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ARTICLE INFO ABSTRACT

Keywords: Much attention has been paid to develop methods to estimate particulate matter with an aerodynamic diameter

Aerosol optical depth of 2.5um or less (PM;s) from satellite aerosol optical depth (AOD). One of fundamental limitation of these

PMzs methods is lack of AOD and thereby PM; s cannot be derived from satellites when clouds are present or when

Sampling rate surface conditions are not favorable. This would probably result in an inherent clear-sky biased estimate of PM; 5

Data filling for air quality assessment that requires continuous 24-h measurements at all-sky conditions. Using the Moderate
Resolution Imaging Spectroradiometer (MODIS) AOD and PM; 5 data in North China, a highly polluted area with
large spatiotemporal variabilities of AOD and PM; s values, missing MODIS AOD retrievals and its potential
effect on PM; 5 estimation are studied. The MODIS dark target (DT) algorithm produces very few AODs in winter,
with a regional observation rate of 4%, which limits its statistical significance for PM; 5 air quality monitoring.
This limitation applies to MODIS DT AOD products at 10-km and 3-km resolutions since they are derived from
the same retrieval core (Remer et al., 2013). In contrast, The MODIS deep blue (DB) AOD product complements
the MODIS DT AOD coverage, which is remarkable in winter. The MODIS DT and DB merged product has
comparable accuracy to that of the DT and DB products but shows a larger sampling rate, therefore, it is more
suitable for estimating surface PM, 5. While the regional mean PM; 5 values in the presence and absence of AOD
retrievals in spring and summer are comparable, but the former is substantially lower than the latter in autumn
by 11.2 ugm ~ 2 and winter by 8.5 ugm 2 on average. The difference in some stations even exceeds 20 uygm ™3
Methods to fill missing AOD values in North China are crucial to provide an unbiased sampling and estimate of
PM, 5 concentration in all-sky conditions, likely by integrating satellite, surface and modeling data.

1. Introduction exposure to PM, s in such epidemiological studies is assessed using

surface level PM, s measurements. These measurements often lack

Ambient fine particulate matter with aerodynamic diameter
of < 2.5pum (PM; 5) shows the most consistent association with adverse
health outcomes and therefore is one of significant public health con-
cern (Pope and Dockery, 2006; Kloog et al., 2013; WHO, 2016). PM, 5 is
affecting more people worldwide than any other pollutants, especially
in developing world, for example, over 1.3 billion people suffer from
PM, 5 health risks in China (Cohen et al., 2017; Song et al., 2017).
Significant short-term positive associations of mortality with PM, 5 in
Xi'an and Beijing, two heavily polluted cities, were revealed (Cao et al.,
2012; Li et al., 2013). Obtaining accurate local PM, 5 concentrations
plays a central role in addressing this public health concern. Typically,

adequate spatial resolution to capture variability in the study popula-
tion exposure, although regional PM; 5 monitoring networks have been
established (Pui et al., 2014). Because satellite remote sensing has the
capacity to provide data with large spatial coverage, it holds promise
for adding spatial information for PM, 5 distribution and exposure
studies, particularly in suburban and rural areas far from monitors
(Engel-Cox et al., 2004).

Satellite retrieved aerosol optical depth (AOD: the column-in-
tegrated extinction) is a good surrogate for PM, s, while these two
parameters are not expected to be strictly correlated because the former
represents ambient column-integrated aerosol extinction and the latter
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represents dry particulate matter mass near surface (Hoff and
Christopher, 2009; Chudnovsky et al., 2013a,b). Satellite-based PM, g
estimation methods have been developed, varying from calibrating
AODs with only PM, 5 at ground monitoring stations (Lii et al., 2016) to
a hybrid approach incorporating AOD, land use and meteorological
variables to estimate PM, 5 (KloogKoutrakis et al., 2011; Chudnovsky
et al., 2013a,b; Liang et al., 2018; Zhang et al., 2018). Long-term ex-
posure assessment in North Carolina based on satellite-based PM, 5
estimations showed equivalent outcome to that of central site mon-
itored data (McGuinn et al., 2018). One of causes for this unexpected
result was likely associated with potential PM, 5 estimation errors. Note
that satellite derived PM, 5 is highly dependent on the amount of AOD
retrievals. AOD is required not only for the development of AOD-PM, 5
relationship since it shows large spatiotemporal variabilities, but also
for its application (Chudnovsky et al., 2013a; b). AOD is only probably
retrieved under cloudless sky conditions. As a matter of fact, snow cover
or misclassification of a heavy aerosol layer into clouds can result in
AOD unavailable even under clear-sky conditions. Satellite AOD sam-
pling rate shows a large spatiotemporal variabilities that highly de-
pends on climate and surface condition (Chudnovsky et al., 2013b;
Liang et al., 2018; Zhang et al., 2018; Lee et al., 2018). Therefore,
potential differences in PM, 5 values between two contrasting condi-
tions, i.e., in the presence and absence of AOD retrievals, should be
carefully evaluated, which has important implications for satellite stu-
dies especially over areas where ground-based measurements are rare
and spatiotemporal variation of PM, 5 is large (Gupta and Christopher,
2008). This is exactly why we select North China (NC: 34.4-42.6° N;
113.5-122.7° E), the heavily polluted region in China, as our research
object in this paper.

Moderate Resolution Imaging Spectroradiometer (MODIS) AOD is
one of widely used satellite products in the air quality study. In this
paper, the quality and sample rates of latest MODIS AOD products are
firstly analyzed. Potential bias of PM, 5 prediction due to missing AODs
is then quantitatively evaluated, which is achieved by comparing sur-
face-level PM, 5 concentrations in the presence of AOD with that in the
absence of AOD. The paper is organized as follows. Section 2 introduces
MODIS AOD and surface PM, 5 data. Comparison of MODIS three data
products is presented in section 3. The difference between PM, 5 mass
in the presence of MODIS AOD and no AOD retrieval (APM, 5) is finally
analyzed. Implication of this difference in the estimation of PM, s from
space in NC is discussed.

2. Study region, data and methodology

2.1. Study region

NC is surrounded by Yan Mountain to the north and by Taihang
Mountain to the west. NC faces Bohai Bay and Yellow Sea to the east
(Fig. 1). Due to its specific terrain and huge amount of anthropogenic
emissions of primary aerosols and production of secondary aerosols, NC
suffers frequent pollution events, especially in the winter (Fu et al.,
2018).

2.2. Ground-level PM5 s mass

Hourly PM, 5 concentrations from May 2014 to May 2018 at 159
monitors (Fig. 1) are available from the website of the China Environ-
mental Monitoring Center (CEMC) (http://106.37.208.233:20035/).
PM, s concentrations are routinely monitored by the TEOM and/or
BAM according to the environmental protection standard of China.
Calibration of instruments and data quality control are conducted by
CEMC. A smooth temporal variability filter was further used to elim-
inate records of consecutive invariant PM, s mass, i.e., five consecutive
hourly PM, 5 measurements with the same value were excluded. Fur-
thermore, a spike filter was used to eliminate records that constituted a
large spike (positive or negative) during a short period of time. A spike
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is defined when PM, 5 in the middle of 5 consecutive records is three
times higher than the standard deviation (calculated from remaining 4
records before and after data points that is being examined).

2.3. AERONET AOD

Sunphotometer AOD in Beijing (BJ: 39.977° N, 116.381° E, 92m
a.s.l.) and Xianghe (XH: 39.754° N, 116.962° E, 36 m a.s.l.) during
2002-2017 are used to validate MODIS AOD. Both are Aerosol Robotic
Network (AERONET) stations, but characterized by distinctly different
land surface, i.e., urban surface in BJ and a mixture of agricultural land
and settlement place in XH. Spectral AOD with accuracy of 0.01-0.02
are derived from CE-318 sunphotometer measurements (Eck et al.,
1999). AOD at 0.55pum is interpolated from AOD at 0.44, 0.67 and
0.87 pym to compare with MODIS AOD product. The latest Version 3
cloud-screened and quality assured AOD data (Level 2.0) are used. The
update of Version 3 is that only three channels (0.67, 0.87 and 1.02 pm)
are checked for triplet variance. AODs are screened when the triplet
range for all three wavelengths exceeds 0.01 or 0.015 X AOD (what-
ever is greater), which allows for unprecedented ability to monitor
extreme fine mode pollution events (Eck et al., 2018; Song et al., 2018).

2.4. MODIS AOD

The Dark Target (DT) and Deep Blue (DB) algorithms are used for
the retrievals of AOD. The DT works only over vegetated land (Kaufman
et al., 1997). The DB method expands MODIS AOD coverage to bright
surfaces by using MODIS reflectance measurement at 0.412 um. Various
refinements to the MODIS AOD retrieval algorithms have been made
since the launch of MODIS, including updates in calibration, surface
reflectance models, aerosol microphysical models, and cloud screening
procedures (Levy et al., 2013; Hsu et al.,, 2013). The most recent full
AOD reprocessing is C6 and C6.1. In addition to separate DT and DB
retrievals, a merged AOD that combined both types of retrievals is
provided that increases the spatial coverage of AOD over land while
preserving its quality. The DT team also released a nominal 3-km pro-
duct for the air quality study (Remer et al., 2013). An important update
of C6.1 AOD data is a revised surface characterization over urban areas
(Gupta et al., 2016). Furthermore, internal smoke detection masks are
updated to identify thick and/or spatial variable smoke events (Eck
et al., 2018). These improvements are of significance in NC since it is
characterized by urban surface and frequent smoke layer in the harvest
season (Xia et al., 2013; Zha et al., 2013).

2.5. Methods

A dramatic day-to-day variation is frequently observed in NC. A
typical example is shown in Fig. 2, in which daily AERONET and
MODIS 10-km AOD as well as PM, 5 in Beijing during October 2015 in
presented. Two aerosol pollution episodes were featured by an increase
of one order of magnitude of AOD and PM, 5 within a couple of days,
and then both quantities suddenly dropped to the background level due
to a frontal passage. Aqua-MODIS C6 and C6.1 Level 2.0 DT, DB and
merged AOD products with a 10-km resolution are used in this study.
The daily data are gridded into 0.1° by 0.1° using the nearest-neighbor
interpolation method. MODIS AOD products are firstly validated
against AERONET data to show potential improvements of MODIS C6.1
AOD relative to C6. In order to show spatiotemporal variations of AOD,
coefficient of variations (COV) of AQD, i.e., the ratio of the standard
deviation of AOD to the mean, at each grid are calculated in four sea-
sons (MAM: March, April, and May; JJA: June, July and August; SON:
September, October, November; DJF: December, January and Feb-
ruary). Station PM, s is collocated with the nearest MODIS AOD grid.
PM, 5 values are averaged if two or more stations are within one grid.
The largest number of sites that fall on a single grid is 3 stations. Note
that the representative area of PM,s measurements at 1-3 stations
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Fig. 1. Spatial distribution PM; s stations and their annual average PMz s concentration (ug m~>) in North China.
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Fig. 2. Daily mean PM2.5 (ug m~®) and AERONET AOD as well MODIS C6 and
C6.1 AOD in Beijing during October of 2015.

depends on spatial variation of their local emission sources, which may
not consist with the spatial representation of AOD (Shi et al., 2017). For
grids with ground station available, seasonal mean PM, s values are
calculated separately under two contrast conditions, i.e., with and
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without AOD, respectively. Seasonal APM, 5 values at 128 grids with
PM, 5 stations are calculated to answer the questions raised in this
study.

3. Results and discussion
3.1. MODIS C6 and C6.1 AOD assessment result

Fig. 3 shows the comparison of MODIS DT, DB, merged AOD pro-
ducts against AREONET AOD in BJ (right panel) and XH (left panel),
respectively. A few features merit mention. First, DT AOD bias was
notably reduced in BJ, from 0.2 of C6 to 0.1 of C6.1, which met the
expectation since a new surface reflectance scheme was introduced in
urban regions (Gupta et al., 2016). C6.1 DT AOD products in XH
showed little improvement. Second, C6 and C6.1 DB AOD products
showed similar accuracy and C6.1 DB sampling points increased
slightly relative to C6 DB. Third, the sampling rates of DB product were
about twice larger than that of DT in BJ and 1.5 times larger in XH,
respectively. This agreed with result of Tao et al. (2015) showing that
C6 DB generally reveals spatial extent of the widespread haze pollution
in NC in cases where there were few DT AODs. Fourth, notable im-
provement in the accuracy of C6.1 merged product relative to C6 was
only found in BJ as a result of C.61 DT AOD improvement. Finally, the
accuracy of merged AOD was comparable to that of DT and DB, but the
sampling rate of merged AOD was larger.
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Fig. 3. Scatter-plot of collocated AERONET AOD and MODIS AOD product in Beijing (right) and Xianghe (left). Three MODIS AOD products were compared to
AERONET ground truth, i.e., deep blue (DB: upper), dark target (DT: middle) and merged AOD product (bottom). (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)

DT AOD has been widely used before the release of C6. Actually, it is
still a conventional product in the air quality study partly because of its
3-km product. The result showed that the DT AOD product had the
lowest sampling rate among three products, especially in winter when a
robust AOD-PM, 5 relationship cannot be established from very few
AOD-PM; 5 pairs. One may argue that AOD-PM, s relationships in other
seasons can be used; this method, however, might very likely produce a
large biased PM, 5. This is because the AOD-PM, 5 relationship highly
depends on the boundary layer height that varies seasonally and leads
to a contrast in the seasonality of AOD and PM, 5 over NC (Xia et al.,
2006). Distinct seasonal variations of AOD-PM, - relationship can be
easily evidenced by a simple AOD-PM, s correlation analysis within
different time scales. Fig. 4 shows R? and the slopes of the linear re-
gression analysis of AERONET AOD and PM, 5 in four seasons in BJ,
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which is compared with that based on all year round of AOD-PM; 5
pairs. AOD showed a close relationship to PM; 5 but it varies daily
(Chudnovsky et al., 2012). R? ranges from 0.65 in spring to 0.73 in
summer, which are all larger than R? (0.60) derived from all pairs of
AOD and PM; 5. AOD-PM; 5 relationships differ substantially between
seasons. The slopes are 95 in spring, 58 in summer, 118 in autumn, and
148 ug m 2 per unit of AOD in winter, respectively. Obviously, lack of
MODIS AOD in winter could not be remedied by borrowing AODs in
other seasons. DT 3-km AOD product also suffers from a very low
sampling rate in winter because it does not merge the DB algorithm.
This would certainly produce a biased PM, 5 especially in winter when
very few DT 3-km AODs are used (Ma et al., 2014; Lii et al., 2016).
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Fig. 4. R? and the slope of linear regression of PM2.5 to AERONET AOD in Beijing based on AOD-PM; 5 pairs in spring (MAM), summer (JJA), autumn (SON) and

winter (DJF) (a) and all year round of data pairs (b).

3.2. Spatial and temporal variability of MODIS AOD and AOD sampling
rate

Spatial distribution of seasonal AOD coefficient of variations (COV)
(the ratio of the standard deviation to the mean) is shown in Fig. 5.
COVs show distinct spatial and seasonal dependences. Mountain COVs
(in the north and the west of NC) exceeded 100%, which were some-
what larger than plain COVs (within 40-100%). This is partly because
mountain AODs is much lower than plain AODs. In addition, this is also
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likely related to a relative lower AOD sampling rate over mountains
(see below). The maximum and minimum seasonal COVs were observed
in winter (a spatial average of 101%) and in summer (80%), which
respectively corresponded to the maximum and minimum seasonal
mean PM, 5 value (Fu et al., 2018). In fall and winter, PM, 5 and AOD
often accumulate gradually as a result of stable weather, which is then
followed by a dramatic drops due to a frontal passage (Fig. 2). This
inevitably produces a substantial large AOD variation and then large
COov.

A
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Fig. 5. Spatial distribution of seasonal coefficient of variation (COV) for AOD in North China. The regional mean and standard deviation of COV were also shown.
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Table 1
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The regional mean and standard deviation of the MODIS AOD sampling rates (the relative ratio of days with AOD retrieval to total days, unit: %) in North China. The
calculations were performed on the basis of seasonal MODIS C6 and C6.1 three AOD products, i.e., dark target (DT), deep blue (DB) and merged (Merged) products,

respectively.
C6 C6.1
DT DB Merged DT DB Merged
Spring 234 + 14.1 37.9 = 10.6 44,5 + 8.2 23.2 = 134 355 = 11.4 42.6 + 9.4
Summer 322 + 6.6 17.6 = 6.9 327 = 5.9 31.7 = 6.7 17.2 = 6.3 321 £ 5.9
Autumn 334 = 81 355 = 11.4 432 = 7.0 33.8 = 8.0 36.0 = 11.0 43.7 £ 7.0
Winter 3.6 = 6.4 34.2 = 149 36.4 = 14.0 4.0 = 6.9 34.8 = 15.9 37.2 £ 145
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37N° t
35N° an=32.1%
.99
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37N°
35N° L
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Fig. 6. Spatial distribution of the sampling rate of C6.1 merged AOD product (the relative ratio of days with AOD retrieval to total days, unit: %) in four seasons. The

regional mean and standard deviation of sampling rate were also shown.

Table 1 presents the regional mean and standard deviation of
MODIS AOD sampling rates that are calculated from C6 and C6.1 AOD
products, i.e., DT, DB and merged in four seasons. Relative to C6 pro-
duct, C6.1 AOD sampling rates increased marginally in autumn and
winter, but they decreased slightly in spring and summer. The largest
sampling rate was associated with the merged AOD product. This result
was expected since the objective of this product was to increase the
spatial coverage of AOD over land. The sampling rates of the DT AOD
product were comparable to that of the DB product in spring, summer
and fall, however, it was extremely low (about 4%) in winter. Seasonal
gridded C6.1 merged AOD sampling rate is shown in Fig. 6. The sam-
pling rate over mountains was relatively lower than that over plains.
The sampling rate in the south of Hebei, Beijing and Tianjin was gen-
erally larger than that in Shandong peninsula by 10%. Summer is rainy
season when the minimum sampling rate occurred, with a regional
average of 32.1%. The merged AOD sampling rates in winter over
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plains were close to or even larger than that in autumn and spring. On
the contrary, the DT AOD sampling rate in winter was strikingly low
and it decreased from south to north (Fig. 7). This result also applies to
the DT 3-km AOD product since the same retrieval core as that of the
DT 10-km AOD product has been used. Additionally, another weakness
of the DT 3-km product, despite its finer spatial resolution than the 10-
km product, should not be overlooked, that is, the 3-km AOD over land
compared less well with AERONET than did the 10-km AOD. Of par-
ticular interest for this study was that the 3-km product introduced a
high-biased noise over bright and/or urban surfaces (Remer et al.,
2013).

Merging DT and DB AOD products promoted the sampling rate re-
markably relative to DT in spring (from 23.2% to 42.6%) and autumn
(from 33.9% to 43.8%). However, there was only a marginal increase in
summer (31.7% versus 32.1%). Except for the cloud mask, the DT al-
gorithm does not work in cases when surface reflectance at visible-
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Fig. 7. Similar as Fig. 6 but for C6.1 DT AOD product.

infrared channels exceeds specified thresholds, which are not un-
common in early spring before the winter wheat turns green and in
winter when crops wither. So, it is natural that the DB sampling rates in
seasons except in summer are always larger than that of the DT. The DB
sampling rate (17.2%) in summer was much less than that of DT
(31.7%), which was likely because of its stringent cloud that more often
erroneously removed cloud-free pixels (Hsu et al., 2013).

Fig. 8 presents seasonal APM, 5 values at each grid with at least one
PM, 5 station. Note, to maximize the AOD availability, MODIS C6.1
merged AODs were used to calculate APM, 5. Histogram of PM, 5 as-
sociated with these two contrasting situations is also embedded. The
squares and circles represent that APM, 5 is lower/higher than zero,
respectively. APM, 5 values that are significantly different from zero at
a confidence level of 95% are represented by the solid markers; on the
contrary, the open markers mean not. In spring, most APM, 5 values
were within = 5pgm ™2 and the differences were not significant. The
spatial mean APM, s was —1.3 + 6.5 ugmﬁa. The PM, 5 histograms
under two contrasting situations were also similar. These facts indicated
that missing AOD retrievals would not likely produce a significant
biased PM, s, especially for the spatial mean PM,s value. This was
likely true in summer when the spatial mean APM,s; was
—1.7 = 6.4pgm~3>. Large APM, 5 values were observed in autumn
and winter, with spatial mean APM,s values being
—11.2 = 11.6pgm™~> and -8.5 + 13.4pugm 3, respectively. Specifi-
cally, significantly negative APM, 5 values were observed at stations
located in South of Hebei Province, Beijing as well as North of Henan
Province where APM; 5 exceeded — 20 pg m ™3 (that reached 30% of the
seasonal mean of PM, ;). This feature was originated from a relatively
lower frequency of smaller PM, 5 values than 35ugm~2 and higher
frequency of larger PM, 5 values than 75 pg m~2 in the absence of AOD
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relative to the presence of AOD.

Large temporal variability in AOD in East China indicated that long
record lengths to achieve statistical stability (Lee et al., 2018). The fact
that MODIS AOD products prevail over other satellite AOD products in
the air quality study lies in their high quality and good spatiotemporal
coverage, which is enhanced by merging DT and DB products. How-
ever, low MODIS AOD retrievals and dramatic temporal variation of
PM, 5 in NC need further consideration in estimating PM; 5 from AOD.
Multi-sensor AOD products from many polar-orbing sensors are likely
complementary in accuracy and spatiotemporal completeness, merging
these AOD products is then an effective way to produce more spatio-
temporally complete and accurate AQOD products (Tang et al., 2016).
Spatiotemporally complete AOD products would also be expected by
the next generation of geostationary satellites as a result of their high
temporal resolution (~10min) that is also possible to adjust hourly
PM, 5 measurements (Chudnovsky et al., 2012). However, all these
passive sensors are not effective in retrievals of aerosols in the presence
of clouds. This difficulty could be overcome by introducing lidar ob-
servations of aerosol and cloud vertical distributions via active remote
sensing, which benefits from rapid developments in emerging networks
of automated lidar and space-borne lidar. Automated lidar can not only
provide a critical perspective for relating PM; 5 to AOD but also identify
the specific aerosol types at stations (Baars et al., 2016). The Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP) has been widely
used to improve AOD-PM, 5 relationship across the world (Toth et al.,
2014). Combination of MODIS with lidar is extremely promising in the
PM, 5 estimation from AOD. Certainly, Lidar has its limitations that
should be kept in mind, for example, limited space coverage, unknown
uncertainties in extinction retrievals in the retrieval process and etc.
These limitations should be suitably considered in order to optimize the
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Fig. 8. Seasonal PM,; differences between
PM, s in the presence and absence of C6.1 AOD.
The square and circle represent the difference
larger/smaller than zero, respectively. The solid
marker means the difference is significant at a
confidence level of 95% and the open marker
means not. The embedded histogram shows
frequency of occurrence of PM, 5 values in the
presence (red) and absence (blue) of AOD re-
trievals. (For interpretation of the references to
colour in this figure legend, the reader is re-
ferred to the Web version of this article.).
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strength of Lidar in the estimation of PM, s.

Geo-statistical methods have been developed to fill AOD gaps
through incorporation of the temporal and spatial autocorrelation of
the AODs alone or both into the synergy, for example, the ordinary
Kriging method (Ma et al., 2014), the Bayes Maximum Entropy method
(Tang et al., 2016), and the region-specific AOD-PM; 5 relationship
(KloogKoutrakis et al., 2011, 2014, Lii et al., 2016). AOD relationship to
meteorological and land use variables was developed by using the
generalized additive mixed model or machine learning algorithm, it
was then adopted to fill missing AODs (Liang et al., 2018; Zhang et al.,
2018). Synergy of other AOD data sources, for example, AOD products
from AERONET or chemical transport models, was also used to enhance
AOD availability (Donkelaar et al., 2016; Fu et al., 2018). Note that
these techniques differ not only in their data filling efficiencies, but also
in their AOD uncertainties. These effects on the PM, 5 estimation should
be carefully evaluated and comprehensive comparisons between these
filling methods are required.

Our results are based on the conventional 10-km MODIS AOD
products. A finer resolution AOD is highly required in the air quality
study to resolve gradients in PM, 5 distribution across urban regions. A
new Multi-Angle Implementation of Atmospheric Correction (MAIAC)
AOD product with 1-km resolution was released (Lyapustin et al.,
2011). Analysis of AOD-PM, s relationship with varying spatial re-
solution indicated that the correlation between them decreased sig-
nificantly as AOD resolution was degraded. AOD sampling rate within
10-km was also enhanced by finer resolution (Chudnovsky et al., 2013a;
b; Kloog et al., 2014). Therefore, the MAIAC AOD quality and sampling
rate as well as its application to PM, 5 estimation in NC needs further
study.

Health risk associated with exposure to PM; 5 depends on its che-
mical compositions (Cao et al., 2012), which needs satellite making
radiometric, angular and polarimetric measurements. The future sa-
tellite missions, for example, Multi-Angle Imager for Aerosols (MAIA),
are expected to provide the abundance and characteristics of ground-
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level aerosol pollution (https://www.jpl.nasa.gov/missions/multi-
angle-imager-for-aerosols-maia/).

4. Conclusions

Using 4 years’ worth of surface PM; 5, AERONET and two versions
of Aqua-MODIS AOD data in North China, the accuracy and sampling
rate of MODIS AOD products were carefully evaluated, and the poten-
tial effect of missing AODs on the estimation of PM, s was studied.
Major conclusions are as follows.

The accuracy of MODIS DT C6.1 AOD in urban areas has been im-
proved. The sampling rates of DT and DB C6.1 AOD products varied
slightly relative to that of C6.

The sampling rate of MODIS DT AOD product in winter was on
average one order of magnitude smaller than that of the DB product,
which would resulted in a biased estimate of PM, 5 from this product.

It was suggested to use merged MODIS AQOD product in the PM; 5
estimation because DT and DB products have similar accuracy and their
combination yield the largest sampling rate.

Large bias in PM, 5 estimation would be expected if we rely on a
subset of days with AQD retrievals to estimate seasonal PM, 5 values in
fall and winter. The bias in seasonal averages in autumn and winter can
exceed 20 pggm~? in various areas of North China.
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