chem simulated column total AOD at 0.55 μm during daytime (08:00–20:00 UTC) using (a) original, (b) adjusted, and (c) scaled
emissions for January 2010.
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simulated aerosol vertical distributions along the CALIPSO path, showing that such change is not simply due
to scaling by a fixed factor (as in the case of scaled emissions). We also checked depolarization ratio measured
by CALIPSO and found that the particles in the regions marked with red ovals are overwhelmingly spherical
(with nearly zero depolarization ratio). Yang et al. (2013) also showed that in cases where dust and smoke do
mix together, such mixing often occurs near the surface. Therefore, aerosol particles above 2 km are domi-
nated by smoke particles. On 3 January 2010, the aerosol extinction coefficient values marked by the red oval
region are around 0.25 in Figure 13a1. The aerosol extinction coefficient data range is very similar to the
values on the left side of the red oval in the figure. The adjusted emission has increased the simulated aerosol
vertical loading over this region, and the magnitude is close to the aerosol concentration on the left side of
the red oval in the figure. However, the simulated aerosol concentrations based on the original and scaled
emissions are relatively low when compared with the results based on the adjusted emission. The model
enhancement from the adjusted emission is further shown in the case of 4 January 2010. There are high
extinction coefficient values over the red oval of Figure 13b1. Neither the original nor scaled simulations
depict these high aerosol concentrations. Only the simulations with the adjusted emission capture the high
aerosol loading over this region. A similar situation happened on 22 January 2010. The red oval in Figure 13c1
shows the center with a relatively high extinction coefficient that is only captured by the simulation using the
adjusted emission.

Figure 12. Taylor diagram for WRF-Chem simulated daily column total AOD at 0.55 μm comparedwith (a) Terra Aquamean
DB after QA within areas of high smoke loading and (b) WRF-Chem AOD compared with Terra DB AOD after QA for
cases in Aqua swath gap region and the region with Aqua θ > θt within high smoke loading regions. Analysis is for
January 2010. REF is MODIS observation. The colors filled in symbols indicate the biases between model and MODIS.
(c and d) Similar to Figures 12a and 12b but for the statistics of the entire month.
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6. Discussion and Conclusion

We developed a correction algorithm for improving a customizable fire emission that is based on pixel-level
FRP data (FEERv1.0-Mp6) to account for some of the limitations in MODIS fire observations. Our initial analysis
had indicated biases in these data caused by three satellite fire detection limitations: (a) nondetection of fires
due to cloud cover, (b) the reduced sensitivity of MODIS fire detection off-nadir, and (c) the gaps between
successive MODIS swaths near the equator. These three biases were compensated for in our study to gener-
ate a new spatially continuous emission inventory.

Figure 13. The first row shows selected nighttime CALIPSO tracks (blue lines) that pass over daytime Aqua large VZA or gap
regions (Aqua orbits are also shown in themap, and themeaning of different line types is the same as in Figures 5b and 5c).
Comparison of nighttime CALIOP-derived AOD vertical profile (calculated from aerosol extinction coefficient) at 532 nm
(second row) and WRF-Chem simulated vertical profiles of smoke concentration along the corresponding CALIPSO
ground track using original (third row), adjusted (fourth row), and scaled emissions (fifth row). Data in 3, 4, and 22 of January
2010 are shown from the first column to the third column. The red ovals in the second and fourth rows show the CALIOP-
derived aerosol loading patterns captured by model simulations with adjusted emission.
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The original and adjusted inventories were applied to the WRF-Chemmodel to simulate smoke loading in the
atmosphere. This study was conducted over NSSA during a high fire month, January 2010. The comparison
with MODIS AOD revealed that the adjusted emission led to an overall improvement in WRF-Chem simulated
spatial and temporal distribution of AOD in the study region. Both the daily and monthly mean simulated
values were evaluated in our study using satellite observations from MODIS and CALIOP. After applying
the emission correction, the emission amount increased because missing emission values were filled in
regions under cloud cover, regions at large satellite scan angles, and swath gaps. The effect of this emission
correction method for improving model performance was also compared with another model simulation
using scaled emissions. The scaled emission has simply increased the original emission amounts based on
the daily ratio of the adjusted and original emissions. Comparisons with aerosol observations at daily and
monthly time scales show that simply increasing emission amounts is not enough to reduce satellite fire
detection biases. There is an improvement in standard deviation and correlation when comparing the scaled
results with MODIS. Overall, compared to the simulations using the original emission, the corrected (or
adjusted) emission improved the WRF-Chem simulations in terms of agreement with MODIS AOD; the linear
correlation coefficient (with MODIS AOD) increased by 0.18 (from 0.42 to 0.6), the centered RMS error reduced
by 30% (from 1 to 0.7), and the modeled data standard deviation moved closer to that of the observed AOD
by 50% (i.e., change from 0.5 to 0.75 in normalized standard deviation). The model improvement from the
emission correction is also apparent by comparing nighttime CALIOP extinction coefficients at 532 nm with
model simulated vertical aerosol loading along CALIPSO tracks when the CALIPSO overpasses are matched
with the same day’s Aqua large VZA or gap regions.

Reducing uncertainties of biomass burning emission is crucial to the reliability of model simulations of atmo-
spheric aerosol physical properties (Zhang et al., 2014). The case study here presents a simple approach for
improving emissions based on pixel-level FRP data from a polar-orbiting satellite-based fire detection algo-
rithm that has inherent limitations in characterizing fires in cloudy conditions and at the edge of or gap areas
between satellite ground swaths. With the launch of GOES-R and Himawari (Schmit et al., 2016), detection of
fires at high temporal resolution from geostationary satellite sensors at similar spatial resolutions as MODIS is
becoming operationally available and can be used in future studies to evaluate the empirical method devel-
oped in this paper, thereby further reducing the uncertainties due to the inherent limitations in fire detection
from polar-orbiting satellites.

Appendix A: Description of FEER Emission

The NASA Fire Energetics and Emissions Research (FEER) emission data set is based on a top-down approach
(Ichoku & Ellison, 2014) and is available for public at http://feer.gsfc.nasa.gov/. Equations (3) and (4) in the text
show the fundamental formula used in FEER algorithm. The global gridded coefficients Ce (or product of α · βs
in equation (3)) for smoke total particulate matter (TPM) is first derived based on the method originally pro-
posed by Ichoku and Kaufman (2005). In the current FEER version 1.0 emission data set (FEER v1.0), FEER uses
the coincident Ce and time-integrated FRP data from GFAS version 1.0 (Kaiser et al., 2012) to estimate the total
amount of TPM emitted at each gridbox (thus the name: FEER v1.0-G1.0). The emission factors (EFs) of other
fire emission species from Andreae and Merlet (2001, updated in 2014) are then used to derive their
respective emission ratios relative to TPM at various land cover types in order to estimate the Ce for these
other species (such as organic and black carbon). Both the FRP and AOD data used to generate the gridded
FEER.v1 Ce (that links FRP to TPM) are derived from MODIS on Terra (MOD14 and MOD04_L2) and Aqua
(MYD14 and MYD04_L2) satellites. In order to distinguish the background and smoke plume AOD, the
Modern Era Retrospective-Analysis for Research and Applications wind vector at 850 mb data set is used in
the algorithm (Ichoku & Ellison, 2014; Ichoku & Kaufman, 2005) to estimate the time to emit the mass of
smoke aerosol by a certain plume. The linear relationship between FRP and the rate of smoke emission is then
determined to obtain the gridded (1°×1°) Ce products (Andreae & Merlet, 2001; Ichoku & Ellison, 2014; Ichoku
& Kaufman, 2005). FEERv1.0-G1.0 is the first biomass burning emission derived from global gridded emission
coefficient products. Thus, prior knowledge of the ecosystem type of an active fire is not required from the
user, as it is implicit in the grid location of the emission data. Furthermore, while the emission coefficients
were derived using only daytime measurements because AOD is only measured during the daytime, FEER
provides nighttime fire emissions, assuming that the coefficient for any location is applicable to both daytime
and nighttime.
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