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a b s t r a c t 

Absorbing aerosols like smoke heat the atmosphere by absorbing solar radiation, and such heating is en- 

hanced when aerosols are above liquid clouds. To reduce uncertainty in estimates of the aerosol radiative 

forcing, it is desirable to characterize the size, index of refraction, optical depth, and altitude of smoke 

aerosols and underlying cloud droplets. While past work with remotely sensed multi-spectral data have 

made progress toward such characterization, it remains unclear if those radiatively important parame- 

ters can be fully and simultaneously retrieved from shortwave hyperspectral measurements. This issue is 

studied here first by examining the spectral fingerprints of above-cloud aerosols in the shortwave region 

(wavelength from 330 nm to 40 0 0 nm) using hyperspectral radiative transfer simulations. These simula- 

tions are further explored to analyze the information content for hyperspectral inversion of aerosol and 

cloud optical depths as well as their microphysical properties over an ocean surface. The analysis shows 

that the Moderate Resolution Imaging Spectroradiometer (MODIS), with limited spectral bands in the so- 

lar spectrum, has partial information required for retrieving the optical depth and the effective radius 

of smoke and cloud. In contrast, hyperspectral measurements have about 5 extra pieces of information 

(double the degrees of freedom for signals of MODIS), allowing for the retrieval of additional aerosol 

and cloud microphysical parameters, including the smoke layer height above cloud, the imaginary part 

of smoke refractive index, and partially the effective variance of cloud droplet size. Thus, hyperspectral 

measurements can provide valuable constraints on heating rate estimates of absorbing aerosols above 

clouds. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Over the past decade, the role of above-cloud aerosols (ACA) in

affecting regional and global climate has been increasingly appre-

ciated (e.g., [7,30,64,65,72] ). This is in particular the case for smoke

aerosols that can heat the atmosphere by absorbing solar radiation,

and such heating is enhanced when the smoke plume is above

a liquid cloud layer [21,65] . During each boreal summer to fall,

thick smoke aerosols produced by biomass burning (BB) in South-

ern Africa and South Asia travel downwind and frequently over-
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ay long-lasting subtropical stratocumulus decks over the south-

ast Atlantic Ocean and south Asia, respectively. Statistically, the

requency of occurrence of these ACA events in an overcast sky

eaches up to 50% in southeast Atlantic and 10% in South Asia

1,2,16] . 

In particular, smoke emitted in Southern Africa contributes

bout one third of the global BB aerosols [12,59] , the prevailing

CAs thus exert significant regional radiative warming to the at-

osphere. The monthly average of conditional TOA direct radia-

ive forcing of ACAs was estimated as 20–35 Wm 

–2 [7,8,15,74] and

he instantaneous forcing can be greater than 100 Wm 

–2 for ex-

remely dense absorbing smoke plumes [15,20] . If considering all-

ky conditions, the ACAs over this region can contribute about

.02 Wm 

–2 to global radiative forcing [44] . Despite the importance

f ACAs, quantification of ACA’s radiative effects in climate mod-

ls remains considerably uncertain. A recent comparison of global

https://doi.org/10.1016/j.jqsrt.2018.09.024
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limate models saw the largest inter-model differences of all-sky

irect radiative forcing in southeast Atlantic, with the modelled an-

ual mean values varying from −1 to + 2 Wm 

−2 [42] . 

The presence of ACAs also affects satellite remote sensing of

loud properties. When a cloud pixel is contaminated by lofted

moke aerosols, the TOA reflectance as observed by a satellite sen-

or is reduced and the spectral contrast increases. As a result, the

etrieved cloud properties are biased if such smoke influence is

ot considered. For instance, a low bias of 6–20% was identified in

he standard cloud optical depth (COD) retrievals from the Mod-

rate Resolution Imaging Spectroradiometer (MODIS) when smoke

erosols aloft [1,37,66] ; cloud droplet effective radius could also be

nderestimated by 1 μm or less [25,37,66] . Consequently, the pres-

nce of ACAs can lead to biased satellite-based estimates of cloud

iquid water content and radiative effect [37,65] . 

In order to better understand the radiative effects of ACA and to

mprove the retrieval of cloud properties in smoke-contaminated

cenes, a technique has been developed to derive properties of

loud and ACA simultaneously by utilizing the spectral signatures

f ACA. The technique is known as “color ratio”, which physically

akes advantage of the unambiguous reduction of spectral TOA

eflectance due to enhanced absorption of sunlight by ACA [e.g.,

28,38,58] ]. For instance, Torres et al. [58] retrieved COD and ACA

OD from 388-nm TOA reflectance and ultraviolet (UV) absorb-

ng aerosol index (between 388 nm and 353 nm) observed by the

zone Monitoring Instrument (OMI), whereas Jethva et al. [28] re-

rieved the same variables using the color ratio of 470 nm and

60 nm made by MODIS-measured TOA reflectance. Meyer et al.

38] further used reflectance measurements at six MODIS chan-

els in the solar spectrum to retrieve COD, ACA AOD, and cloud

roplet effective radius. Their retrieval accuracy, however, depends

ritically on the imaginary part of smoke refractive index, which

etermines single scattering albedo (SSA) for a given particle size

istribution, and aerosol-cloud relative altitude. As highlighted by

ethva et al. [28] , an error of 0.03 in the SSA or 1 km in the aerosol-

loud relative altitude could led to an error of 10–50% or 15% in the

etrieved ACA AOD, respectively. 

Therefore, it is necessary to explore the potential of retrieving

he full set of cloud and ACA parameters that are important for

tudying the radiative effects of ACAs. While spectral COD and ACA

OD are important for radiative transfer calculations, equally im-

ortant but poorly constrained are the effective size of smoke par-

icles and cloud droplets, the spectral single scattering albedo (or

efractive index) of smoke, and the relative height of the smoke

bove cloud layers. By investigating spectral fingerprints of above-

loud smoke aerosols using radiative transfer simulations, this

tudy aims to assess the capability for hyperspectral inversion of

ptical thickness of both aerosol and cloud, along with their micro-

hysical properties and vertical separation over an ocean surface.

n particular, this study examines how the information brought by

yperspectral measurements compares with multi-band data such

s those offered by the MODIS instrument. 

. Methodology 

The framework used to assess retrievable information combines

 linearized vector radiative transfer model and an optimal esti-

ation (OE) approach. The model, known as Unified Linearized

ector Radiative Transfer Model (UNL-VRTM) [61] , simulates re-

ectance being observed by any satellite for an atmosphere with

pecified cloud and aerosol properties. It also diagnoses analyti-

al Jacobians of reflectance at top of the atmosphere (TOA) with

espect to aerosol and cloud variables. The OE method is then

sed to evaluate the information content of the synthetic TOA re-

ectance and estimate the expected retrieval uncertainties in cloud

nd aerosol properties. To reduce the number of retrieved param-
ters, the principal component analysis (PCA) technique is applied

o identify primary components in the spectral variation of aerosol

efractive index. 

In this section, we first describe the information analysis theory

2.1) and UNL-VRTM (2.2), then describe cloud and aerosol micro-

hysical properties used for generating synthetic hyperspectral and

ODIS-type data (2.3–2.4). New development of computing Jaco-

ians of Stokes parameters with respect to weight coefficients for

ach principal components (PCs) of aerosol spectral refractive in-

ex is presented in 2.5. The state vector and its prior errors are

efined in 2.6. At last, the approach to characterize observation er-

or covariance is presented in 2.7. 

.1. Information theory 

We apply a Bayesian-based OE approach to quantify the pieces

f useful information contained in the observation for inferring a

et of unknown parameters [48] . This approach has been exten-

ively used to analyze aerosol information of remote sensing obser-

ations [e.g., 9,26,69 ]. A detailed description of this approach was

resented by Xu and Wang [69] . Here we introduce it briefly. 

Let x = [ x 1 , · · · x N ] 
T denote a state vector that contains N param-

ters to be retrieved, y = [ y 1 , · · · y M 

] T denote an observation vector

ith M elements of measurements, and K represents the Jacobian

atrix of y with respect to x . Assuming a linear relationship be-

ween y and x in their vicinities, such relation can be expressed

y 

 = Kx + ε, (1) 

here ε is an experimental error that includes observation noise

nd forward modeling uncertainty. For this project, the observa-

ion vector y comprises spectral reflectance, and the state vector

 comprises a variety of cloud and aerosol variables. The inverse

roblem is to solve x from the measurement y , and the solution

or the retrieval) is denoted by ˆ x . 

Assuming that prior error and observation error are character-

zed by a Gaussian probability distribution function (PDF), one can

stimate the posterior error by 

ˆ 
 = 

(
K 

T S −1 
ε K + S −1 

a 

)−1 
, (2) 

here S ε is the observation error covariance matrix, S a is error co-

ariance matrix of prior estimates of the state vector x a . The re-

rieval error in ˆ x can be estimated by the root-mean-square of the

ain diagonal of ˆ S , 

̂ = [ diag ( ̂  S )] 
1 
2 . (3) 

ccordingly, the averaging kernel matrix A is defined by 

 = 

(
K 

T S −1 
ε K + S −1 

a 

)−1 
K 

T S −1 
ε K . (4) 

 describes the ability to retrieve x from y given the error char-

cterizations of observation and x a . An identity matrix of A repre-

ents a perfect retrieval, while a null matrix of A indicates that no

nformation can be gained from y . The trace of A is known as the

egree of freedom for signals, or DFS for short, 

FS = trace ( A ) . (5) 

FS represents independent pieces of information retained by the

bservation. The diagonal elements of A , being called partial DFS or

FS i , with a value between 0 and 1, indicate the partial capability

o retrieve each individual parameter, 

F S i = diag (A ) i = 

∂ ̂  x i 
. (6) 
∂ x i 
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Table 1 

Model settings and parameters assumed but not included in the state vector. 

Parameter Setting 

Atmospheric profile Tropical standard atmosphere [36] 

Surface reflectance Water surface from ASTER spectral library [3] 

Cloud altitude range 1–2 km 

Smoke altitude range 2–8 km 

Particle shape Sphere for both smoke aerosols and cloud droplets 

Cloud refractive index From Hale and Querry [22] , Downing and Williams [18] , and Kou et al. [33] . 

PCs of smoke refractive index Obtained through PCA to smoke database of Magi et al. [35] 
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2.2. UNL-VRTM 

We use the UNL-VRTM ( https://unl-vrtm.org ) to perform hy-

perspectral radiative transfer simulations. As described by Wang

et al. [61] , UNL-VRTM integrates the VLIDORT radiative transfer

code [53] , linearized Mie and T-Matrix scattering codes [55] , HI-

TRAN gaseous spectroscopic database [50] , reflection models of

land and water surfaces [52] , and the OE-based information assess-

ment module [69] . Together, these components constitute a nu-

merical testbed tool for satellite remote sensing of the atmosphere

by offering analytical Jacobians of radiation fields and quantitative

information content of any instrumental measurements. 

In this study, our UNL-VRTM simulations consider two scenar-

ios of satellite observations for the purpose of assessing the ad-

ditional information brought by hyperspectral measurements. One

represents a shortwave spectrometer with a resolution (in terms of

full width at half-maximum, or FWHM) of 5 cm 

–1 measuring radi-

ances in the wavenumbers between 250 0 and 30,0 0 0 cm 

–1 (wave-

lengths of 333–40 0 0 nm). In the wavelength space, such a spec-

tral resolution corresponds to about 0.055 nm at the wavelength of

333 nm, 0.5 nm around 10 0 0 nm, 2 nm around 20 0 0 nm, and 8 nm

around 40 0 0 nm. This type of instrument is similar to the spec-

trometer designed for the CALRREO and CLARREO Pathfinder mis-

sions [56,63] but with a higher spectral resolution. The second

scenario considers observations corresponding to multi-spectral ra-

diometers such as MODIS. Among MODIS’s 36 channels, 12 chan-

nels falling within our simulated spectral range are considered, i.e.

channels 1–7, 17–21, and 26. It should be noted that MODIS ocean

color channels (8–16) are not selected as they are tuned for dark

scenes and often saturated over clouds. 

For both the spectral scenarios, we only consider the at-nadir

observations over a water surface at a constant solar zenith an-

gle of 40 °. Surface reflectance is obtained from the ASTER spec-

tral library [3] and assumed isotropic, above which is a standard

tropical atmosphere with 49 layers [36] . Based on the standard at-

mosphere’s vertical profile of air density, UNL-VRTM calculates air

molecular scattering properties following Bodhaine et al. [4] . Ab-

sorption of trace gases are calculated using the recently updated

HITRAN2012 database [49] for 22 gases including H 2 O, CO 2 , O 3 ,

N 2 O, etc. It also includes continuum absorption by H 2 O, CO 2 , O 3 ,

and O 2 using the MT_CKD approach [11,40] . 

A homogeneous deck of stratocumulus cloud present between

1 and 2 km with smoke particles aloft between altitudes of 2

and 8 km. Smoke extinction profile follows a quasi-Gaussian shape

characterized by a median altitude of 5 km with peak extinction

and a dispersion half-width of 1 km [54,70] . As such, the effective

separation distance between cloud top and smoke layer is 3 km.

We assume an optical thickness of 10 for the cloud layer and 0.5–

1.0 for the smoke layer at the spectral wavelength of 550 nm. Opti-

cal properties of cloud and smoke are determined using Lorenz–

Mie scattering theory based on the microphysical variables pre-

sented in the following subsections. Table 1 summarizes the as-

sumed model settings and parameters that are not included in the

state vector. 

v  
.3. Cloud microphysical and optical properties 

Microphysical properties of cloud droplets are described by the

ize distribution and refractive index. Many studies have suggested

loud droplets follow a modified Gamma distribution characterized

y an effective radius r c 
eff 

and an effective variance v c 
eff 

[24] , 

 c ( r ) = N c r ( 
1 / v c 

eff 
−3 ) exp 

(
− r 

r c 
eff 

v c 
eff 

)
, (7)

here N c is a constant related to the total number of droplets

er unit volume. For marine stratocumulus, typical values of r c 
eff 

nd v c 
eff 

are around 10 μm and 0.1, respectively [39,43] . Complex

efractive index of liquid water in the shortwave is based on the

idely used databases reported by Hale and Querry [22] , Downing

nd Williams [18] , and Kou et al. [33] to cover the entire spec-

ral range of this study. As displayed in Fig. 1 a and b, the real part

f water refractive index is about 1.33 in visible, decreases with

he wavelength in near infrared (NIR), and reaches its minimum in

hortwave IR (SWIR) around 2.7 μm before a rapid increase towards

edium-wave IR (MWIR). The imaginary part is negligibly small in

he visible bands and increases dramatically as the wavelength in-

reases. Additionally, these refractive index datasets overlap in the

ear-infrared through shortwave infrared, and discrepancies exist

n some regions mainly due to differences in the spectral sampling

esolution. Our selection of dataset in the overlapped spectrum fa-

ors the data of Kou et al. [33] and followed by that of Downing

nd Williams [18] . 

Fig. 1 c and d presents cloud SSA and extinction COD as a func-

ion of spectral wavelength. Spectral CODs are determined using

he droplet volume that gives a COD of 10 at the wavelength of

50 nm. The spectral variability of COD is small with an increase

f up to about 10% at from visible to shortwave infrared wave-

engths. Cloud SSA is almost equal to 1 at wavelengths shorter than

.3 μm. In contrast, clouds have a strong absorption signature at

avelengths around 1.35, 2.0, and 2.5–3.5 μm. It should be noted

hat the absorption signature of clouds is not quite useful for re-

ote sensing of cloud properties, except the 1.35 μm band which

verlaps with strong absorption of water vapor and contains infor-

ation for the height of clouds. 

.4. Smoke microphysical and optical properties 

Smoke particles are assumed to follow a lognormal size distri-

ution characterized by a median radius r g and standard deviation

g , which is expressed by 

 a ( r ) = 

N a √ 

2 π r ln σg 

exp 

[
− ( ln r − ln r g ) 

2 

2 ln 

2 σg 

]
(8)

An advantage of the lognormal distribution is that the σ g is

dentical for the number, area, and volume size distribution func-

ions, and therefore the corresponding median radius of each dis-

ribution function can be derived from one to another [24] . Fur-

hermore, effective size variables (i.e., r a 
eff 

and v a 
eff 

) can also be con-

erted to and from those geometric parameters [71] . Following Xu

https://unl-vrtm.org
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Fig. 1. Cloud droplet refractive index and optical properties adopted in this study. (a-b) Refractive indices of liquid water ( m 

c 
r − m 

c 
i 
i ) reported by Hale and Querry [22] at 

the temperature of 298 K (blue), Downing and Williams [18] at 300 K (red), and Kou et al. [33] at 295 K (green). (c-d) Simulated cloud optical depth (or COD, a value of 10 

is specified at a wavelength of 550 nm) and single scattering albedo (SSA) using a Lorenz-Mie code. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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t al. [71] , we use r a 
eff 

and v a 
eff 

for our experiment because aerosol

articles following different size distributions function but having

he same values of r eff and v eff possess similar scattering and ab-

orption properties [24] . 

In contrast to the well-characterized water refractive index, re-

ractive index of smoke aerosols is highly uncertain due to the

omplexity of smoke’s chemical compositions as the aging of

lume. Furthermore, measurements of smoke refractive index on

he entire shortwave spectrum are very limited. In this study, we

se spectral refractive indices in UV to NIR inferred by Magi et al.

35] (hereafter, Magi07) for six biomass burning plumes during the

AFARI-20 0 0 field campaign. As shown in Fig. 2 a and b, both the

eal and imaginary parts of smoke refractive index vary strongly

ith spectral wavelength and differ significantly among different

moke plumes. Fig. 2 c and d shows the spectral AOD (normalized

o 0.5 at spectral wavelength of 550 nm), SSA, and absorption AOD

AAOD). The spectral AOD decreases along with wavelength, and at

560 nm it decreases to about 10% of that at 550 nm. The variabil-

ty of smoke AAOD displays strong case-dependency, highlighting

he necessity for determining the imaginary part refractive index. 

.5. Principal components (PCs) of smoke refractive indices 

We assume the spectral signal of smoke refractive index can be

ecomposed into several orthogonal PCs multiplied by a vector of

eighting coefficients. These PCs are predetermined through PCA

pplied to a set of known refractive spectra. The retrieval targets

hen become the weighting coefficients, from which the spectral

efractive indices can be reconstructed. By doing so, the size of

tate vector is significantly reduced and, at the same time, the in-

rinsic band-to-band correlations of refractive index are adopted.

uppose a refractive index dataset contains a number of samples

ith each recorded at d wavelengths, application of PCA to the

ataset provides a matrix of orthogonal PCs ( P ). Conversely, a spec-

rum of refractive index ( r ) can be approximated from P by 

 = Pw , (9) 
here w represents a vector of m weighting coefficients. Usually

 small number of m is sufficient to reconstruct r with a suffi-

ient accuracy. In this study, we apply PCA to the Magi07 datasets.

s shown in Fig. 3 a and b, the first 3 PCs ( m = 3) can describe

ver 99% of the spectral variability for both the real and imagi-

ary parts. As a consequence, the spectral refractive index can be

econstructed well using these first 3 PCs ( Fig. 3 c and d). 

Following our previous effort s in realizing the PCA-based sur-

ace reflectance [26,27] , we implemented the capability in UNL-

RTM to calculate the Jacobian of the TOA reflectance ( R ) with re-

pect to weighting coefficients ( w ) of PCs of aerosol refractive in-

ex, which can be expressed by 

∂R 

∂w 

= 

∂R 

∂ r λi 

[ P i, 1 , P i, 2 , · · · , P i,m 

] 
T 
, ( i = 1 , · · · , d ) . (10) 

Here ∂R 
∂ r λi 

indicates Jacobian gradients of TOA reflectance to re-

ractive index at wavelength of λi , which are explicitly calculated

y UNL-VRTM. P i, m 

represents the m th PC at wavelength λi , ac-

uired through applying PCA to the Magi07 datasets. 

.6. Definition of state vector and prior error 

The state vector comprises 13 cloud and aerosol parameters

isted in Table 2 . They are 550-nm COD ( τ c 
550 

), cloud droplet effec-

ive radius ( r c 
eff 

) and effective variance ( v c 
eff 

); ACA AOD at 550 nm

 τ a 
550 

), aerosol effective radius ( r a 
eff 

) and effective variance ( v a 
eff 

);

omplex aerosol refractive index represented by a set of 3 PC co-

fficients ( w = [ w 1 , w 2 , w 3 ] , each for real and imaginary parts);

erosol-cloud separation height ( H ). Therefore, the state vector can

e expressed by 

 = 

[
τ c 

550 , r c eff , v c eff , τ
a 
550 , r a eff , v a eff , H, w r , 1 , w r , 2 , w r , 3 , 

w i , 1 , w i , 2 , w i , 3 ] 
T 
. (11) 

In the radiative transfer simulation, COD and AOD at other

avelengths are calculated from cloud and aerosol volume concen-

rations that converted from τ c 
550 

and τ a 
550 

. In other words, spectral

ariability of cloud and aerosol optical depths is governed by their
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Fig. 2. Smoke aerosol refractive index and optical properties adopted in this study. (a-b) Refractive indices ( m 

a 
r − m 

a 
i 
i ) retrieved by Magi et al. [35] (grey curves) for smoke 

plumes observed during the SAFARI- 20 0 0 campaign. The blue curve represents average of these six samples. (c) Simulated aerosol optical depth (AOD, a value of 0.5 is 

specified at the wavelength of 550 nm) and SSA using the mean spectra of smoke refractive index. (d) Absorption AOD (or AAOD) of smoke. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Principal component analysis applied to smoke refractive index spectra of Magi et al. [35] . (a-b) The first 4 principal components (PCs) and their cumulative variance 

competitions. (c-d) Comparisons of reconstructed refractive index spectra (dotted) using the first 3 PCs to the original spectra (solid). . 
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microphysical parameters, and τ c 
550 

and τ a 
550 

can be treated as the

cloud and aerosol loading parameters independent of other param-

eters in the state vector. In addition, microphysical parameters, as

well as PC weights, in the state vector are independent of each

other. Therefore, we neglect correlations between prior errors by

assuming a diagonal prior error covariance matrix S a . 

Table 2 presents the adopted value for each parameter in the

state vector, as well as the estimated prior uncertainty. As men-

tioned earlier, we consider a thick cloud layer with τ c 
550 

= 10 pre-

senting between 1 and 2 km altitudes. Cloud typical r c 
eff 

of 10 μm

and v c 
eff 

of 0.1 are selected according to Miles et al. [39] and Naka-

jima et al. [43] . We assume a relative prior error of 50% for τ c 
550 
nd r c 
eff 

. This assumes that one can get COD with a 50% uncertainty

rom other sources. The uncertainty for r c 
eff 

is consistent to Naka-

ima et al. [43] who found the retrieved effective radii for marine

tratocumulus were generally between 5 μm and 15 μm. Prior un-

ertainty of v c 
eff 

is assumed 100% according to the variability of this

arameter reported by Miles et al. [39] (Note Mile et al. [39] used

 different form of Gamma distribution function). 

The overlaid smoke extends between the altitudes of 2 km and

 km following a quasi-Gaussian shape. Vertically, its extinction

eaks at an altitude of 5 km. The relative height of smoke above

loud is thus 3 km, i.e., H = 3 km. Such height corresponds to a

ypical ACA phenomenon — smoke layers over the southern At-
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Table 2 

Adopted state vector values (x a ) and prior errors ( εa ) 
∗ . 

Cloud parameters Smoke parameters PC weights of refractive index 

τ c 
550 r c 

eff 
( μm) v c 

eff 
H (km) τ a 

550 r a 
eff 

( μm) v a 
eff 

w r, 1 w r, 2 w r, 3 w i, 1 w i, 2 w i, 3 

x a 10.0 10.0 0.1 3.0 0.5 0.12 0.18 0.0 0.0 0.0 0.0 0.0 0.0 

εa 5.0 5.0 0.05 2.0 0.4 0.10 0.10 3.35 1.46 0.49 0.43 0.17 0.07 
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Fig. 4. TOA reflectance simulated by UNL-VRTM for cloud-only (black) and for two 

scenarios of over-cloud smoke with 550-nm AOD of 0.5 (solid blue) and 1.0 (solid 

red). Discontinuities in the reflectance spectra result from absorption of solar radi- 

ation by water vapor (H 2 O) and oxygen (O 2 ). Decreases of TOA reflectance by the 

presence of smoke aerosols are indicated by dotted curves. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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antic were often located between 2 km and 6 km as detected by

he satellite lidar [12] . Das et al. [12] also suggested smoke layer

eight can vary by about 2 km spatially. Thus, we assume a prior

ncertainty of 2 km for H . Smoke r a 
eff 

(0.12 μm) and v a 
eff 

(0.18), as

ell as their prior errors (0.1 μm and 0.1, respectively), were deter-

ined from long-term measurements of biomass burning aerosols

y the Aerosol Robotic Network [19] . Prior estimates for PC weights

f refractive index are zeros, which give the mean spectra of the

agi07 refractive indices. Their uncertainties listed in Table 2 are

he standard deviations of the weights for reconstructing Magi07

amples, which describe the variability of smoke refractive index

bserved from different plumes. 

.7. Observation error covariance matrix 

Usually, observation errors include instrument noises and for-

ard model errors. Observation error covariance matrix thus have

wo terms, 

 ε = S y + S m 

, (12) 

here S y is error covariance matrix describing the instrument

oises, and S m 

indicates covariance matrix of forward model er-

ors. Here, we assume that TOA reflectance has a relative instru-

ent error of 2% with a lower cap of 0.002. For hyperspectral

ata, inter-channel correlations of instrument noises are limited

o 5 adjacent channels on either side, with correlation coefficients

ecrease from 0.95 to 0.20. While we are not deal with any spe-

ific instrument, this assumption of inter-channel error is to rec-

ncile spectral resolutions of some existing and future spectrome-

ers. For example, AVIRIS-NG (the Airborne Visible/Infrared Imag-

ng Spectrometer – Next Generation) measures the wavelength

ange from 380 nm to 2510 nm with 5 nm sampling and resolu-

ion (FWHM) [ https://aviris-ng.jpl.nasa.gov ]; CLARREO spectrome-

er measures the spectral range of 320–2300 nm with 4-nm sam-

ling interval and 8-nm FWHM [63] ; TEMPO (the Tropospheric

missions: Monitoring Pollution mission) measures UV and visible

t 0.6-nm FWHM; TROPOMI (the Tropospheric Monitoring Instru-

ent) has FWHM of ∼ 0.5 nm in UV and visible, 0.35 nm in NIR,

nd 0.225 nm in SWIR. We assume a same S m 

for MODIS-like data

ut excluding the inter-channel correlations. 

Model error represents the uncertainties in the forward model,

hich usually caused by errors in model assumptions and inaccu-

ate parametrizations. In practice, it is difficult to analytically de-

ive S m 

due to the complexity of the model. A traditional way is to

stimate it by the Monte Carlo method, a widely used approach

n data assimilation for numerical weather predictions [5] . This

ethod precedes in three steps. First, a variety of relevant model

arameters are randomly perturbed within their error ranges. Sec-

nd, an ensemble of forward simulations are performed with input

f perturbed parameters. Lastly, a covariance matrix is calculated

rom the ensemble simulations, which can be used to approximate

 m 

. In this study, some perturbed parameters are those that may

ignificantly affect the TOA reflectance simulation but are not in-

luded in the state vector. Those parameters (and error magnitude)

re solar zenith angle (0.1 °), viewing zenith angle (0.1 °), surface

eflectance (0.01), surface pressure (10 hPa), aerosol top altitude

2 km), real part (0.01) and imaginary part (3%) of cloud droplet
efractive index, and columnar amounts of water vapor (5%) and

 3 (5%). In addition, perturbed variables also include some model

arameters in the state vector, i.e., COD (2%), AOD (4%), r c 
eff 

(2%),

nd r a 
eff 

(4%). Such a consideration is to account for error sources

hat are difficult to represent, which include but not limited to het-

rogeneity of the distribution and size of clouds and aerosols [13] .

he uncertainties of those perturbed parameters (bracketed values)

re used to seed the perturbed samples, generally representing ac-

uracies that can be achieved from relevant sources. 

In addition, the Monte Carlo method is also used to estimate

he retrieval error in the smoke refractive index ( Section 5 ). With

he retrieval uncertainty of refractive index’s PC weighting coef-

cients, we seed perturbated weighting coefficients, reconstruct

he refractive index spectra, and assess the retrieval uncertainty in

moke refractive index. 

. Simulated TOA reflectance and observation error covariance 

To investigate the impact of absorbing smoke aerosols residing

n water cloud, we plot in Fig. 4 the spectra of TOA reflectance

imulated for two ACA loadings (solid lines, τ a 
550 

= 0 . 5 in blue

nd τ a 
550 

= 1 . 0 in red), compared with a cloud-only (black) case

sing the optical properties summarized in Table 2 . The spectral

iscontinuities result from strong absorption by trace gases, such

s water vapor (H 2 O at 0.72, 0.82, 0.94, 1.1, 1.35, 1.87, and 2.7–

.2 μm) and oxygen (O 2 at 0.68 and 0.76 μm and O 2 –N 2 collision-

nduced absorption at 1.26 μm). In the absence of smoke, the TOA

eflectance of the cloud scene decreases from UV to red spectral

egions, caused by spectrally-dependent scattering of light by air

olecules known as Rayleigh scattering. Cloud reflectance remains

at in the atmospheric windows between 600 and 1200 nm and

ecreases as wavelength increases. This can be explained by the

at scattering of cloud droplets in visible and NIR spectral regions

long with the increasingly absorption at SWIR and MWIR wave-

engths ( Fig. 1 c and d). Not surprisingly, the presence of smoke

ver the cloud deck results in a reduction of TOA reflectance that

inearly depends on smoke burden. Due to the spectral variation of

moke AAOD ( Fig. 2 d), such reduction is more significant in shorter

avelengths, leading to a distinct spectral contrast. 

https://aviris-ng.jpl.nasa.gov
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Fig. 5. Illustration of observation error covariance matrix. (a) Diagonal elements of 

instrumental and modeling error covariance matrices, diag(S y ) and diag(S m ), with a 

units of squared reflectance. (b) Graphics of observation error covariance matrix S ε , 

where S ε = S y + S m . Circles indicate the S ε of MODIS-type observations. 
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We characterize the observation error covariance matrix ( S ε)

following the approach presented in 2.7. S ε are calculated by tak-

ing into account the instrument noises ( S y ) and forward model er-

rors ( S m 

) in the hyperspectral synthetic TOA reflectance. Fig. 5 a il-

lustrates the diagonal elements of S y and S m 

, and their sum ( S ε)

is shown in Fig. 5 b. Circles indicate the S ε of MODIS-type obser-

vations. Whereas the diagonals are error variances of the observa-

tions, off-diagonals represent the error correlations between obser-

vations, mainly characterized by the model error covariance ma-

trix S m 

. The low gaps in the error covariance correspond to gas-

absorbing bands, where the errors of TOA reflectance are negligibly

affected by other spectral bands. 

4. Sensitivity of TOA spectral signature to cloud and aerosol 

properties 

Along with the calculation of TOA reflectance, UNL-VRTM also

computes the Jacobians of TOA reflectance with respect to cloud

and ACA variables (or the Jacobian matrix K ) that serve as a sensi-

tivity metric to depict their spectral signatures. In this section, we

compare ε ( = [ diag ( S ε ) ] 
1 
2 ) and ˜ ε ( = K S 

1 
2 
a ) to better analyze the

spectral signature of each retrieved variable. Here, ε represents ob-

servation error; ˜ ε is the Jacobian matrix normalized by prior errors

in Table 2 , thus representing the natural variability of observation

as expressed by the prior uncertainty [69] . Any component whose

natural variability is smaller than the observation error is not mea-

surable. In other words, at any spectrum if the magnitude of the

error-normalized Jacobian ˜ ε to a given parameter is less than the

magnitude of ε, the TOA reflectance at this spectrum does not con-

tain useful information for determining this parameter. Conversely,

useful information is found if the former is larger than the latter,

and the larger of the magnitude of ˜ ε, the more useful information

contained in the observation for the parameter. Therefore, compar-

ison of ˜ ε and ε provides not only sensitivity of individual mea-

surements to each retrieved parameter but also a capacity metric

for those observations to infer that parameter. 
.1. Sensitivity to cloud properties 

Fig. 6 a–c shows the components of ˜ ε for cloud droplet prop-

rties under two different smoke loadings ( τ a 
550 

= 0 . 5 in blue and
a 
550 

= 1 . 0 in red). The filled grey color indicates the domain of

[ diag ( S ε ) ] 
1 
2 , i.e. the range of observation error ε. Clearly, the

ofted smoke dims the sensitivity of TOA reflectance to cloud in

he shorter wavelengths where smoke is optically significant (red

ersus blue curves), while the TOA reflectance could be increased

y thickened cloud optical loading, reduced effective droplet size,

r widened dispersion of droplet size. Also, the magnitudes of ˜ ε
or COD and r c 

eff 
are significantly outbound the observation error,

nd these sensitivities vary differently along spectral wavelength.

or instance, sensitivities to both COD and droplet effective radius

 r c 
eff 

) grow with the increase of wavelength from UV to NIR ( Fig. 6 a

nd b). At the same time, the former gradually diminishes but the

ater remains strong in the shortwave IR. In contrast, the ˜ ε for

 

c 
eff 

remains weak until the spectral wavelength exceeds 1500 nm

 Fig. 6 c). Therefore, TOA reflectance at wavelengths shorter than

500 nm provide information for both COD and droplet size, longer

avelengths provide information primarily on droplet sizes. This

act has been used to retrieve r c 
eff 

and COD from satellite instru-

ents, such as the AVHRR and MODIS [e.g., 23,31,45 ]. 

.2. Sensitivity to smoke properties 

In contrast to cloud, the above-cloud smoke particles act dis-

inctively on the TOA reflectance. Fig. 6 d–f shows error normal-

zed Jacobians of TOA reflectance to smoke 550-nm AOD, r a 
eff 

, and

 

a 
eff 

, displaying overall negative sensitivities for all of these three

ariables. Furthermore, the more abundant of smoke aerosols, the

tronger the sensitivities are. In particular, TOA reflectance in UV–

isible provide information primarily on ACA AOD ( Fig. 6 d), and

t intermediate wavelengths in visible-NIR provide information on

oth AOD and r a 
eff 

( Fig. 6 d and e). In fact, the information peaks

t wavelengths around 750 nm for r a 
eff 

. In contrast, TOA reflectance

t wavelengths greater than 20 0 0 nm almost do not respond to

moke variables, as smoke is transparent for light in SWIR. How-

ver, the magnitudes of the ˜ ε for v a 
eff 

are lower than observation

rror at the entire spectral range ( Fig. 6 f), even though TOA re-

ectance is sensitive to v a 
eff 

to some extent around 10 0 0 nm. 

Fig. 6 g plots the error-normalized Jacobian of TOA reflectance

o cloud-aerosol separation H . We can see that radiances at UV

nd blue wavelengths reduce significantly as aerosol smoke layer

ncreases, because an elevated smoke layer absorbs solar radiation

nd reduces the chance of the light being scattered by underly-

ng clouds and air molecules [57] . As such, the magnitude of this

acobian reduces along with the weakening of Rayleigh scattering

r the increase of wavelengths. Indeed, the UV absorbing aerosol

ndex, which represents the enhancement of spectral contrast in

V by aerosol absorption, were found substantially sensitive to H

14,58] . In addition, the signature for H is enhanced by absorptions

f O 2 and H 2 O (vapor) at wavelengths between 680 and 1500 nm.

hile smoke aerosols absorb sunlight, they also scatter light back

o space and reduce the chance of light being absorbed by un-

erlying water vapor and O 2 . Therefore, the higher of the smoke

ayer, the stronger the reflected radiative signals received by satel-

ite; this principle has been used by many studies to derive layer

eight of aerosol and cloud from satellite measurements in the O 2 

r H 2 O absorption bands [e.g., 67,70 ]. 

Fig. 7 a and e, similar to Fig. 6 , present the error-normalized

ensitivities of TOA reflectance to the complex refractive index

f smoke. Real and imaginary parts of refractive index describe

moke’s scattering and absorption properties, respectively. The sen-

itivity of radiance to smoke absorption primarily occurs in UV and

isible regions and decreases with wavelength ( Fig. 7 e). In contrast,
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Fig. 6. Error-normalized Jacobians ( ̃ ε) of TOA reflectance with respect to smoke and cloud physical variables. Each panel corresponds to Jacobians with respect to one 

variable, i.e., (a) τ c 
550 , (b) r c 

eff 
, (c) v c 

eff 
, (d) τ a 

550 , (e) r a 
eff 

, (f) v a 
eff 

, and (g) H . These Jacobians are calculated by UNL-VRTM under two smoke loadings: 550-nm AOD of 0.5 (blue) 

and 1.0 (red). The filled grey color indicates the range of observation error ε. Circles indicate spectral bands of MODIS-type observations. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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he information to real part of smoke refractive index peaks at

avelengths around 70 0–80 0 nm, decreasing for longer or shorter

avelengths ( Fig. 7 a). Additionally, while sensitivity to smoke ab-

orption doubles for a twofold increase in smoke loading, the sen-

itivity to real part of refractive index decreases in UV and visible

egions. 

Following Eqs. ( 9 and 10 ), we calculated Jacobian gradient of

OA reflectance with respect to PC weighting coefficients of the

moke refractive index spectra. The ˜ ε for PC coefficients of real

nd imaginary parts are shown in Fig. 7 b and d and f and h, re-

pectively. Indeed, these Jacobians are determined by Eq. (10) using

he PCs of smoke refractive index ( Fig. 3 a and b) and Jacobians of

OA reflectance to refractive index ( Fig. 7 a and e). The sensitivities

or w r, 1 and w i, 1 have similar spectral variability to those for m 

a 
r 

nd m 

a 
i 
, since the 1st PC accounts for the largest possible variance

f original variables. In contrast, sensitivities for the succeeding

C coefficients exhibit smaller-scale spectral variations. Compara-

ively, TOA reflectance contains more information for m i than that

or m r , as the magnitudes of ˜ ε is larger than ε for m 

a 
i 

but smaller

or m 

a . 
r 

e  
. Information content and retrieval error 

Based on observation error covariance and Jacobian matrix pre-

ented in preceding sections, we calculated averaging kernel ma-

rix A and posterior error covariance matrix ˆ S for both the hyper-

pectral and MODIS-type observation scenarios at τ a 
550 

= 0 . 5 . We

hen derived the total and partial DFS, as well as the expected er-

or of each retrieved variable. For each observation scenario, we

onsider two different spectral settings: (A) 40 0–240 0 nm, and (B)

33–40 0 0 nm. Spectral setting B represents the full solar spectral

ange. In contrast, setting A does not include UV and MWIR, which

s similar to the spectral range of AVIRIS-NG instrument. Here we

nclude analysis for spectral setting A by also considering the fact

hat Raman scattering in UV and thermal component in MWIR

an bring complexity in radiative transfer simulation. For instance,

hermal component in the MWIR channels around 3.7 μm is sig-

ificant and has to be removed to obtain the reflected solar signal

46] . 

Fig. 8 illustrates partial DFS (top) and the ratio of retrieval error

o priori error (bottom) of each state parameter. Retrieval error of

ach parameter is also listed in Table 3 . Hyperspectral and MODIS-
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Fig. 7. Same to Fig. 6 , but for error-normalized Jacobians ( ̃ ε) of TOA reflectance with respect to (a) m 

a 
r and (e) m 

a 
i 
, as well as their first 3 PC weighting coefficients (b-d and 

f-h). Figure legend can also be found in Fig. 6 . 

Table 3 

Posterior errors ( ̂  ε ) of retrieved parameters from hyperspectral (Hyper) and MODIS-type observations for the case of τ a 
550 = 0 . 5 . 

Cloud parameters Smoke parameters PC weights of refractive index 

τ c 
550 r c 

eff 
( μm) v c 

eff 
H (km) τ a 

550 r a 
eff 

( μm) v a 
eff 

w r, 1 w r, 2 w r, 3 w i, 1 w i, 2 w i, 3 

Hyper A 0.41 0.39 0.02 0.44 0.09 0.02 0.09 2.43 1.20 0.42 0.14 0.07 0.03 

Hyper B 0.36 0.24 0.02 0.38 0.04 0.01 0.09 2.16 1.12 0.39 0.03 0.07 0.02 

MODIS A 1.07 0.65 0.05 1.71 0.18 0.04 0.10 3.30 1.46 0.49 0.35 0.16 0.07 

MODIS B 0.65 0.30 0.04 1.71 0.17 0.04 0.10 3.30 1.46 0.49 0.35 0.16 0.06 
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like observation scenarios are referred to “Hyper A” and “MODIS

A” for spectral range setting of 40 0–240 0 nm, and “Hyper B” and

“MODIS B” for the setting of 333–40 0 0 nm. Overall, we found a to-

tal DFS of 10.0 for Hyper-B measurements, which represents an in-

crease of about 5 from that of MODIS-B measurements. In other

words, SW hyperspectral measurements contain more information

that can be used to retrieve about 5 more parameters. The same

amount of increased information is also found for observations in

40 0–240 0 nm. 

According to Fig. 8 a, MODIS-A and MODIS-B observations can

yield 4.5 and 4.8 pieces of information, respectively. The difference

of 0.3 DFS comes from the information for v c 
eff 

gained for MODIS-B

measurements, as TOA reflectance in SWIR contains partial infor-

mation for v c 
eff 

( Fig. 6 c). In general, information from MODIS-type

observations are distributed primarily amongst the COD, r c 
eff 

, ACA
OD, and r a 
eff 

. Retrieval uncertainties in these variables are 0.65,

.30 μm, 0.17, and 0.04 μm, respectively, which represent 13%, 6%,

3%, and 33% of their prior uncertainties. However, MODIS-type

bservation has difficulty to resolve H , v c 
eff 

, v a 
eff 

, and smoke refrac-

ive index. We note the uncertainty in retrieving ACA AOD is 0.17,

r a relative error of 43%. This magnitude is consistent with the

stimated uncertainties (–10% to 50%) of ACA AOD retrieved by the

ODIS “color ratio” algorithms [28,29] . 

In comparison, hyperspectral observations (for both the spectral

ettings of A and B) can significantly advance the retrieval accuracy

f these four parameters. Specifically, in the hyperspectral scenar-

os the uncertainties in retrieved COD, r c 
eff 

, AOD, and r a 
eff 

are 0.36,

.25 μm, 0.04, and 0.01 μm, respectively. Not just improving the re-

rieval uncertainty in these parameters, hyperspectral observations

lso offer additional information to retrieve H , v c 
eff 

, and smoke re-
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Fig. 8. Information content of hyperspectral (Hyper) and MODIS-type observations 

and resulting retrieval uncertainty for each cloud and smoke variable for the case 

of τ a 
550 = 0 . 5 . Two spectral settings are corresponding to spectral range of 400–

2400 nm (Hyper A and MODIS A) and 333–40 0 0 nm (Hyper B and MODIS B), re- 

spectively. (a) Partial DFS values for each retrieved variable. (b) Ratio of retrieval 

error to prior error ( ̂  ε / εa ) of each variable. 
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ractive index. For instance, partial DFS for v c 
eff 

reaches 0.77, lead-

ng to a retrieval error of about 0.024, which represent 48% of its

rior error. The retrieval accuracy for H is about 0.4 km. Similarly,

etrieval errors of PC coefficients ( w ) for complex refractive index

pectra also see substantial reductions from their prior uncertain-

ies. The reductions are more notable for w i , indicating aerosol ab-

orption can be well retrieved from hyperspectral measurements.

owever, hyperspectral data have no information for improving the

etrievals of v a 
eff 

and only limited information for retrieving the real

art of refractive index. 

To illustrate the capability for retrieving smoke refractive in-

ex, we propagate the retrieval error from w to the refractive in-

ex spectra using the Monte Carlo approach. The process is the

ame approach as that used to characterize observation error in

ection 2.7 . Here, we first reconstruct refractive index spectra us-

ng normally-distributed random samplings of w within the range

f its given error. Then, the retrieval errors of refractive index are

haracterized by ensemble variance of those reconstructed spec-

ra: A smaller variance indicates a more accurate retrieval. Specifi-

ally, we reconstructed three ensembles of refractive index spectra

ased on three ensembles of w that were sampled according to the

rior error, and retrieval error from MODIS-B and Hyper-B mea-

urements, respectively. Fig. 9 a and b illustrates the ranges of these

nsembles for m 

a 
r and m 

a 
i 

spectra, and Fig. 9 c and d presents their

tandard deviations. The ensemble based on prior errors (light blue

olor) represents variability of the refractive indices adopted for

CA, namely, the Magi07 database. Similarly, the ensembles based

n hyperspectral (blue) and MODIS-type (orange) inversions can

escribe their retrieval accuracy in m 

a 
r and m 

a 
i 
. We can see that

1) MODIS-type observations yield some information to m 

a 
i 

in the

isible wavelengths but almost no information to m 

a 
r ; (2) Hyper-

pectral observations can offer an abundant amount of information

o retrieve m 

a 
i 

but only a moderate amount of information to re-

rieve m 

a 
r . Therefore, we can conclude that hyperspectral measure-
ents are a valuable for accurately retrieving the spectral absorp-

ion of the above-cloud smoke aerosols. 

. Conclusions 

We conducted an observation simulation experiment to in-

estigate the potential for simultaneously retrieving properties

f above-cloud aerosols (ACA) and underlying liquid clouds from

hortwave hyperspectral measurements over an ocean surface. Our

tudy focuses on a state vector that consists of cloud optical depth

COD) at 550 nm, droplet effective radius ( r c 
eff 

) and effective vari-

nce ( v c 
eff 

), aerosol-cloud relative altitude ( H ), aerosol optical depth

AOD) at 550 nm, particle effective radius ( r a 
eff 

) and effective vari-

nce ( v a 
eff 

), and complex aerosol refractive index ( m 

a 
r and m 

a 
i 
.) rep-

esented by weighting coefficients ( w r and w r ) of principal com-

onents (PCs). The experiment first generates synthetic TOA re-

ectance in 330–40 0 0 nm for typical ACA scenarios. Next, the ob-

ervation error covariance matrix is characterized to account for

nstrumental noise and model errors. Then, the spectral signatures

f cloud and ACA are analyzed with the error-normalized Jacobian

radients of TOA reflectance with respect to the state vector. Lastly,

nformation content of the synthetic data is assessed in terms of

he degree of freedom for signals (DFS), and the retrieval uncer-

ainty of each variable in the state vector are estimated. In order

o highlight the advantage of hyperspectral inversion, we compare

nformation contents offered by hyperspectral data with those by

he MODIS-type multi-spectral data. In brief, our findings can be

ummarized as 

1. The presence of smoke over the cloud deck results in a re-

duction of TOA reflectance that is relatively more significant

in shorter wavelength due to the spectral variation of smoke

AAOD. 

2. While TOA reflectance is sensitive to most elements in the state

vector, the spectral variability of such sensitivity is different

from one element to another. In other words, the spectral vari-

ation in TOA reflectance due to each cloud and ACA variable is

different. 

3. MODIS, which has limited spectral bands in the solar spectrum,

only has sufficient information for reliably retrieving COD and

r c 
eff 

and partial information for retrieving smoke AOD and r a 
eff 

.

In contrast, hyperspectral measurements have 5 extra pieces of

information (double in terms of DFS compared to MODIS), al-

lowing the retrieval of additional aerosol and cloud microphysi-

cal parameters, i.e., effective variance of droplet size, smoke re-

fractive indices, and H . Specifically, estimated uncertainties in

the MODIS inversion of COD, r c 
eff 

, AOD, r a 
eff 

are 0.65, 0.30 μm,

0.17, and 0.04 μm, respectively. In contrast, the counterparts

in the hyperspectral inversion are 0.36, 0.25 μm, 0.04, and

0.01 μm, respectively. Hyperspectral inversion can also provide

H and v c 
eff 

with estimated uncertainties of 0.4 km and 0.2, re-

spectively, together with constrained m 

a 
i 

for accurately charac-

terizing aerosol absorption. Therefore, hyperspectral inversion

can provide strong constraints on quantifying the heating rate

of absorbing aerosols above clouds. 

In our analysis we use a spectral resolution and sampling of

 cm 

–1 wavelength number in the spectral range of 333–40 0 0 nm.

he information content and error characterization thus represent

hat can be achieved with a spectrometer of such an ideal spec-

ral configuration. In practice, the same approach can be applied to

easurements of any specific instruments, such as the TROPOMI

60] , the shortwave spectrometer for Climate Absolute Radiance

nd Refractivity Observatory (CLARREO) mission [63] , the 4STAR

nstrument [51] , or the collocated Ozone Monitoring Instrument

OMI) and MODIS data. Our future efforts will focus on developing

he retrieval algorithm for a specific spectrometer (such as 4STAR)
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Fig. 9. Uncertainties in the PC-reconstructed refractive index spectra. (a-b) Ranges of reconstructed m 

a 
r and m 

a 
i 

spectra characterized by prior error (light blue), retrieval 

error from MODIS-B observations (orange), and retrieval error from Hyper-B observations (blue). (c-d) Same as panels (a-b) but for standard deviation of reconstructed m 

a 
r 

and m 

a 
i 

spectra. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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and conducting retrievals of ACA and underlying cloud proper-

ties using real measurements. In addition, it has been noted that

multi-angular polarimetric measurements also contain valuable in-

formation for retrieving ACA properties [32,62,68] . A further inves-

tigation of angular spectro-polarimetric measurements for ACA re-

trievals would be an interesting subsequent study. 

Finally, it should be noted that this study is purely based on

modeling simulations. The results and conclusions thus depend on

the assumptions made in the radiative transfer simulation and the

OE information analysis, including idealized instrument error char-

acteristics that in practice are difficult to quantify. In reality, the al-

gorithm development would face challenges to address more com-

plicated situations. For instance, we calculate smoke optical prop-

erties by assuming that smoke particles are spheres following a

mono-mode lognormal size distribution. Whereas, soot smoke par-

ticles are often structured as fractal-like chain aggregates [10,41] .

Studies have shown Mie scattering, which cannot address the com-

plex morphology of soot, can have profound bias on scattering

and absorption properties [6,34,47] . However, smoke morphology

changes with aging during transport and its characterization re-

mains highly uncertain [73] . It is difficult to examine how smoke

morphology impacts the results and conclusions in this study. An-

other limitation is that this study focuses on remote sensing over

ocean and thus restricts its application over land surface. In con-

trast to water, the land surface reflectance has large spectral and

spatial changes. While the impact from land surface would be large

for optically thin clouds, the impact is negligible for thick clouds,

because the opacity of clouds prevents the light from penetrating

to the underlying surface. Additionally, the OE inversion technique

with hyper-spectral radiative transfer simulation has a computa-

tional challenge. A further study on spectral selection is needed to

reduce the computation cost. Indeed, many spectral bands contain

little useful information ( Figs. 6 and 7 ). In practical implementa-

tion, one can choose a limited number of bands that are most in-

formative for retrieval [e.g., [17,26] ]. Hence, the results presented

in this paper should be viewed as a back-of-the-envelope analy-

sis of cloud and smoke information content in (hypothetical) hy-

perspectral measurements. For any specific instrument, the instru-

 

ent errors (such as from cross-band talk and calibration) need to

e further characterized before they can be fully considered in the

nformation content analysis. 

cknowledgments 

This research is in part supported by National Aeronautics and

pace Administration under grant NNX17AF78G issued through the

tmospheric Composition Spectral Climate Signal Programmanaged

y Hal Maring, grant NNX17AF77G issued through ACMAP program

anaged by Richard Eckman, and through Terra/Aqua/S-NPP pro-

ram (grant number 80NSSC18K0846). It is in part supported by

ffice of Naval Research (ONR’s) Multidisciplinary University Re-

earch Initiatives (MURI) Program under the award No. N0 0 014-

6-1-2040 . We acknowledge the computational support from the

igh Performance Computing group at The University of Iowa. We

re grateful for the inisightful discussion and comments from Dr.

eng Xu and three anonymous reviwers. The data presented in this

aper can be obtained through email to the corresponding authors

X. Xu and J. Wang) of this paper. 

upplementary materials 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jqsrt.2018.09.024 . 

eferences 

[1] Alfaro-Contreras R, Zhang J, Campbell JR, Holz RE, Reid JS. Evaluating the im-
pact of aerosol particles above cloud on cloud optical depth retrievals from

MODIS. J Geophys Res 2014;119(9):5410–23. doi: 10.1002/2013JD021270 . 
[2] Alfaro-Contreras R, Zhang J, Campbell JR, Reid JS. Investigating the fre-

quency and interannual variability in global above-cloud aerosol characteris-
tics with CALIOP and OMI. Atmos Chem Phys 2016;16(1):47–69. doi: 10.5194/

acp- 16- 47- 2016 . 
[3] Baldridge AM, Hook SJ, Grove CI, Rivera G. The ASTER spectral library version

2.0. Remote Sens Environ 2009;113(4):711–15. doi: 10.1016/j.rse.2008.11.007 . 

[4] Bodhaine BA, Wood NB, Dutton EG, Slusser JR. On Rayleigh optical depth
calculations. J Atmos Ocean Technol 1999;16(11):1854–61 . doi: 10.1175/

1520-0426(1999)016 〈 1854:ORODC 〉 2.0.CO;2 . 
[5] Borovikov A, Rienecker MM, Keppenne CL, Johnson GC. Multivariate error

covariance estimates by Monte Carlo simulation for assimilation studies in

http://dx.doi.org/10.13039/100000104
http://dx.doi.org/10.13039/100000006
https://doi.org/10.1016/j.jqsrt.2018.09.024
https://doi.org/10.1002/2013JD021270
https://doi.org/10.5194/acp-16-47-2016
https://doi.org/10.1016/j.rse.2008.11.007
https://doi.org/10.1175/1520-0426(1999)016%3C1854:ORODC%3E2.0.CO;2


X. Xu et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 221 (2018) 38–50 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

[  

[  

 

 

[  

 

[  

 

 

 

 

[  

 

 

[  

 

 

 

[  

 

 

 

 

[  

 

[  

 

 

 

[  

 

 

 

 

[  

 

 

[  

 

[  

 

 

 

[  

 

[  

 

 

[  

[  

 

[  

 

 

 

 

[  

[  

[  

 

 

 

[  

 

[  

 

[  

 

[  

 

[  

 

 

 

 

 

 

the Pacific Ocean. Month Weather Rev 2005;133(8):2310–34. doi: 10.1175/
mwr2984.1 . 

[6] Chakrabarty RK, Moosmüller H, Arnott WP, Garro MA, Slowik JG, Cross ES,
Han J-H, Davidovits P, Onasch TB, Worsnop DR. Light scattering and absorp-

tion by fractal-like carbonaceous chain aggregates: comparison of theories and
experiment. Appl Opt 2007;46(28):6990–7006. doi: 10.1364/AO.46.006990 . 

[7] Chand D, Wood R, Anderson TL, Satheesh SK, Charlson RJ. Satellite-derived
direct radiative effect of aerosols dependent on cloud cover. Nat Geosci

2009;2(3):181–4. doi: 10.1038/ngeo437 . 

[8] Chang I, Christopher SA. The impact of seasonalities on direct radiative effects
and radiative heating rates of absorbing aerosols above clouds. Q J R Meteorol

Soc 2017:1395–405. doi: 10.1002/qj.3012 . 
[9] Chen X, Wang J, Liu Y, Xu X, Cai Z, Yang D, Yan C-X, Feng L. Angular depen-

dence of aerosol information content in CAPI/TanSat observation over land: ef-
fect of polarization and synergy with A-train satellites. Remote Sens Environ

2017;196:163–77. doi: 10.1016/j.rse.2017.05.007 . 

[10] China S, et al. Morphology and mixing state of aged soot particles at a remote
marine free troposphere site: implications for optical properties. Geophys Res

Lett 2015;42(4):1243–50. doi: 10.1002/2014GL062404 . 
[11] Clough SA, Kneizys FX, Davies RW. Line shape and the water vapor continuum.

Atmos Res 1989;23(3):229–41. doi: 10.1016/0169- 8095(89)90020- 3 . 
[12] Das S, Harshvardhan H, Bian H, Chin M, Curci G, Protonotariou AP, Mielo-

nen T, Zhang K, Wang H, Liu X. Biomass burning aerosol transport and

vertical distribution over the South African–Atlantic region. J Geophys Res
2017;122(12):6391–415. doi: 10.1002/2016JD026421 . 

[13] Davis A, Marshak A, Cahalan R, Wiscombe W. The landsat scale break
in stratocumulus as a three-dimensional radiative transfer effect: implica-

tions for cloud remote sensing. J Atmos Sci 1997;54(2):241–60 . doi: 10.1175/
1520-0469(1997)054 〈 0241:Tlsbis 〉 2.0.Co;2 . 

[14] de Graaf M, Stammes P, Torres O, Koelemeijer RBA. Absorbing aerosol index:

sensitivity analysis, application to GOME and comparison with TOMS. J Geo-
phys Res 2005;110(D1). doi: 10.1029/20 04JD0 05178 . 

[15] de Graaf M, Tilstra LG, Wang P, Stammes P. Retrieval of the aerosol direct
radiative effect over clouds from spaceborne spectrometry. J Geophys Res

2012;117:D07207. doi: 10.1029/2011jd017160 . 
[16] Devasthale A, TjernstrÖM M, Omar AH. The vertical distribution of thin

features over the Arctic analysed from CALIPSO observations. Tellus B

2011;63(1):86–95. doi: 10.1111/j.160 0-0889.2010.0 0517.x . 
[17] Ding S, Wang J, Xu X. Polarimetric remote sensing in oxygen A and

B bands: sensitivity study and information content analysis for vertical
profile of aerosols. Atmos Meas Technol 2016;9(5):2077–92. doi: 10.5194/

amt- 9- 2077- 2016 . 
[18] Downing HD, Williams D. Optical constants of water in the infrared. J Geophys

Res 1975;80(12):1656–61. doi: 10.1029/JC080i012p01656 . 

[19] Dubovik O, Holben B, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanr 
√ 

© D,
Slutsker I. Variability of absorption and optical properties of key aerosol

types observed in worldwide locations. J Atmos Sci 2002;59(3):590–608 . doi:
10.1175/1520-0469(2002)059 〈 0590:voaaop 〉 2.0.co;2 . 

20] Feng N, Christopher SA. Measurement-based estimates of direct radiative ef-
fects of absorbing aerosols above clouds. J Geophys Res 2015;120(14):6908–21.

doi: 10.1002/2015JD023252 . 
[21] Ge C, Wang J, Reid JS. Mesoscale modeling of smoke transport over the South-

east Asian Maritime Continent: coupling of smoke direct radiative effect be-

low and above the low-level clouds. Atmos Chem Phys 2014;14(1):159–74.
doi: 10.5194/acp- 14- 159- 2014 . 

22] Hale GM, Querry MR. Optical constants of water in the 200-nm to 200-μm
wavelength region. Appl Opt 1973;12(3):555–63. doi: 10.1364/AO.12.0 0 0555 . 

23] Han Q, Rossow WB, Lacis AA. Near-global survey of effective droplet radii in
liquid water clouds using ISCCP data. J Clim 1994;7(4):465–97 . doi: 10.1175/

1520-0442(1994)007 〈 0465:Ngsoed 〈 2.0.Co;2 . 

[24] Hansen JE , Travis LD . Light scattering in planetary atmospheres. Space Sci Rev
1974;16:572–610 . 

25] Haywood JM, Osborne SR, Abel SJ. The effect of overlying absorbing aerosol
layers on remote sensing retrievals of cloud effective radius and cloud optical

depth. Q J R Meteorol Soc 2004;130(598):779–800. doi: 10.1256/qj.03.100 . 
26] Hou W, Wang J, Xu X, Reid JS. An algorithm for hyperspectral remote sens-

ing of aerosols: 2. Information content analysis for aerosol parameters and

principal components of surface spectra. J Quant Spectrosc Radiat Transf
2017;192:14–29. doi: 10.1016/j.jqsrt.2017.01.041 . 

[27] Hou W, Wang J, Xu X, Reid JS, Han D. An algorithm for hyperspectral remote
sensing of aerosols: 1. Development of theoretical framework. J Quant Spec-

trosc Radiat Transf 2016;178:400–15. doi: 10.1016/j.jqsrt.2016.01.019 . 
28] Jethva H, Torres O, Remer L, Bhartia PK. A color ratio method for simultane-

ous retrieval of aerosol and cloud optical thickness of above-cloud absorbing

aerosols from passive sensors: application to MODIS measurements. IEEE Trans
Geosci Remote Sens 2013;51(7):3862–70. doi: 10.1109/TGRS.2012.2230 0 08 . 

29] Jethva H, Torres O, Remer L, Redemann J, Livingston J, Dunagan S, Shinozuka Y,
Kacenelenbogen M, Rosenheimer MS, Spurr R. Validating MODIS above-cloud

aerosol optical depth retrieved from “color ratio” algorithm using direct mea-
surements made by NASA’s airborne AATS and 4STAR sensors. Atmos Meas

Technol, 2016;9(10):5053–62. doi: 10.5194/amt- 9- 5053- 2016 . 

30] Johnson BT, Shine KP, Forster PM. The semi-direct aerosol effect: Im-
pact of absorbing aerosols on marine stratocumulus. Q J R Meteorol Soc

2004;130(599):1407–22. doi: 10.1256/qj.03.61 . 
[31] King MD, Menzel WP, Kaufman YJ, Tanre D, Bo-Cai G, Platnick S, Ackerman SA,

Remer LA, Pincus R, Hubanks PA. Cloud and aerosol properties, precipitable
water, and profiles of temperature and water vapor from MODIS. IEEE Trans
Geosci Remote Sens 2003;41(2):442–58. doi: 10.1109/TGRS.2002.808226 . 

32] Kokhanovsky AA, et al. Space-based remote sensing of atmospheric aerosols:
the multi-angle spectro-polarimetric frontier. Earth-Sci Rev 2015;145:85–116. 

http://dx.doi.org/10.1016/j.earscirev.2015.01.012 . 
[33] Kou L, Labrie D, Chylek P. Refractive indices of water and ice in the 0.65 to 2.5-

μm spectral range. Appl Opt 1993;32(19):3531–40. doi: 10.1364/AO.32.003531 . 
34] Liu L, Mishchenko MI, Patrick Arnott W. A study of radiative properties of frac-

tal soot aggregates using the superposition T-matrix method. J Quant Spec-

trosc Radiat Transf 2008;109(15):2656–63. https://doi.org/10.1016/j.jqsrt.2008. 
05.001 . 

[35] Magi BI, Fu Q, Redemann J. A methodology to retrieve self-consistent aerosol
optical properties using common aircraft measurements. J Geophys Res

2007;112(D24):D24S12. doi: 10.1029/20 06JD0 08312 . 
36] McClatchey RA , Fenn RW , Selby JEA , Volz FE , Garing JS . Optical properties of

the atmosphere. Hanscom AFB, MA: Air Force Cambridge Research Labs; 1972.

p. 110 . 
[37] Meyer K, Platnick S, Oreopoulos L, Lee D. Estimating the direct radiative effect

of absorbing aerosols overlying marine boundary layer clouds in the southeast
Atlantic using MODIS and CALIOP. J Geophys Res 2013;118(10):4801–15. doi: 10.

1002/jgrd.50449 . 
38] Meyer K, Platnick S, Zhang Z. Simultaneously inferring above-cloud absorb-

ing aerosol optical thickness and underlying liquid phase cloud optical and

microphysical properties using MODIS. J Geophys Res 2015;120(11):5524–47.
doi: 10.1002/2015jd023128 . 

39] Miles NL , Verlinde J , Clothiaux EE . Cloud droplet size distribu-
tions in low-level Stratiform clouds. J Atmos Sci 20 0 0;57(2):295–311

doi:10.1175/1520-0469(20 0 0)057 < 0295:Cdsdil>2.0.Co;2 . 
40] Mlawer EJ, Payne VH, Moncet J-L, Delamere JS, Alvarado MJ, Tobin DC. Devel-

opment and recent evaluation of the MT_CKD model of continuum absorption.

Philos Trans R Soc A 2012;370:2520–56. doi: 10.1098/rsta.2011.0295 . 
[41] Moosmüller H, Chakrabarty RK, Arnott WP. Aerosol light absorption and its

measurement: a review. J Quant Spectrosc Radiat Transf 2009;110(11):844–78.
https://doi.org/10.1016/j.jqsrt.2009.02.035 . 

42] Myhre G, et al. Radiative forcing of the direct aerosol effect from Aero-
Com Phase II simulations. Atmos Chem Phys 2013;13(4):1853–77. doi: 10.5194/

acp- 13- 1853- 2013 . 

43] Nakajima T , King MD , Spinhirne JD , Radke LF . Determination of the optical
thickness and effective particle radius of clouds from reflected solar radia-

tion measurements. Part II: Marine stratocumulus observations. J Atmos Sci
1991;48(5):728–51 doi:10.1175/1520-0469(1991)048 < 0728:Dotota>2.0.Co;2 . 

44] Peters K, Quaas J, Bellouin N. Effects of absorbing aerosols in cloudy skies:
a satellite study over the Atlantic Ocean. Atmos Chem Phys 2011;11(4):1393–

404. doi: 10.5194/acp- 11- 1393- 2011 . 

45] Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riedi JC, Frey RA.
The MODIS cloud products: algorithms and examples from Terra. IEEE Trans

Geosci Remote Sens 2003;41(2):459–73. doi: 10.1109/TGRS.2002.808301 . 
46] Platnick S, Valero FPJ. A validation of a satellite cloud retrieval during ASTEX.

J Atmos Sci 1995;52(16):2985–3001 . doi: 10.1175/1520-0469(1995)052 〈 2985:
Avoasc 〉 2.0.Co;2 . 

[47] Radney JG, You R, Ma X, Conny JM, Zachariah MR, Hodges JT, Zangmeister CD.
Dependence of soot optical properties on particle morphology: measurements

and model comparisons. Environ Sci Technol 2014;48(6):3169–76. doi: 10.1021/

es4041804 . 
48] Rodgers CD . Inverse methods for atmospheric sounding: theory and practice.

Singapore: World Scientific; 20 0 0 . 
49] Rothman LS, et al. The HITRAN2012 molecular spectroscopic database. J Quant

Spectrosc Radiat Transf 2013;130:4–50. doi: 10.1016/j.jqsrt.2013.07.002 . 
50] Rothman LS , et al. The HITRAN 2008 molecular spectroscopic database. J Quant

Spectrosc Radiat Transf 2009;110(9–10):533–72 . 

[51] Segal-Rosenheimer M, et al. Tracking elevated pollution layers with a newly
developed hyperspectral Sun/Sky spectrometer (4STAR): results from the TCAP

2012 and 2013 campaigns. J Geophys Res 2014;119(5):2611–28. doi: 10.1002/
2013JD020884 . 

52] Spurr R. A new approach to the retrieval of surface properties from earthshine
measurements. J. Quant Spectrosc Radiat Transf 2004;83(1):15–46. doi: 10.

1016/S0 022-4073(02)0 0283-2 . 

53] Spurr R . VLIDORT: a linearized pseudo-spherical vector discrete ordinate radia-
tive transfer code for forward model and retrieval studies in multilayer multi-

ple scattering media. J Quant Spectrosc Radiat Transf 2006;102:316–42 . 
54] Spurr R, Christi M. On the generation of atmospheric property Jacobians from

the (V)LIDORT linearized radiative transfer models. J Quant Spectrosc Radiat
Transf 2014;142(0):109–15. doi: 10.1016/j.jqsrt.2014.03.011 . 

55] Spurr R, Wang J, Zeng J, Mishchenko MI. Linearized T-matrix and Mie scatter-

ing computations. J Quant Spectrosc Radiat Transf 2012;113(6):425–39. doi: 10.
1016/j.jqsrt.2011.11.014 . 

56] Xu X, Wang J, Wang Y, Henze DK, Zhang L, Grell GA, McKeen SA, Wielicki BA.
Sense size-dependent dust loading and emission from space using reflected

solar and infrared spectral measurements: An observation system simulation
experiment. Journal of Geophysical Research: Atmospheres 2017;122. doi: 10.

1002/2017JD026677 . 

[57] Torres O, Bhartia PK, Herman JR, Ahmad Z, Gleason J. Derivation of aerosol
properties from satellite measurements of backscattered ultraviolet radia-

tion: theoretical basis. J Geophys Res 1998;103(D14):17099–110. doi: 10.1029/
98jd0 090 0 . 

https://doi.org/10.1175/mwr2984.1
https://doi.org/10.1364/AO.46.006990
https://doi.org/10.1038/ngeo437
https://doi.org/10.1002/qj.3012
https://doi.org/10.1016/j.rse.2017.05.007
https://doi.org/10.1002/2014GL062404
https://doi.org/10.1016/0169-8095(89)90020-3
https://doi.org/10.1002/2016JD026421
https://doi.org/10.1175/1520-0469(1997)054%3C0241:Tlsbis%3E2.0.Co;2
https://doi.org/10.1029/2004JD005178
https://doi.org/10.1029/2011jd017160
https://doi.org/10.1111/j.1600-0889.2010.00517.x
https://doi.org/10.5194/amt-9-2077-2016
https://doi.org/10.1029/JC080i012p01656
https://doi.org/10.1175/1520-0469(2002)059%3C0590:voaaop%3E2.0.co;2
https://doi.org/10.1002/2015JD023252
https://doi.org/10.5194/acp-14-159-2014
https://doi.org/10.1364/AO.12.000555
https://doi.org/10.1175/1520-0442(1994)007%3C0465:Ngsoed%3E2.0.Co;2
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0024
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0024
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0024
https://doi.org/10.1256/qj.03.100
https://doi.org/10.1016/j.jqsrt.2017.01.041
https://doi.org/10.1016/j.jqsrt.2016.01.019
https://doi.org/10.1109/TGRS.2012.2230008
https://doi.org/10.5194/amt-9-5053-2016
https://doi.org/10.1256/qj.03.61
https://doi.org/10.1109/TGRS.2002.808226
http://dx.doi.org/10.1016/j.earscirev.2015.01.012
https://doi.org/10.1364/AO.32.003531
https://doi.org/10.1016/j.jqsrt.2008.05.001
https://doi.org/10.1029/2006JD008312
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0036
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0036
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0036
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0036
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0036
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0036
https://doi.org/10.1002/jgrd.50449
https://doi.org/10.1002/2015jd023128
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0039
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0039
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0039
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0039
https://doi.org/10.1098/rsta.2011.0295
https://doi.org/10.1016/j.jqsrt.2009.02.035
https://doi.org/10.5194/acp-13-1853-2013
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0043
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0043
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0043
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0043
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0043
https://doi.org/10.5194/acp-11-1393-2011
https://doi.org/10.1109/TGRS.2002.808301
https://doi.org/10.1175/1520-0469(1995)052%3C2985:Avoasc%3E2.0.Co;2
https://doi.org/10.1021/es4041804
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0048
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0048
https://doi.org/10.1016/j.jqsrt.2013.07.002
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0050
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0050
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0050
https://doi.org/10.1002/2013JD020884
https://doi.org/10.1016/S0022-4073(02)00283-2
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0053
http://refhub.elsevier.com/S0022-4073(18)30327-3/sbref0053
https://doi.org/10.1016/j.jqsrt.2014.03.011
https://doi.org/10.1016/j.jqsrt.2011.11.014
https://doi.org/10.1002/2017JD026677
https://doi.org/10.1029/98jd00900


50 X. Xu et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 221 (2018) 38–50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[58] Torres O, Jethva H, Bhartia PK. Retrieval of aerosol optical depth above clouds
from OMI observations: sensitivity analysis and case studies. J Atmos Sci

2012;69(3):1037–53. doi: 10.1175/jas- D- 11- 0130.1 . 
[59] van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS,

Morton DC, DeFries RS, Jin Y, van Leeuwen TT. Global fire emissions and
the contribution of deforestation, Savanna, forest, agricultural, and peat

fires (1997–2009). Atmos Chem Phys 2010;10(23):11707–35. doi: 10.5194/
acp- 10- 11707- 2010 . 

[60] Veefkind JP, et al. TROPOMI on the ESA Sentinel-5 Precursor: a GMES mis-

sion for global observations of the atmospheric composition for climate, air
quality and ozone layer applications. Remote Sens Environ 2012;120:70–83.

doi: 10.1016/j.rse.2011.09.027 . 
[61] Wang J, Xu X, Ding S, Zeng J, Spurr R, Liu X, Chance K, Mishchenko M.

A numerical testbed for remote sensing of aerosols, and its demonstration
for evaluating retrieval synergy from a geostationary satellite constellation of

GEO-CAPE and GOES-R. J Quant Spectrosc Radiat Transf 2014;146(0):510–28.

doi: 10.1016/j.jqsrt.2014.03.020 . 
[62] Waquet F, Riedi J, Labonnote LC, Goloub P, Cairns B, Deuzé JL, Tanré D.

Aerosol remote sensing over clouds using A-train observations. J Atmos Sci
20 09;66(8):2468–80. doi: 10.1175/20 09jas3026.1 . 

[63] Wielicki BA, et al. Achieving climate change absolute accuracy in orbit. Bull
Am Meteorol Soc 2013;94(10):1519–39. doi: 10.1175/BAMS- D- 12- 00149.1 . 

[64] Wilcox EM. Stratocumulus cloud thickening beneath layers of absorb-

ing smoke aerosol. Atmos Chem Phys 2010;10(23):11769–77. doi: 10.5194/
acp- 10- 11769- 2010 . 

[65] Wilcox EM. Direct and semi-direct radiative forcing of smoke aerosols over
clouds. Atmos Chem Phys 2012;12(1):139–49. doi: 10.5194/acp-12-139-2012 . 

[66] Wilcox EM, Harshvardhan, Platnick S. Estimate of the impact of absorbing
aerosol over cloud on the MODIS retrievals of cloud optical thickness and ef-

fective radius using two independent retrievals of liquid water path. J Geophys

Res 2009;114:D05210. doi: 10.1029/2008JD010589 . 
[67] Wind G, Platnick S, King MD, Hubanks PA, Pavolonis MJ, Heidinger AK, Yang P,
Baum BA. Multilayer cloud detection with the MODIS near-infrared water va-

por absorption band. J Appl Meteorol Climatol 2010;49(11):2315–33. doi: 10.
1175/2010jamc2364.1 . 

[68] Xu F, et al. Coupled retrieval of liquid water cloud and above-cloud aerosol
properties using the Airborne Multiangle SpectroPolarimetric Imager (AirM-

SPI). J. Geophys Res 2018;123(6):3175–204. doi: 10.1002/2017JD027926 . 
[69] Xu X, Wang J. Retrieval of aerosol microphysical properties from AERONET

photopolarimetric measurements: 1. Information content analysis. J Geophys

Res 2015;120:7059–78. doi: 10.1002/2015JD023108 . 
[70] Xu X, Wang J, Wang Y, Zeng J, Torres O, Yang Y, Marshak A, Reid J, Miller S.

Passive remote sensing of altitude and optical depth of dust plumes using the
oxygen A and B bands: first results from EPIC/DSCOVR at Lagrange-1 point.

Geophys Res Lett 2017;4 4(14):754 4–54. doi: 10.1002/2017GL073939 . 
[71] Xu X, et al. Retrieval of aerosol microphysical properties from AERONET pho-

topolarimetric measurements: 2. A new research algorithm and case demon-

stration. J Geophys Res 2015;120:7079–98. doi: 10.1002/2015JD023113 . 
[72] Yu H, Zhang Z. New Directions: emerging satellite observations of above-

cloud aerosols and direct radiative forcing. Atmos Environ 2013;72:36–40.
doi: 10.1016/j.atmosenv.2013.02.017 . 

[73] Zhang R, Khalizov AF, Pagels J, Zhang D, Xue H, McMurry PH. Variability in
morphology, hygroscopicity, and optical properties of soot aerosols during at-

mospheric processing. Proc Natl Acad Sci 2008;105(30):10291–6. doi: 10.1073/

pnas.0804860105 . 
[74] Zhang Z, Meyer K, Platnick S, Oreopoulos L, Lee D, Yu H. A novel method

for estimating shortwave direct radiative effect of above-cloud aerosols using
CALIOP and MODIS data. Atmos Meas Technol 2014;7(6):1777–89. doi: 10.5194/

amt- 7- 1777-2014 . 

https://doi.org/10.1175/jas-D-11-0130.1
https://doi.org/10.5194/acp-10-11707-2010
https://doi.org/10.1016/j.rse.2011.09.027
https://doi.org/10.1016/j.jqsrt.2014.03.020
https://doi.org/10.1175/2009jas3026.1
https://doi.org/10.1175/BAMS-D-12-00149.1
https://doi.org/10.5194/acp-10-11769-2010
https://doi.org/10.5194/acp-12-139-2012
https://doi.org/10.1029/2008JD010589
https://doi.org/10.1175/2010jamc2364.1
https://doi.org/10.1002/2017JD027926
https://doi.org/10.1002/2015JD023108
https://doi.org/10.1002/2017GL073939
https://doi.org/10.1002/2015JD023113
https://doi.org/10.1016/j.atmosenv.2013.02.017
https://doi.org/10.1073/pnas.0804860105
https://doi.org/10.5194/amt-7-1777-2014

	A pilot study of shortwave spectral fingerprints of smoke aerosols above liquid clouds
	1 Introduction
	2 Methodology
	2.1 Information theory
	2.2 UNL-VRTM
	2.3 Cloud microphysical and optical properties
	2.4 Smoke microphysical and optical properties
	2.5 Principal components (PCs) of smoke refractive indices
	2.6 Definition of state vector and prior error
	2.7 Observation error covariance matrix

	3 Simulated TOA reflectance and observation error covariance
	4 Sensitivity of TOA spectral signature to cloud and aerosol properties
	4.1 Sensitivity to cloud properties
	4.2 Sensitivity to smoke properties

	5 Information content and retrieval error
	6 Conclusions
	 Acknowledgments
	 Supplementary materials
	 References


