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Abstract Accurate estimates of NOx and SO2 emissions are important for air quality modeling and
management. To incorporate chemical interactions of the two species in emission estimates, we develop a
joint hybrid inversion framework to estimate their emissions in China and India (2005–2012). Pseudo
observation tests and posterior evaluation with surface measurements demonstrate that joint assimilation of
SO2 and NO2 can provide more accurate constraints on emissions than single‐species inversions. This occurs
through synergistic change of O3 and OH concentrations, particularly in conditions where satellite
retrievals of the species being optimized have large uncertainties. The percentage changes of joint posterior
emissions from the single‐species posterior emissions go up to 242% at grid scales, although the national
average of monthly emissions, seasonality, and interannual variations are similar. In China and India, the
annual budget of joint posterior SO2 emissions is lower, but joint NOx posterior emissions are higher,
because NOx emissions increase to increase SO2 concentration and better match Ozone Monitoring
Instrument SO2 observations in high‐NOx regions. Joint SO2 posterior emissions decrease by 16.5% from
2008 to 2012, while NOx posterior emissions increase by 24.9% from 2005 to 2011 in China—trends which
are consistent with the MEIC inventory. Joint NOx and SO2 posterior emissions in India increase by 15.9%
and 19.2% from 2005 to 2012, smaller than the 59.9% and 76.2% growth rate using anthropogenic emissions
from EDGARv4.3.2. This work shows the benefit and limitation of joint assimilation in emission
estimates and provides an efficient framework to perform the inversion.

1. Introduction

Nitrogen oxides (NOx =NO+ NO2) and sulfur dioxide (SO2) are precursor gases for PM2.5 (Seinfeld & Pandis,
2006). NOx also leads to the formation of ozone (Seinfeld & Pandis, 2006). These pollutants decrease visibility
(Haagen‐Smit, 1952), harm respiratory system (Burnett et al., 1995; Schwartz et al., 2012), and damage ecosys-
tems. Quantification of long‐termNOx and SO2 emission are important for evaluation of air quality regulations
(e.g., de Foy et al., 2016). Their emissions are also used in chemical transport models to study the formation
of PM2.5 (e.g., Tao et al., 2017; Zhang et al., 2015) and causes of haze (e.g., Gao et al., 2016; Zhang et al., 2016).

Bottom‐up NOx and SO2 emission inventories from Streets et al. (2003), Zhang et al. (2009), Regional
Emission inventory in ASia (REAS) (Kurokawa et al., 2013; Ohara et al., 2007), and MIX (Li, Zhang,
et al., 2017) have been extensively used for air quality and human health studies in Asia (e.g., Gao et al.,
2018; Kanaya et al., 2017; Uno et al., 2003; Wang et al., 2016). However, uncertainties in anthropogenic
NOx and SO2 emissions from these inventories are up to 49% and 35% (Kurokawa et al., 2013; Lu et al.,
2011; Zhang et al., 2009; Zhao et al., 2011). The unified compilation framework used in Streets et al.
(2003) and REAS (Kurokawa et al., 2013; Ohara et al., 2007) introduces uncertainties due to lack of knowl-
edge of emission factors, chemical profiles, spatial proxies, temporal profiles, etc., whereas the mosaic
approach, which harmonizes multiple emission inventories at different regions into one product, brings in
errors from inconsistencies among different data sets (Janssens‐Maenhout et al., 2015; Li, Zhang, et al.,
2017; Zhang et al., 2009). Bottom‐up emission inventories may also take a long time to compile, often with
more than 1‐year lag in time until they become available for use.

Alternatively, satellite observations provide an additional means of assessing emissions that is often spatially
comprehensive and potentially in near real time; as such, they have recently been used to study the trend of
NO2 and SO2 column densities and emissions. Decreases of NO2 (de Foy et al., 2016; Duncan et al., 2016;
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Krotkov et al., 2016; Liu et al., 2016) and SO2 (Calkins et al., 2016; Krotkov et al., 2016; van der A et al., 2017)
column concentration have been detected from Ozone Monitoring Instrument (OMI) retrievals over China
since 2011 and 2008. However, trends of species column densities are not the same as their emissions trends
due to the impact of chemistry, meteorology and transport (Qu et al., 2017). To further estimate emissions
in East Asia, physical models have been combined with satellite observations through inverse modeling tech-
niques. For instance, the four‐dimensional variational (4D‐Var) method (e.g., Elbern et al., 1997, 2000; Henze
et al., 2007, 2009) has been comparedwith themass balance approach (e.g., Boersma et al., 2008;Martin, Jacob,
Chance, et al., 2003; Toenges‐Schuller et al., 2006) in Qu et al. (2017), and a hybrid 4D‐Var/mass balance
method has been developed to derive top‐down NOx emissions for China from 2005 to 2012. Extended
Kalman filter (e.g., Ding, van der A, et al., 2017; Mijling et al., 2013) and ensemble Kalman filter (e.g.,
Miyazaki et al., 2017) are employed to estimate multiyear NOx emissions in China. 4D‐Var (e.g., Qu et al.,
2019; Wang et al., 2016; Xu et al., 2013), mass balance (e.g., Koukouli et al., 2018; Lee et al., 2011), and plume
methods (e.g., Fioletov et al., 2013; McLinden et al., 2016) have also been applied to derive SO2 emissions from
OMI SO2 and Moderate Resolution Imaging Spectroradiometer aerosol optical depth (AOD) observations.

Though posterior emissions estimated based on single‐species observations provide insights into the trend of
air pollutants, chemical interactions among atmospheric species are often overlooked in the assimilation
system, which can lead to errors in the derived emissions. To improve NOy model simulations, Chai et al.
(2006) assimilated O3, NO, NO2, HNO3, PAN, and RNO3 aircraft observations and found significantly better
agreement of simulated NOy with measurements than when only assimilating NOy observations. Hamer
et al. (2015) evaluated the ability of a photochemical boxmodel to predict ozone and found assimilating mul-
tiple ozone precursors using 4D‐Var decreases the uncertainty of ozone forecasting than the prior. Miyazaki
et al. (2017) appliedmultispecies assimilation of NO2, O3, CO, and HNO3 to estimate NOx emissions using an
ensemble Kalman filter and over India obtained posterior emissions 10% smaller and a posterior emissions
trend 15% smaller than the NO2‐only assimilation. The improvement of NOx emissions from the multispe-
cies inversion is confirmed by the better agreement of simulated and observed O3 concentration
(Miyazaki et al., 2017; Miyazaki & Eskes, 2013).

In this work, we extended a recently developed hybrid mass balance/4D‐Var method (Qu et al., 2017) to esti-
mate long‐term (2005–2012) NOx and SO2 emissions in East Asia simultaneously using joint NO2 and SO2

satellite constraints. Simultaneous assimilation of these two species helps reduce biases caused by interac-
tions of NOx and SO2 through ozone chemistry and aerosol thermodynamics. Since observations of both spe-
cies are from OMI, the measurement techniques, resolution, observation operator, available time period,
and locations are more consistent. In theory, better emission estimates of these two aerosol precursor gases
can improve model simulation of PM2.5 concentration and AOD.

We first update the 4D‐Var data assimilation framework and develop a joint mass balance method to esti-
mate emissions frommultiple species observations. The performance of this joint 4D‐Var and joint mass bal-
ance approach are evaluated through pseudo observation tests over China in section 3. These joint inversion
methods are then combined (hybrid method) to generate eight years of NOx and SO2 emissions for China
and India in section 4. In section 5, we evaluate posterior simulations with surface measurements.

2. Model and Observations
2.1. GEOS‐Chem and Its Adjoint Model

The GEOS‐Chem adjoint model (Henze et al., 2007) v35f is used to perform NOx and SO2 emission joint
inversions. We use Goddard Earth Observing System (GEOS‐5) reanalysis meteorology field from National
Aeronautics and Space Administration (NASA) Global Modeling and Assimilation Office from 2005 to 2012
(Bey et al., 2001). The GEOS‐5 meteorological data have a native horizontal resolution of 0.5° × 0.667°, 72
vertical layers, and a temporal resolution of 3 or 6 hr. GEOS‐Chemnested‐grid (70–150°E, 0–50°N) simulations
are performed at 0.5° × 0.667° horizontal resolution and 47 vertical layers, with 3‐hourly boundary conditions
generated for the first three grid cells at each of the four sides from global 4° × 5° simulations.

A detailed Ox‐NOx‐hydrocarbon chemical mechanism (Bey et al., 2001) is included in the GEOS‐Chem simu-
lation. The sulfur cycle simulation (emission, chemistry, advection, convection, diffusion, dry deposition,
and wet deposition) is implemented by Park et al. (2004) based on the Goddard Global Ozone Chemistry
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Aerosol Radiation and Transport model (Chin et al., 2000). The gas and particle phase partitioning of nitric
acid (HNO3) and ammonia (NH3) is calculated through the RPMARES aerosol thermodynamics scheme
from Park et al. (2004). Heterogeneous reaction of NO2, NO3 (Martin et al., 2003), and N2O5 (Evans &
Jacob, 2005) to form HNO3 is included. Dry deposition in GEOS‐Chem is computed using a resistance‐in‐
series model (Wang et al., 1998; Wesely, 1989). Wet deposition is described in Liu et al. (2001).

Anthropogenic emissions of NOx, SO2, NH3, CO, non‐methane volatile organic compounds (NMVOCs), and
primary aerosol fromHTAP 2010 inventory version 2 (Janssens‐Maenhout et al., 2015) are used to drive all of
our prior simulations from 2005 to 2012. We use nonanthropogenic emissions corresponding to each simu-
lation year. Three hourly biomass burning emissions are from fourth‐generation global fire emissions data-
base (Giglio et al., 2013). Lightning NOx emissions are calculated using the cloud top height
parameterization (Price & Rind, 1992), vertical distribution profile (Pickering et al., 1998), local redistribu-
tion (Sauvage et al., 2007), and satellite constraints (Murray et al., 2012). Yienger and Levy's algorithm
(Yienger & Levy, 1995) and soil canopy reduction factors (Wang et al., 1998) are used for deriving soil
NOx emissions. SO2 emissions from oxidation of dimethyl sulfide follow Park et al. (2004). Treatment of vol-
canic SO2 emissions follows Qu et al. (2019).

2.2. OMI NO2 and SO2 Observations

OMI is a nadir spectrometer measuring visible and ultraviolet (264–504 nm) solar backscatter radiation
onboard the NASA Aura satellite. It has a Sun‐synchronous ascending orbit overpassing the equator at
approximately 13:45 local time. OMI observations have a daily global coverage with a footprint of 13 km
along track and 24 km across track. Aerosol and gaseous column retrievals are available since October 2004.

There are three recent operational OMI NO2 retrievals available over East Asia domain. The NASA standard
product (Krotkov et al., 2017), Quality Assurance for Essential Climate Variables product (Boersma et al.,
2018), and Peking University OMI NO2 (POMINO) product (cover China and part of India; Liu et al.,
2019). In this study, we assimilate the NASA standard product OMNO2 (Level 2, Version 3) tropospheric
NO2 slant column density (Krotkov et al., 2017). It is retrieved based on measurement spectrum of 405–
465 nm (Boersma et al., 2011; Bucsela et al., 2013). Errors of the retrieved tropospheric NO2 column come
from the total slant column density (SCD), separation of the stratosphere and troposphere column concen-
trations, and calculation of the tropospheric air mass factor (AMF). We screen the data by the criteria of posi-
tive tropospheric column, cloud fraction <0.2, solar zenith angle <75°, and viewing zenith angle <65°. The
bias introduced by only using positive NO2 column density is small, as described in Qu et al. (2017). We
further filter the observations using retrieval quality flags and exclude data with row anomalies (http://pro-
jects.knmi.nl/omi/research/product/rowanomaly‐background.php).

We use the Royal Belgian Institute for Space Aeronomy (BIRA) SO2 Level 2 product in this study (Theys
et al., 2015). The choice of this product comes from the availability of scattering weight and better consis-
tency in SO2 trend evaluated with surface measurement over East Asia (Qu et al., 2019). The BIRA product
is retrieved using the Differential Optical Absorption Spectroscopy technique (Platt & Stutz, 2008) for the
312–326 nm wavelengths. Given the focus of this study on anthropogenic SO2 emissions, we only employ
tropospheric SO2 VCDs smaller than 5 Dobson unit (DU) to exclude cases of transient volcanic SO2, follow-
ing Lu et al. (2013). Only footprints with cloud fraction less than 0.2 are used for the inversion. Data affected
by row anomaly and with SZA larger than 65° are excluded through screening of quality flags.

2.3. In Situ Measurements

To evaluate simulated surface layer pollutant concentration over China, we use daily SO2 and NO2 surface
measurements from the China National Environmental Monitoring Center from 2005 to 2012. There are
1,118 sites, all of which are managed by local governments in China, with different vendors and calibrations.
However, not all of these sites have NO2 or SO2 measurement at every month during the studied period. For
the NO2 measurement, NOy compounds are converted to NO and measured by chemiluminescence analy-
zer. Therefore, the reported NO2 concentrations are generally biased high, yet the portion of converted
NOz is variable at different locations and seasons.

Surface measurements of NOx and SO2 in India are from Central Pollution Control Board (CPCB) performed
by India's Ministry of Environment, Forest and Climate Change. The measurement methods at different
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sites can be different depending on the laboratory conducting the measurements, but interlaboratory com-
parison are conducted using Ring Test Facility (http://www.cpcb.nic.in/newitems/7.pdf). We use hourly
averaged measurements in 2010 from ~20 sites. Since most of these sites do not have long‐term measure-
ments covering our entire period of study, we choose not to evaluate the trend of surface SO2 concentration
with measurements because that may only reflect spatial differences in SO2 concentration.

3. Joint Inversion Methods
3.1. 4D‐Var Joint Inversion
3.1.1. Updates of 4D‐Var Framework for Joint Inversion
We assimilate NO2 and SO2 SCDs from OMI retrievals following Qu et al. (2017) and Qu et al. (2019), where
scattering weights are applied to convert both OMI and simulated vertical column densities to slant column
densities. We use an assimilation window of one month for both NO2 and SO2 observations. The 4D‐Var fra-
mework is updated to simultaneously assimilate NO2 and SO2 observations and constrain both surface NOx

emissions, EN(i,j), and surface SO2 emissions, ES(i,j) at each grid cell with longitude index i and latitude
index j. Any errors in lightning NOx are compensated by adjusting surface NOx emissions, which could intro-
duce an additional source of uncertainty in interpreting posterior emissions trends as indicative of anthro-
pogenic activity or in comparison to other bottom‐up anthropogenic inventories. The linear emission
scaling factors for NOx and SO2 are defined as

σN i; jð Þ ¼ EN i; jð Þ
EaN i; jð Þ (1)

and

σS i; jð Þ ¼ ES i; jð Þ
EaS i; jð Þ (2)

where EaN(i,j) and EaS(i,j) are prior emissions for NOx and SO2. The cost function

J σNσSð Þ ¼ 1
2
α∑cS∈Ω HcS−SCDobsS

� �T
S−1obsS HcS−SCDobsS

� �
þ 1
2
∑cN∈Ω HcN−SCDobsNð ÞTS−1obsN HcN−SCDobsNð Þ þ 1

2
γr σS−σaSð ÞTS−1aS σS−σaSð Þ

þ 1
2
γr σN−σaNð ÞTS−1aN σN−σaNð Þ (3)

measures the error weighted departure of NOx and SO2 emission scaling factors (σN and σS respectively)
from their prior estimates (σaN and σaS, all elements equal to 1) known as “parameter error”, and the
sum of uncertainty weighted squared error between model and observations (“prediction error”) over time
and the simulation domain.H is an observation operator that maps species concentrations of NO2 (cN) and
SO2 (cS) to observation space to be comparable with satellite NO2 (SCDobsN) and SO2 (SCDobsS) slant
columns. To help mitigate the presence of unrealistic negative SO2 column densities and avoid introducing
bias into the system by simply filtering these out, we averaged OMI (SCDobsS) and GEOS‐Chem (HcS )
SO2 SCDs overpassing each grid cell over each month following Qu et al. (2019) and use these monthly

averages (SCDobsS and HcS ) in the cost function. Calculations of monthly mean observation error covar-
iance matrices also follow Qu et al. (2019). Monthly averaging is not needed for NO2 because less than 5%
of the NO2 retrievals are negative, and these are simply excluded from the assimilation. SaN and SaS are
the error covariance matrices of NOx and SO2 emission scaling factors, respectively. A constant fractional
error of 0.4 is used for all diagonal elements in these two matrices based on Li, Zhang, et al. (2017) and is
further adjusted as described in the next paragraph. Use of the same uncertainty in all grid cells is an approx-
imation owing to lack of readily available detailed emission uncertainty information. Imperfect error esti-
mates could cause uncertainties in the magnitude of the emission changes relative to the prior. Major
sources of anthropogenic SO2 emissions are power plants, which are estimated for each generation unit
using unit specific parameters (Li, Zhang, et al., 2017). Therefore, emission errors from these point

10.1029/2018JD030240Journal of Geophysical Research: Atmospheres

QU ET AL. 8206

http://www.cpcb.nic.in/newitems/7.pdf


sources are not spatially correlated at the 0.5° × 0.667° resolution. NOx

emissions mainly come from transportation, inventories of which use
county‐level emission factors and provincial‐level technology distribu-
tion, whose errors are spatially correlated. We therefore assume indepen-
dent emission errors for SO2 and exponentially decaying error correlation
for NOx with a decay distance of 150 km. SobsN and SobsS are diagonal
error covariance matrices of NO2 and SO2 observations, respectively.
Each of their diagonal elements is the sum of a relative error of the corre-
sponding footprint provided in the retrievals and an absolute error of the
product of 0.35 DU and AMF for SO2 and 1 × 1015 molecules/cm2 for NO2.

More details of the error covariance matrices are discussed in Qu et al. (2017) for NO2 and Qu et al. (2019) for
SO2. Ω is the domain (in time and space) where observations and model simulations are available.

The linear addition of two species parameter and prediction error here assumes the emissions and observa-
tions errors are uncorrelated. In order to weight NO2 and SO2 prediction error equally in the cost function,
we scale the SO2 prediction error by α, which is the ratio of the number of NO2 and effective SO2 observa-
tions (i.e., number of grid cell that have SO2 observations). The impact of α is further discussed in
section 4.1. A regularization parameter, γr, is used to adjust the magnitude of the parameter errors, and its
value is determined using an L‐curve test (Hansen, 1999) and minimization of the total error (Henze
et al., 2009). Based on test results conducted for January 2010 (Figure S1), we choose a γr value of 50. For
other months in 2010, γr values are adjusted based on the effective number of observations (α × number
of SO2 observations + number of NO2 observations). These values are shown in Table S1.
3.1.2. Evaluation of Joint 4D‐Var Inversion Using Pseudo Observation Test
We design an inverse problem with known emission solution to evaluate the performance of the joint 4D‐
Var inversion system. Bottom‐up emission inventories described in section 2.1 are used to generate hourly
NO2 and SO2 column densities within 30min of OMI overpass time using GEOS‐Chem. Random noises with
mean of 1 and standard deviation of 0.2 (calculated based on monthly mean OMI NO2 error for January
2010) and mean of 1 and standard deviation of 0.3 (based on monthly mean OMI SO2 error for January
2010) are applied to each NO2 and SO2 pseudo observations.

We design two cases to evaluate the inversion performance when bottom‐up emissions are biased high or
low: (a) both SO2 and NOx emissions across the entire model domain are scaled to 0.5 times the true emis-
sions with normally distributed random noise N(1,0.1) (only using values between 0.6 and 1.4) applied to
SO2 and spatially correlated emission noise N(1,0.1) (only using values between 0.6 and 1.4) to NOx emis-
sions (referred to as “σa = 0.5” case); (b) both SO2 and NOx emissions are scaled to 1.5 times the true emis-
sions and the same noise as in the σa= 0.5 case are applied (“σa= 1.5” case). Spatially correlated noise is only
applied to NOx emissions but not SO2 emissions in order to mimic emission error correlations in the real
case, as described in section 3.1.1. We use a standard deviation of 0.1, instead of 0.4 as specified in the prior
emission error covariance matrix, because the equivalent error of bottom‐up emissions is 0.057 after adjust-
ing by γr, and we find that when the random noise in the emissions are too large, the inversion hardly
improves the emission estimates. More details of the pseudo observation setup are provided in section S1
in the supporting information. The pseudo observations are then used to optimize the prior emissions using
the 4D‐Var method. We evaluate the performance of the inversion by comparing the posterior emissions
with the true emissions. In the σa = 0.5 case, the normalized mean square error (NMSE) of NOx (SO2) has
reduced by 63.6% (82.9%) and normalized mean bias (NMB) of NOx (SO2) has reduced by 24.0% (40.7%) after
the joint inversion; in the σa = 1.5 case, the NMSE of NOx (SO2) has reduced by 73.0% (34.8%) and the NMB
of NOx (SO2) has reduced by 39.0% (70.4%).

Themagnitude of observation noise also affects the joint 4D‐Var performance. In Table 1, the ratio of joint to
single species posterior SO2 (NOx) NMSE and NMB decrease when the observation noise of SO2 (NO2)
increases, demonstrating the accuracy of the joint posterior increases as observation noise of the optimized
species increase (although the NOx NMSE in the joint inversion is persistently higher than that of the single
species inversion, possibly owing to the higher uncertainties in SO2 observations compared to NO2 observa-
tions). This improved performance of joint inversion benefits from incorporation of the other species obser-
vations. More comparisons of joint 4D‐Var with other posteriors are in section 3.4.

Table 1
Ratio of NMSE and NMB of Posteriors From Joint to Single Species Inversion
Constrained by Pseudo Observations With Different Standard Deviations

Variable Value

NO2 pseudo observation standard deviation 0.2 0.2 0.3 0.5
SO2 pseudo observation standard deviation 0.3 0.5 0.2 0.2
SO2 NMSE of joint/SO2 NMSE of single 0.80 0.44
NOx NMSE of joint/NOx NMSE of single 1.54 1.21
SO2 NMB of joint/SO2 NMB of single 0.91 0.80
NOx NMB of joint/NOx NMB of single 1.00 0.99
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3.2. Mass Balance Joint Inversion
3.2.1. Joint Mass Balance Framework
Themass balance approachwas originally proposed to estimate single species top‐down emissions by scaling
the prior emissions using the ratio of observed and simulated column density based on a zeroth order Taylor
expansion (Martin, Jacob, Chance et al., 2003). A finite difference mass balance was then put forward by
Lamsal et al. (2011) and Cooper et al. (2017) to estimate changes in NOx emissions using a first order
Taylor expansion. We extend this finite difference mass balance to multiple species in order to simulta-
neously estimate NOx and SO2 emissions using NO2 and SO2 observations, as derived below.

For any grid cell (i,j), the NO2 slant column density (SCDN(i,j)) is affected by NOx emission (EN(i,j)) and SO2

(ES(i,j)) emission, and similar for SO2 slant column (SCDS(i,j)). We define slant column density matrix as

SCD i; jð Þ ¼ SCDN i; jð Þ
SCDS i; jð Þ

� �
(4)

and prior slant column density

SCDa i; jð Þ ¼ SCDaN i; jð Þ
SCDaS i; jð Þ

� �
(5)

where SCDaN(i,j) and SCDaS(i,j) are prior slant column densities for NO2 and SO2. Top‐down and prior emis-
sions are expressed as

E i; jð Þ ¼ EN i; jð Þ
ES i; jð Þ

� �
(6)

Ea i; jð Þ ¼ EaN i; jð Þ
EaS i; jð Þ

� �
(7)

where EaN(i,j) and EaS(i,j) are prior emissions for NOx and SO2, respectively. Sensitivities of NO2 and SO2

SCDs to emissions are expressed as

βNN i; jð Þ ¼ ∂SCDN i; jð Þ
∂EN i; jð Þ (8)

βNS i; jð Þ ¼ ∂SCDN i; jð Þ
∂ES i; jð Þ (9)

βSN i; jð Þ ¼ ∂SCDS i; jð Þ
∂EN i; jð Þ (10)

βSS i; jð Þ ¼ ∂SCDS i; jð Þ
∂ES i; jð Þ (11)

The Jacobian matrix is defined as

B i; jð Þ ¼ βNN i; jð Þ βNS i; jð Þ
βSN i; jð Þ βSS i; jð Þ

� �
¼

∂SCDN i;jð Þ
∂EN i;jð Þ

∂SCDN i;jð Þ
∂ES i;jð Þ

∂SCDS i;jð Þ
∂EN i;jð Þ

∂SCDS i;jð Þ
∂ES i;jð Þ

" #
(12)

A first order Taylor expansion of SCD around prior model simulated NO2 and SO2 slant columns is

SCD i; jð Þ ≈ SCDa i; jð Þ þ B i; jð Þ E i; jð Þ−Ea i; jð Þð Þ (13)

An expression for the top‐down emissions is thus

E i; jð Þ ¼ B i; jð Þ−1 SCD i; jð Þ−SCDa i; jð Þ þ B i; jð ÞEa i; jð Þð Þ (14)
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We use OMI NO2 and SO2 observations for SCD(i,j) and then weight top‐
down (E(i,j)) and prior (Ea(i,j)) emissions for each species usingmaximum
likelihood estimation as derived in Qu et al. (2017). Following Qu et al.
(2017), uncertainties of 0.2 and 0.3 for all grid cells are calculated by aver-
aging NO2 and SO2 observation errors over a month and are used in the
weighting. The partial derivativesB are calculated using the central differ-
ence finite differencemethod with 10% perturbation to NOx and SO2 emis-
sions. When calculating the mass balance emission scaling factors for our
simulation, we ignore the buffer region (the first three grid columns along
each horizontal side) within which species concentrations are overwritten
by those from the 4° × 5° simulations.

3.2.2. Evaluation Using Pseudo Observation Test
The same prior emissions and pseudo observations in 3.1.2 are used to test the performance of the joint mass
balance inversion. In Table 2, we compare the NMSE and NMB of the true NOx and SO2 emissions with the
prior, mass balance (MB) posterior, and joint mass balance posteriors for the σa = 0.5 case in January 2010.
Posterior NOx and SO2 emissions have reduced bias (by 20.5–40.0%) and error (by 52.8–66.7%) using both
methods. Joint mass balance posteriors have smaller error (by 8.1% for NOx and 14.4% for SO2) and bias
(by 6.9% for NOx and 8.5% for SO2) than single species mass balance. The comparison for the σa = 1.5 case
is shown in Table S2, for which joint mass balance have similar performance (difference in NMSE and NMB
less than 2%) with mass balance.

The limited improvement of NMB comes from the constraints from prior estimates in the mass balance.
Without this constraint, the total NMB would have reduced to −33.36% for MB and −21.36% for Joint
MB. Cooper et al. (2017) found NME reduce by 35.6% and 47.1%, respectively, without prior constraints in
January when performing pseudo NOx inversion test (hourly pseudo observations are generated using a dif-
ferent fossil fuel inventory) at a coarser resolution (2° × 2.5° and 4° × 5°). For comparison, our NME for pos-
terior NOx emissions from the single species mass balance have decreased by 52.3% without
prior constraints.

3.3. The Role of Chemistry in the Joint Inversion

To study the reasons for the improved performance in the joint inversion, we first look at changes in NOx,
SO2, O3, and OH concentrations when uniformly decreasing NOx and SO2 emissions by 30% at all grid cells
in the domain. In Figure 1, when only decreasing NOx emissions, O3 concentrations increase in populated
areas (NOx saturation regime). OH concentrations increase in the North China Plain (NCP), where

Table 2
Error and Bias in NOx and SO2 Emissions When σa = 0.5

Emission
types

NMSE NMB

NOx SO2 Total NOx SO2 Total

Prior 3.42 4.28 5.48 −50.47% −49.93% −100.40%
MB 1.24 2.02 2.37 −33.82% −39.70% −73.52%
Joint MB 1.14 1.73 2.07 −31.47% −36.33% −67.80%

Note. NMSE = normalized mean square error; NMB= normalized mean
bias; MB =mass balance.

Figure 1. Percent changes of O3, OH and SO2 (NOx) surface concentration after decreasing NOx (SO2) emissions by 30%
in January 2010.
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populations and thus NOx emissions are especially high. HO2 is therefore converted to OH through NO in
these regions. OH decreases in the rest of the domain, where NO emissions are lower and OH is possibly con-
verted to HO2 by carbon monoxide (CO) and volatile organic compounds, leading to increases of SO2 con-
centrations. In urban areas, only small increases or even decreases of SO2 occur, due to increases of OH.
Changes in O3 andOH concentrations after decreasing SO2 emissions are about five times smaller than those
after decreasing NOx emissions. Decrease of SO2 leads to increase of OH through gas phase oxidation in most
regions of China other than Yunnan, Beijing, Shandong, Hebei, and Henan. Increase of OH leads to increase
of HO2 and O3 concentration in Southeast China and India, but a decrease of O3 in the NCP.

In 4D‐Var, these chemical interactions are accounted for within the gradients calculated by the adjoint
model. In mass balance, β values approximate the first order sensitivity of NO2 and SO2 columns to emis-
sions. Negative βSN values mostly appear in remote regions (e.g., Tibet Plateau), where increase of NOx leads
to increase of OH and decrease of SO2 concentration. 81% of βNS over China and India are positive, reflecting
decrease of OH after increasing SO2 emissions, which reduces oxidation of NO2. Sensitivities of NO2 and SO2

columns to emissions are different from sensitivities of surface layer concentrations due to different concen-
trations at each layer and impact of vertical mixing andmeteorology. Calkins et al. (2016) also showed that in
winters over China, columnar SO2 change is a better indicator of SO2 emission change than surface SO2

because of meteorological impacts.

3.4. Method Intercomparisons

We compare the performance of 4D‐Var and mass balance inversions by evaluating the total (NOx + SO2)
NMSE of the posterior emissions when compared to the true emissions. In Figure 2, blue bars show the
decreases of NMSE when assimilating both NO2 and SO2 observations and optimizing NOx and SO2 emis-
sions over China in the σa = 0.5 case. Joint 4D‐Var posteriors have larger decreases of NMSE (by 15.1% on
left panel and 5.4% on right panel) than joint mass balance posteriors. Orange bars sum up errors of two sin-
gle species inversion—one assimilates NO2 and optimizes NOx emission and the other assimilates and opti-
mizes SO2. When using the same inversion setup as in section 3.1.2 (left panel), the joint mass balance has a
larger decrease of error by 5.64% than summing up decreases from the separate single species mass balance
inversions. However, the joint 4D‐Var has 4.18% less error reductions than the sum of two single species 4D‐
Var inversions. This degraded performance of the joint 4D‐Var compared to single species 4D‐Var is caused
by the large noise in observations and prior emissions. In a separate test with SO2 observation error reduced
to 20% and zero noise in the prior emissions (first two bars in the right panel), the joint 4D‐Var decreases
NMSE by 12.3% more than summing up two single species 4D‐Var inversions. This suggests that

Figure 2. Decrease of normalized mean square error (NMSE) for the σa = 0.5 case over China for the following scenarios:
joint 4D‐Var inversion (VarJ), sum of error reductions of two individual 4D‐Var inversions (VarI), joint mass balance
inversion (MBJ), sum of error reductions of two individual mass balance inversion (MBI), assimilate both species but only
optimize SO2 emissions using 4D‐Var (OptS), assimilate both species but only optimize NOx emissions using 4D‐Var
(OptN), assimilate only SO2 but optimize both species emissions using 4D‐Var (ObsS), assimilate only NO2 but optimize
both species emissions using 4D‐Var (ObsN). Sum of errors are added in quadrature. The left panel uses random noise
with standard deviation of 0.2 for NO2 and 0.3 for SO2 when generating pseudo observations, whereas the right panel uses
0.2 for both NO2 and SO2. The same prior emission random noise as in section 3.1.2 is also applied to inversions in the left
panel but not in the right one.
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including observations with large uncertainties would possibly degrade the overall performance of the
joint inversion.

The decrease of NMSE when using both observations and optimizing both species (first four bars) are larger
than observing both species but only optimizing single species (5th and 6th bars), and larger than observing
single species but optimizing both species emissions (7th and 8th bars). Since joint 4D‐Var and joint mass
balance inversions (the two blue bars) have better performance than other scenarios when observation
errors are small, we combine these two in our hybrid joint 4D‐Var/mass balance framework to derive
long‐term posterior NOx and SO2 emissions.

3.5. Hybrid Joint Inversion

The hybrid 4D‐Var/mass balance approach was first derived to facilitate long‐term NOx inversions (Qu et al.,
2017). In a base year, 4D‐Var is applied to rigorously trace prediction error back to sources and identify emis-
sions corrections. This 4D‐Var posterior emission inventory is then used as the prior inventory for mass bal-
ance inversions in other years. This approach is adopted as the 4D‐Var approach is too computationally
expensive to be applied in all years, compared to the mass balance inversion, which is about 20 times faster
per year. We perform pseudo observation tests in January of each year from 2005 to 2012 to evaluate the per-
formance of this hybrid inversion to recover emission trends. We first perform joint 4D‐Var inversions for
January 2010. The posterior NOx and SO2 emissions in the base year are then used to simulate NO2 and
SO2 columns in January of other years (2005–2012). We then apply the joint mass balance derived in
section 3.2 to recover the emission trend for both NOx and SO2.

For these pseudo observation tests of the hybrid joint inversion, the true NOx and SO2 emissions have a 10%
annual growth rates compared to 2010. All anthropogenic prior emissions have a 50% low bias compared to
2010 levels and also include random noise (same standard deviations as in section 3.1.2). Therefore, the
NMSE in the prior emissions is increasing from 2005 to 2012 (Figure 3). In the first three years, the NMSE
in both the prior and posteriors are small and differences among posteriors are trivial. From 2008 and after,
the hybrid posterior has smaller NMSE (by 41–64%) than applying mass balance alone; NMSE in the joint
NOx and SO2 posteriors are 3–12% and 0–18% smaller than posteriors from single species inversion.
Although the percent decrease of NMSE in the posterior compared to that in prior are similar (80–86% for
single and joint hybrid NOx, 57–76% for single and joint mass balance NOx, 74–81% for single and joint
hybrid SO2, and 27–60% for single and joint mass balance SO2), the absolute NMSE values in the posteriors
increase each year. This can be attributed to restriction of posterior emission to their prior values in this
Bayesian analysis, the impact of meteorology leading to opposite trends in column concentrations from
the true emissions, and differences in observation density and quality throughout the period (Qu et al.,
2017). Similar comparisons for NMB over the 8 years are shown in Figure S2.

We generate pseudo observations using the same chemical transport model as the one we use to perform the
inversion, which implicitly neglects uncertainties in chemistry and transport and thus reflects “best case”
scenarios. When using real OMI observations in the inversion, inaccuracies in modeled transport and

Figure 3. Normalized mean square error (NMSE) of SO2 (left) and NOx (right) emissions when compared to their true
emissions over China for January, 2005 to 2012 (σa = 0.5). The true emissions have a 10% annual growth rate of
anthropogenic emissions compared to 2010. The 2010 anthropogenic emissions with 50% low bias are used as prior
emissions for all 8 years. Nonanthropogenic emissions from bottom‐up inventories are used for corresponding years in
both prior and true emissions.

10.1029/2018JD030240Journal of Geophysical Research: Atmospheres

QU ET AL. 8211



chemistry can increase uncertainties in the posterior emissions. Therefore, reductions in NMSE and NMB in
emissions using real satellite observations are expected to be smaller than those reported here.

4. Joint Inversion With OMI Observations

In this section, we use OMI NO2 and SO2 retrievals and the hybrid joint inversion method to derive posterior
emissions for East Asia. Given the large uncertainties in OMI SO2 retrievals in countries other than China
and India (Qu et al., 2019), we only focus on emissions in these two countries. We start with evaluating
4D‐Var performance in 2010 and then apply the hybrid method to study the trends of these two pollutants
from 2005 to 2012.

4.1. 4D‐Var Inversion in 2010

One challenge of the joint 4D‐Var inversion is to balance the contribution of observation terms for different
species in the cost function. A hypothesis being tested in this work is that jointly assimilating these species
has synergistic impacts and thus giving equal weight to their observations is by design. While a break from a
strict Bayesian derivation of the cost function, we subjectively here aim to weight the contributions of NO2

and SO2 observations equally in our inversion, even though current measurement capabilities do not natu-
rally provide a balanced view of these two species; otherwise, assimilation of SO2 does very little to impact
the inversion when assimilating NO2 unless we were to perform many more iterations of the optimization
algorithm than is computationally feasible, as the inversion will first only correct for the terms that make
the largest contributions to the cost function. To accomplish this, we use the ratio of number of observations
of NO2 to SO2 (α, shown in Table S1) to scale the observation terms in the cost function and check the reduc-
tion of NO2 and SO2 prediction error in Table 3. SO2 prediction errors have generally larger reductions than
those of NO2, especially during spring, summer and autumn when SO2 observation errors are smaller than
1016 molec/cm2 (red solid line in Figure 4). The domain‐wide and nation‐wide summer peak of absolute NO2

observation errors in the NASA standard product are mainly caused by the larger absolute uncertainties in
the summer in remote regions, although in major economic regions NO2 absolute uncertainties have winter

peaks in the NASA standard product. The larger absolute NO2 uncertain-
ties in the remote regions lead to smaller constraints on NOx emissions in
these locations in the summer. However, the seasonalities of absolute NO2

uncertainties in the product used in this study may be different from those
of other products. For instance, Boersma et al. (2018) show a winter peak
of OMI NO2 uncertainties over China. Monthly variations in the magni-
tude of the cost function reduction for each species are related to balance
of observation and parameter errors. These balances all involve uncertain-
ties in prior emissions and observations, which are not considered when
we scale α and γr using the number of observations. However, the relative
changes of these two terms are of the samemagnitude, suggesting that the
weighting strategy using α still helps balance the role of the two species in
the optimization.

The equivalent prior error after scaling by γr is 5.7%. This suggests that in
regions where emissions most directly impact the cost function, a 40%
uncertainty estimate may be too large. In January 2010, 99.4% (single

Table 3
Cost function Reductions in NO2 and SO2 Observation Terms in 4D‐Var Inversions in 2010, Reported as the Percent
Difference of the Species‐Specific Prediction Error Terms in the First and Converged Iteration

January February March April May June

SO2 (%) 41.7 48.5 47.6 82.5 19.8 20.1
NO2 (%) 21.9 40.0 31.3 12.8 8.6 5.9

July August September October November December

SO2 (%) 6.9 10.7 15.4 19.5 31.0 24.8
NO2 (%) 3.1 5.1 8.8 9.4 16.5 17.2

Figure 4. Monthly mean uncertainties in Ozone Monitoring Instrument
NO2 (blue) and SO2 (red) observations over the entire East Asia domain
(solid line), over China (dotted line), and over India (dashed line) in 2010.
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species inversion) and 91.4% (joint inversion) of SO2 scaling factors and 94.9% (single species inversion) and
96.1% (joint inversion) of NOx scaling factors change less than three times the standard deviation (5.7%),
consistent with the relationship between standard deviation and data coverage in a normal distribution.

Changes in emissions when assimilating NO2 and SO2 individually and jointly are shown in Figure 5.
Incorporation of NO2 observations leads to up to a 242% increase of SO2 emissions over NCP, Guizhou
Province, and South Korea (first row). Posterior NOx emissions from the joint inversion also increase in
the NCP by up to 49%. These increases in the joint posterior SO2 and NOx emissions happen in regions where
prior SO2 simulations are lower than OMI observations, as shown in Figure 6. In these high‐NOx regions,
increases of NOx emissions leads to decreases of OH and increases of SO2 concentration to match OMI
SO2 observations.

Joint posterior SO2 emissions also decrease by up to 99% more than single species posterior in India and
Sichuan, Henan, and Hubei Province of China. In remote regions, increase of NOx leads to increase of
OH, which decreases SO2 column. Therefore, NOx emissions increase in most rural areas in India, and

Henan and Hubei provinces in China to match the lower OMI SO2 col-
umn than prior model simulation (Figure 6).

Posterior SO2 emissions barely change in countries other than China and
India in single species inversion (Qu et al., 2019) and also in this joint
inversion (less than 4%). Therefore, we focus only on these two countries
in this work. Seasonalities of 4D‐Var posteriors and bottom‐up emissions
in China and India are compared in Figure 7. In China, the joint SO2 pos-
terior has larger seasonal variation than the single species posterior. The
annual budgets of SO2 emissions in China decrease from 12.4 Tg S in
the prior to 11.8 Tg S (single species) and 11.6 Tg S (joint) in the posteriors.
In India, both single species and joint posterior SO2 emissions have simi-
lar seasonality, which is different from the prior. The annual budget of
posterior SO2 emissions in India is 3.2 Tg S (single species) and 2.5 Tg S
(joint), which also decreases compared to the prior (4.4 Tg S). The season-
ality of NOx emissions does not change significantly in China and India.
The annual budgets of NOx emissions are 1–3% larger in the joint poster-
ior (China 7.9 Tg N; India 3.3 Tg N) than the single species posterior
(China 7.8 Tg N; India 3.2 Tg N), and both are within 4% of the prior
(China 8.1 Tg N; India 3.3 Tg N).

Figure 5. Difference of posterior and prior emissions when assimilating NO2 and SO2 observations individually (left col-
umn) and jointly (center column) and differences in posteriors from joint and single species inversions (right column), all
for January 2010.

Figure 6. Differences in GEOS‐Chem simulation (using prior emissions)
and Ozone Monitoring Instrument SO2 slant column density in January
2010.
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The error weighted difference between predicted and simulated NO2 and SO2 slant columns (forcing term) is
lower in the summer than in the winter, which therefore leads to smaller reductions of the cost function in
the summer. The largest reduction of NO2 forcing in the posterior simulation occurs mostly in eastern China
and northern India. Monthly mean reductions of NO2 forcing in the posterior simulation over the entire
domain go up to 14.6% in 2010. The largest SO2 forcings are in India, which are mainly positive in the prior
simulation. Over China, prior SO2 forcing is mostly negative over North China plain and positive in the rest
of the regions. The largest reductions of SO2 forcing are over all of India and the eastern part of China.
Monthly SO2 forcings have reduced by up to 29.6% in the posterior in the entire domain. The mismatch of
the posterior simulation and observations are caused by prior constraints and observation errors.

The posterior NOx and SO2 concentrations are generally larger over the North China Plain but smaller over
the rest of the region (Figure 8). Changes in O3 and OH concentration in the joint posterior simulation
(Figure 8) are generally in the same direction. Monthly changes of surface O3 concentrations are between
−35.6% and 142.7%; changes of OH concentrations are between−25.7% and 100.8%. Their changes are larger
in the fall and the winter than in the spring and summer. Changes in CO concentrations are within 1%.
Changes of surface O3 and OH concentration in the joint inversion are mainly driven by changes in NOx

emissions. If only optimizing SO2 emissions using SO2 observations, monthly changes in surface O3 concen-
trations are less than 1.1 ppbv and lead to increases of OH concentration (within 21%) in India and
south China.

4.2. Trends of NOx and SO2 Emissions

The hybrid joint inversion method is applied to recover the trend of NOx and SO2 emissions in China and
India. The spatial distribution of emission changes using the single‐species mass balance and joint mass bal-
ance approaches are shown in Figure S3. The higher joint posterior SO2 emissions in the NCP and lower
values in Henan and urban areas in India are consistent with the differences from 4D‐Var results
(Figure 5). The interannual variations of joint and single species posteriors are more similar than their spa-
tial distribution, as shown in Figure 9.

Figure 7. Seasonality of SO2 and NOx emissions in China (left) and India (right) for 2010 from 4D‐Var. OMI = Ozone
Monitoring Instrument.
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In Figure 9, we also evaluate the trend of the hybrid posterior emissions by comparing them with bottom‐up
emissions trends from Multi‐resolution Emission Inventory for China (MEIC) and Emissions Database for
Global Atmospheric Research (EDGAR) (v4.3.2). Posterior SO2 emissions in China start to decrease in 2008
and drop by 16.5% (joint) and 16.2% (single species) till 2009, an amount of decrease which is consistent with
the 11.8% decrease in the MEIC inventory, although MEIC SO2 starts to decrease in 2007 instead of 2008. This
decrease in SO2 emissions is not reflected in the EDGAR inventory (magenta line). On the other hand, poster-
ior SO2 emissions show qualitatively consistent increases with the EDGAR inventory in India. However, pos-
terior growth rates (18.7% for single and 19.2% for joint) are about a quarter of that in EDGAR (76.2%).

The turning points in the trends of posterior SO2 emissions in 2007, 2009, and 2011 in China are consistent
with top‐down estimates from Li, McLinden et al. (2017; bright yellow line in Figure 9) and Koukouli et al.
(2018; estimated over a different domain, not shown in Figure 9), although differences in the magnitude of
our posterior SO2 emissions are up to 29.6% compared with Li, McLinden, et al. (2017) and 33.7% compared
with Koukouli et al. (2018; emissions in this study are summed over 15–50°N and 102–132°E for this com-
parison). Our top‐down estimate of 884 Gg S (joint posterior) and 887 Gg S (single species posterior) in
China in April 2008 is 4.8% and 5.2% higher, respectively, than the 843 Gg S estimates in Wang et al.
(2016). The growth rate of top‐down SO2 emissions in India in this study is 77.4% lower than that in Li,
McLinden, et al. (2017). However, the analysis in Li, McLinden, et al. (2017) is based on trends in 47 large
point sources of SO2 emissions, whereas our trends are based on national total emissions. For comparison,
if we consider only grid cells that have emissions larger than 106 kg S per grid in the prior inventory, our pos-
terior SO2 growth rate would be 29.1% larger than the growth rate using all posterior emissions in India,
which would more closely agree with Li, McLinden, et al. (2017).

Figure 8. Changes of O3 and OH concentrations before and after jointly optimizing NOx and SO2 emissions in January, April, July, and October of 2010.
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NOx emissions in China increase from 2005 to 2011 by 24.9% (joint inversion) and 25.0% (single species
inversion) and decrease from 2011 to 2012 by 1.8% (joint) and 1.6% (single species). In comparison, the
MEIC and EDGAR bottom‐up inventories have larger growth (43.2% and 30.0%) from 2005 to 2011. Joint
NOx emissions' growth (15.9%) in India is 56.2% larger than that of single species posterior (10.2%) from
2005 to 2012, with nearly doubled growth rate from 2009 to 2012 (6.5% in joint one, 3.3% in single species
one), but both are smaller than the 59.9% growth in EDGAR inventory. The magnitude of posterior NOx

emissions from the single species inversion is 5.8–13.2% larger than the result from the same system in
Qu et al. (2017) due to use here of a different version of the OMI NO2 product (v2.1) and different cloud frac-
tion filtering criteria (correction factor, CF < 0.2 in this work but only CF = 0 is used in Qu et al., 2017).
Although the magnitude of posterior NOx emissions have good consistency with the MEIC inventory
(including natural sources, from GEOS‐Chem), especially after 2008, posterior NOx emissions are likely
underestimated due to the usage of spatially coarse prior information in the OMI retrievals, which lead to
systematic low bias in NO2 retrievals (Goldberg et al., 2018; Laughner et al., 2016). The omission of halogen
chemistry in the version of GEOS‐Chem used here possibly causes higher simulated troposphere NO2

burden than simulation with halogen reactions (e.g., about 4.2% in 2005 in Sherwen et al., 2016) and also
contributes to underestimates in posterior NOx emissions.

However, the annual budgets of top‐down NOx emissions from joint and single species inversions are higher
than four other top‐down estimates in Ding, Miyazaki, et al. (2017) by 12.1–82.9% (joint posterior) and 9.2–
76.8% (single species posterior). These emissions are derived using MIROC‐Chem, CHASER, and DECSO
chemical transport model based on ensemble Kalman filter and extended Kalman filter algorithms.
Posterior NOx emissions in this study have a peak in 2011 consistent with those from MIROC and
CHASER, and also consistent growth rate within the range of 22.7% to 28.7% from 2005 to 2011.

To compare the trend of hybrid joint posterior emissions and the trend of 4D‐Var joint posterior emissions,
we performed 4D‐Var inversion for each May from 2005 to 2012, since the trend in this month is most

Figure 9. Annual budget of NOx and SO2 emissions in China (left column) and India (right column). The magenta lines are
the sum of anthropogenic emissions from EDGAR v4.3.2 and natural emissions used in GEOS‐Chem; the green line is the
sum of anthropogenic emissions fromMEIC (Wang et al., 2018) and natural emissions. We also compare our emissions with
top‐down SO2 emissions from Li, McLinden, et al. (2017) shown in pink and four top‐down NOx emissions from Ding,
Miyazaki, et al. (2017), that is, MIROC model based on ensemble Kalman filter and Ozone Monitoring Instrument data
(yellow), CHASERmodel based on ensemble Kalman filter and OMI data (cyan), DECSOmodel based on extended Kalman
filter and OMI data (orange), and DECSO model based on extended Kalman filter and GOME data (purple).

10.1029/2018JD030240Journal of Geophysical Research: Atmospheres

QU ET AL. 8216



representative of the interannual variation of NOx and SO2 emissions in the hybrid posterior emissions.
While the sign of the changes in posterior emissions are mostly consistent between the two different
inversion methods, the magnitudes are slightly different. As shown in Figure S4, the changes in NOx

emissions are smaller in the 4D‐Var posteriors than in the hybrid posteriors; the opposite is generally
found for SO2. Consequently, the correlation coefficients between 4D‐Var and hybrid posterior emissions
are relatively higher (0.95 for NOx in China, 0.95 for SO2 in China, 0.69 for NOx in India, and 0.97 for SO2

in India), but the absolute differences between emission changes compared to 2005 level are slightly larger,
that is, within 10.6% for NOx in China, 10.9% for SO2 in China, 25.0% for NOx in India, and 20.7% for SO2

in India.

5. Evaluation With Surface Measurements
5.1. Surface Concentrations in China

We next evaluate the hybrid posterior emissions by comparing monthly mean GEOS‐Chem simulated con-
centrations with monthly mean surface measurements. The locations of measurements sites and compari-
sons to GEOS‐Chem prior and posterior simulations are shown in Figures S5 and S6. Posterior SO2

simulations have improved correlation with surface measurements in every month of 2010, and the joint
posterior emissions have the highest correlation in 9 months of the year (top right panel of Figure 10).
The NMB and NMSE of the SO2 joint posterior reduced by up to 26% and 18% compared to single species
posterior in most months between November and February. These improvements are related to the relative
larger uncertainties in OMI SO2 retrievals in these fourmonths (Figure 4), when incorporation of NO2 obser-
vations helps improve SO2 emission estimates. This behavior is also corroborated by the pseudo observation
test in section 3.1.2, where the larger the noise in the SO2 observation, the better the performance of joint
inversion than SO2 single species inversion to improve SO2 emissions. On an annual basis, the NMSE of sur-
face SO2 concentration reduce from 0.77 (the prior) to 0.58 and 0.61 in the singe and joint posteriors, respec-
tively. Spatial distributions of annual mean SO2 concentrations in GEOS‐Chem and at monitoring sites are
compared in section S2. Joint posterior SO2 surface concentrations have smaller NMSEs over cities than

Figure 10. Monthly mean surface SO2 concentration and statistics of monthly mean SO2 sampled at locations of monitor-
ing sites in GEOS‐Chem simulations and surface measurements in 2010 from 608 sites, which have measurement
throughout the year. The magenta vertical error bars in the top left panel show the standard deviations of the surface
measurements. NMSE = normalized mean square error.
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simulations using the prior and single species posterior SO2 emissions. Over all provincial capitals in China,
the NMSE of the annual mean surface SO2 concentration reduces from 0.66 to 0.40 (single posterior) and
0.36 (joint posterior); over provincial capitals in East China, the NMSE reduces from 0.30 to 0.19 (single pos-
terior) and 0.15 (joint posterior).

The NO2 measurement techniques employed in China's monitoring sites detect NO concentration after con-
verting NO2 and some unknown fraction of NOz to NO.We compare monthly GEOS‐Chem surface NOx and
NO2 concentration with reported NO2 from the monitoring sites in Figure S7, where simulated NO2 are
mostly biased low and simulated NOxmostly biased high. Following Lamsal et al. (2008), we use a correction
factor to account for the interference in the NO2 measurements by the molybdenum converter. Given that
we have three sets of model simulations using prior, hybrid single posterior and hybrid joint posterior emis-
sions, we calculated the correction factor for each GEOS‐Chem simulation and divided the simulated NO2

concentrations by the corresponding correction factor to convert simulated NO2 to the measured species.
The monthly mean correction factors are between 0.79 and 0.83 in 2010, and the annual mean correction
factors are between 0.83 and 0.85 from 2005 to 2012 in China.

Another factor contributing to the low bias in the simulations is the model resolution. As pointed out in
Valin et al. (2011), model simulations with resolution greater than 12 kmmay not accurately represent non-
linear effects of NO2 loss rates. Coarse resolution representation of large source of NO2 will be biased low due
to enhanced OH concentration. We therefore focus more on the seasonality and interannual variation
instead of the absolute magnitude of surface NO2 concentration when compared to measurements.

In Figure 11, surface measurements are higher than model simulations in all months. This can be caused by
the NOz contributions to the measurements and biases inherent in comparing model simulations at the 0.5°
× 0.667° resolution with point measurements (mostly in cities) for a short‐lived species. Still, the joint poster-
ior has reduced NMSE from May to October and reduced absolute value of NMB from May to September
compared to the single species posterior, corresponding to the months when OMI NO2 observations have
relatively larger error (Figure 4) and benefit from synergistic change of OH and O3 concentration in the
model by assimilating OMI SO2 observations. These conclusions from NOx and SO2 emissions constrained
by OMI observations are consistent with results from pseudo observation tests in sections 3.1.2 and 3.4.

Figure 11. Comparison of monthly mean surface NO2 concentration in GEOS‐Chem simulations sampled at locations of
monitoring sites with surface NO2 measurements from 614 sites in China, 2010. The magenta vertical error bars in the top
left panel show the standard deviations of the surface measurements. NMSE = normalized mean square error.
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Trends from 2005 to 2012 of surface SO2 and NO2 concentrations in China are similar in the joint and single
species posterior simulation (Figure 12). The average of surface NO2 and SO2 concentrations from 2005 to
2012 are lower in the simulations than the measurements, i.e., measured surface SO2 (NO2) is 44.6 μg/m3

(35.7 μg/m3), 41.0 μg/m3 (22.1 μg/m3) in the prior, 34.6 μg/m3 (21.9 μg/m3) in the joint posterior, and 34.9
μg/m3 (22.4 μg/m3) in the single species posterior. Surface SO2 concentrations decrease by 28.3% (in situ),
10.9% (joint) and 14.9% (single) over the period, consistent with the trend in SO2 emissions. The low biases
of simulated NO2 concentrations when compared with measurements are mainly from West China, where
posterior simulations are 53.0–63.5% lower than measurements. In comparison, simulated NO2 concentra-
tion in East China are 3.5–17.2% lower than measurements. Posterior surface NO2 concentration increase
by 19.3% (joint) and 19.8% (single) from 2005 to 2011 and decrease by 2.7% (joint) and 2.6% (single) from
2011 to 2012. The surface measurements only increase by 5.5% from 2005 to 2011, reflecting potential issues
with model deposition and vertical mixing or consistent measurements of NOz species across monitoring
sites. Still, all simulated surface NO2 and SO2 concentrations are within one standard deviation of surface
measurements. Percent changes of surface SO2 and NO2 concentration compared to 2010 are shown in
Figure S8.

To evaluate the trend of 4D‐Var and hybrid posterior simulations, we compare the simulated surface concen-
trations using posterior emissions in May of each year estimated from these two methods (described in the
last paragraph of section 4.2) with measurements in China. Compared with the changes in the measure-
ments from 2005 to 2012 (Figure S9, +11.0% for NO2 and −23.1% for SO2), the changes in 4D‐Var posterior
simulations (+22.2% for NO2 and −16.7% for SO2) are more consistent than the changes in hybrid posterior
simulations (+25.1% for NO2 and−2.7% for SO2). The 4D‐Var posterior simulations also have better correla-
tions (R= 0.79 for NO2 and R= 0.83 for SO2) with the surface measurements than the hybrid posterior simu-
lations (R = 0.78 for NO2 and R = 0.75 for SO2). However, the hybrid method facilitates long‐term emission
estimates to be calculated much more efficiently than the 4D‐Var approach, with the sacrifice of accuracy.

5.2. Surface Concentration in India

The number of NO2 and SO2monitoring sites fromCPCB in India is much less than in China. Most sites only
have data for a few years or months during the 2005–2012 period. Since the long‐term trend of these data
may only reflect spatial variability in SO2 concentrations across different locations where measurements
are available in different years instead of interannual variation, we only use SO2 concentrations in 2010
for the evaluation. Prior simulations of surface SO2 concentrations are higher than the measurements in
all months of 2010; posterior simulations have reduced bias and NMSE than the prior except for March to
July (Figure 13). Joint posterior surface SO2 concentrations are lower than single species posteriors by 10–
65% except for July. The large NMSE for the joint posterior results in June is caused by few measurements
in that month and the fact that the prior simulation of surface SO2 concentrations is lowest in this month.

Figure 12. Annual mean surface SO2 and NO2 concentration in China. There are 1,118 monitoring sites providing
measurements between 2005 and 2012, but only 272 (283) of them have SO2 (NO2) data in every month from 2005 to
2012. We only use sites that have data cover the whole period in the in situ trend calculation. Model simulations are
sampled at grid cell that has in situ measurements. The magenta vertical error bars are the standard deviations of the
surface measurements.

10.1029/2018JD030240Journal of Geophysical Research: Atmospheres

QU ET AL. 8219



The annual averages of simulated surface NO2 concentrations (Figure 14) are 65–67% (prior: 12.0 ppb, single
species posterior: 11.7 ppb, joint posterior: 11.5 ppb) smaller than the surface measurements (34.4 ppb). The
lower values of simulated NO2 concentrations are related to comparison of concentrations from the 0.5° ×
0.667° resolution model to only a single measurement site per grid cell, which may be located close to loca-
lized sources. In China, concentrations above 15 ppb are more widespread and thus the in situ measure-
ments appear to better represented by the model at this resolution.

6. Discussion and Conclusions

We combine the GEOS‐Chem adjoint 4D‐Var joint inversion framework
with a newly developed joint mass balance method to derive long‐term
NOx and SO2 emissions in East Asia using simultaneous observations of
NO2 and SO2 from OMI. In pseudo observation tests, this hybrid joint pos-
terior has a larger decrease of NMSE (5.4–11.5%) than using a joint mass
balance alone. Joint inversion has the potential to improve NOx and SO2

emission estimates through synergistic change of OH and O3 concentra-
tion; however, the inclusion of both NO2 and SO2 observations does not
always improve model performance when noises in observations and
prior emission are large. This impact from observation noise is further evi-
dent when comparing model simulations using posterior emissions with
surface measurement in China and India—the joint inversion posterior
has reduced NMSE for SO2 (NOx) in winter (summer) months when
uncertainties in SO2 (NO2) observations are large and benefit from the
inclusion of NO2 (SO2) observations.

Percentage changes of joint posterior emissions from the single species
posterior emissions from 4D‐Var and mass balance inversions range up
to 242% in January in individual grid cells. Still, annual emissions

Figure 13. Comparison of GEOS‐Chem surface SO2 concentration with surface measurement in India in 2010 (from 14
sites). Posterior emissions are from the hybrid inversion. The magenta vertical error bars in the top left panel are the
standard deviations of the surface measurements. The numbers inside the first panel stand for total number of daily
measurements from all sites in each month. NMSE = normalized mean square error.

Figure 14. Comparison of GEOS‐Chem simulations with surface NO2
measurements in India in 2010 (from 14 sites). Posterior emissions are
from the hybrid inversion. The magenta vertical error bars show the stan-
dard deviations of the surface measurements. The numbers inside the figure
stand for total number of daily measurements from all 14 sites in each
month.
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budget, seasonality, and interannual variations of joint and single species posterior emissions are similar. In
2010, posterior SO2 emissions in China (11.8 Tg S from single species and 11.6 Tg S from joint) and India (3.2
Tg S from single species and 2.5 Tg S from joint) are both lower than the prior (12.4 Tg S in China and 4.4 Tg S
in India); posterior NOx emissions also reduce or stay the same in China (single species 7.8 Tg N, joint 7.9 Tg
N) and India (single species 3.2 Tg N, joint 3.3 Tg N) than the prior (China 8.1 Tg N, India 3.3 Tg N). Joint
posterior SO2 emissions are lower and NOx are higher than single species posterior emissions, since NOx

emissions increase in NOx limited regions to help increase SO2 concentrations. The lower values in the pos-
terior than prior could be related to model resolution errors in representing NO2 and SO2 columns at the
satellite footprint scale (Valin et al., 2011) and the underestimates of NO2 peak column concentration due
to coarse resolution in the retrieval prior information (Goldberg et al., 2018). In China, NOx emissions peak
in summer due to increase of natural sources (Qu et al., 2017), whereas SO2 emissions peak in winter.
Posterior SO2 emissions peak in the summer in India, whereas NOx emissions peak in spring. Both joint
and single species SO2 posterior emissions decrease by 16.2% (single species) and 16.5% (joint) in China since
2008; NOx emissions increase by 25.0% (single species) and 24.9% (joint) up through 2011. NOx and SO2

emissions in India increase by 10.2–19.2% throughout the period. Hybrid posterior uncertainties are not esti-
mated because they depend upon uncertainties in the 4D‐Var posterior emissions in 2010 that require addi-
tional computations (beyond the scope of this work) to quantify (Bousserez et al., 2015). Instead, we consider
comparisons with other independent emission inventories and in situ measurements to provide evaluation
of the accuracy of our posterior emissions.

The trend of surface SO2 concentrations in the posterior simulations does not precisely track those of surface
measurements, suggesting possible errors in assimilated meteorology, modeled deposition, or inconsistent
measurement methods, which warrant further investigation. The seasonality of surface NOx concentrations
from joint posterior simulations has better correlation with surface measurements than those from the prior
or single species posterior simulations.

This study demonstrates the benefits of synergistic change of OH and O3 concentration when performing
emission inversions for rapidly oxidized species. However, only chemical interactions of NOx and SO2 are
incorporated in inversions. Correlations in emission errors of NOx and SO2 will be addressed in future work.
The performance of the joint inversion depends on the relative uncertainties of SO2 and NO2 observations,
which in theory would allow the data assimilation system to de‐emphasize the importance of highly uncer-
tain observations. However, precise quantifications of measurement uncertainties are not known.While this
paper focuses on improvements to just simulations of SO2 and NO2 concentrations, the impacts of the joint
SO2 and NO2 inversion on other species such as aerosols and O3 suggest that future studies may benefit from
expanded multispecies, multicomponent data assimilation. Works such as Miyazaki et al. (2017) have
included, beyond constraints on NOx emissions, direct assimilation of remotely sensed O3. HCHO assimila-
tion would also potentially change O3 concentrations (e.g., Hamer et al., 2015; Kaiser et al., 2018) and thus
help enforce consistent NOx and SO2 emissions; joint assimilation of AOD could also potentially improve
NOx and SO2 emission estimates, as suggested by previous studies wherein AOD assimilation leads to
improved agreement of model estimated trace gas concentrations with retrievals from OMI (Xu et al.,
2013). Retrievals from TROPOspheric Monitoring Instrument and future geostationary satellites (e.g.,
Geo‐stationary Environmental Monitoring Spectrometer, and Tropospheric Emissions: Monitoring of
Pollution, Sentinel 4) could provide a higher density of NO2 and SO2 observations to improve future joint
data assimilation.
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