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a b s t r a c t

Skin cancer is the most common type of cancer in the United States, the majority of which is caused by
overexposure to ultraviolet (UV) irradiance, which is one component of sunlight. National Environmental
Public Health Tracking Program at CDC has collaborated with partners to develop and disseminate
county-level daily UV irradiance (2005e2015) and total solar irradiance (1991e2012) data for the
contiguous United States. UV irradiance dataset was derived from the Ozone Monitoring Instrument
(OMI), and solar irradiance was extracted from National Solar Radiation Data Base (NSRDB) and Solar-
Anywhere data. Firstly, we produced daily population-weighted UV and solar irradiance datasets at the
county level. Then the spatial distributions and long-term trends of UV irradiance, solar irradiance and
the ratio of UV irradiance to solar irradiance were analyzed. The national average values across all years
are 4300Wh/m2, 2700 J/m2 and 130mW/m2 for global horizontal irradiance (GHI), erythemally
weighted daily dose of UV irradiance (EDD) and erythemally weighted UV irradiance at local solar noon
time (EDR), respectively. Solar, UV irradiances and the ratio of UV to solar irradiance all increased toward
the South and in some areas with high altitude, suggesting that using solar irradiance as indicator of UV
irradiance in studies covering large geographic regions may bias the true pattern of UV exposure. Na-
tional annual average daily solar and UV irradiances increased significantly over the years by about 0.3%
and 0.5% per year, respectively. Both datasets are available to the public through CDC's Tracking network.
The UV irradiance dataset is currently the only publicly-available, spatially-resolved, and long-term UV
irradiance dataset covering the contiguous United States. These datasets help us understand the spatial
distributions and temporal trends of solar and UV irradiances, and allow for improved characterization of
UV and sunlight exposure in future studies.

© 2019 Published by Elsevier Ltd.
1. Introduction

Skin cancer is the most common form of cancer in the United
States (U.S.) (CDC, 2018b). The two most common types of skin
cancerdbasal cell and squamous cell carcinomasdare highly
curable, but can be disfiguring and costly to treat. It is estimated
e by Dr. Sarah Harmon.
ntal Health Rollins School of
SA.
.liu@emory.edu (Y. Liu).
that by age 70, nearly one in five non-Hispanic white U.S. residents
has had at least one of these two types of skin cancer (Stern, 2010).
Melanoma is the third most common skin cancer and causes the
most deaths. Melanoma incidence has increased exponentially in
the United States (Rigel, 2010). In 2015, 80,442 new cases of Mel-
anomas of the skin were reported, and 8885 people died of Mela-
nomas of the skin in the United States (U.S. Cancer Statistics
Working Group, 2018).

Sunlight is a continuous spectrum of electromagnetic radiation
that is divided into three major spectra of wavelength: ultraviolet
(UV), visible, and infrared. The majority of skin cancers are caused
by overexposure to UV radiation. Biological effects of UV radiation
vary with wavelength. Most of the UV radiation that reaches Earth's
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surface is UVA (320e400 nm), and only 5% is UVB (290e320 nm)
(Brenner and Hearing, 2008; Narayanan et al., 2010). Longer
wavelength UVA penetrates deeply into the dermis, and efficiently
generates reactive oxygen species that can damage DNAvia indirect
photosensitizing reactions. UVB is almost completely absorbed by
the DNA of epidermis cells, which can cause molecular rearrange-
ments such as cyclobutane dimers and other adverse photoprod-
ucts. Mutations and cancer can result from these DNA
modifications (D'Orazio et al., 2013). Pleasance et al. mapped the
complete genome of a melanoma taken from a patient with the
disease (Pleasance et al., 2010). The dominant mutational signature
reflects DNA damage resulting from UV exposure.

There are several existing data sources for estimating UV
exposure. First, the UV index predicts the UV radiation levels on a
scale from 1 to 11þ. It has been used as a measure of UV exposure in
epidemiological studies in the United States and elsewhere (Eide
and Weinstock, 2005; Lemus-Deschamps and Makin, 2012; Walls
et al., 2013). While the UV Index is easy to interpret, numeric in-
formation is lost when a continuous measure of UV radiation
exposure is converted to UV index. Second, some studies used solar
radiation as a proxy for UV exposure (NCI, 2017; Richards et al.,
2011; Tatalovich et al., 2006), such as the National Solar Radiation
Database (NSRDB) developed by the National Renewable Energy
Laboratory (NREL) (Wilcox, 2012). Tatalovich et al. (2006)
compared UVB flux data from seven Surface Radiation Budget
Network (SURFRAD) stations with global horizontal irradiance
(GHI) data from nearby NSRDB stations. The correlation between
UVB and GHI are high with R2 values greater than 0.9 for the seven
station pairs included. However, the spatial variation of correlation
and the ratio of UV to solar irradiance over a large domain was not
systematically analyzed in the study. Third, erythemal UV irradi-
ance data retrieved by the Total Ozone Mapping Spectrometer
(TOMS) have also been used for estimating UV exposure (Hatfield
et al., 2009; Moan et al., 2008). Designed primarily to monitor
the global distribution of column ozone, TOMS is among the first
instruments to measure the backscattered UV radiation from the
Earth's atmosphere and has also been used to estimate the surface
UV irradiances since its inception in 1979 (Eck et al., 1987; Herman
et al., 1996; Herman and Celarier, 1997). The 1979e2000 TOMS
monthly mean UV index has been shown to have a 10e30% high
bias against the Brewer spectrophotometer measurements in
snow-free conditions and the lack of absorbing aerosols in the UV
algorithm is one of reasons for this high bias (Fioletov et al., 2004).
Over snow-covered surfaces, TOMS UV index has a low bias up to
60% due to the misclassification of snow as clouds (Fioletov et al.,
2004).

The Environmental Health Tracking Program of the Centers for
Disease Control and Prevention (Tracking Network of CDC) was
established to deliver information and data to protect the nation
from health issues arising from or directly related to environmental
factors (EPHT, 2017). In this study, the Tracking Network and its
academic partners generated a long-term, high-resolution UV
irradiance dataset for all counties in the contiguous United States
using the latest satellite remote sensing data for improved
Fig. 1. The time frame and data sources of
characterization of UV exposure. Given the relatively short duration
of the latest UV irradiance data (2005e2015), a solar irradiance
dataset with 22 years of data (1991e2012) was also generated. The
spatial distributions and long-term temporal trends of solar and UV
irradiance estimates based on these two datasets were explored.
The newly developed UV and solar irradiance estimates in this
analysis also allow us to study the spatial variations of the ratio of
UV irradiance to solar irradiance.

2. Data and methods

Irradiance is the density of radiation incident on a given surface,
which can be expressed in watts per square meter (W/m2). For
example, total solar irradiance is an instantaneous measure of solar
intensity of all wavelengths per unit area. Global horizontal irra-
diance (GHI) is widely used to represent the total solar irradiance.
GHI is the total solar radiation incident on a horizontal surface on
the earth, mainly including direct normal irradiance (DNI), which is
the solar (beam) radiation directly coming from the sun, and diffuse
horizontal irradiance (DHI), which is the scattered solar radiation
from the sky dome (Sengupta et al., 2017). Data for UV irradiance, a
component of solar irradiance, is presented in terms of the now
widely accepted “sunburning” or erythemally-weighted UV radia-
tion. This method is becoming increasingly popular due to previous
issues in defining a biologically-relevant UVB spectrum and mea-
surement error in quantifying UVB with current sensors (McKenzie
et al., 2004). The framework of this project was summarized in
Fig. 1, showing that we produced a UV irradiance dataset from 2005
to 2015 based on UV data from Ozone Monitoring Instrument
(OMI), and a solar irradiance dataset from 1991 to 2012 based on
solar irradiance data from NSRDB and SolarAnywhere. To under-
stand how well our solar irradiance estimates compare with pre-
vious estimates, we compared them with North American Land
Data Assimilation System (NLDAS) solar irradiance data. Table 1
summarized the sources, time periods, resolutions of the datasets
used, as well as the methods used to assign data in the original
datasets to census tracts to produce the final UV and solar irradi-
ance datasets. The brief introductions regarding the algorithms of
the original UV and solar irradiance datasets used in this project are
in Part 1 of supplementary material.

2.1. UV dataset

The Ozone Monitoring Instrument (OMI) flies on the National
Aeronautics and Space Administration (NASA)'s Earth Observing
System Aura satellite launched in July 2004 (Levelt et al., 2006). The
instrument is a contribution of the Netherlands's Agency for
Aerospace Programs (NIVR) in collaboration with the Finnish
Meteorological Institute (FMI) to the Aura mission. OMI measures
irradiances of UV and a fraction of visible light (270 nm - 500 nm) at
spectral resolutions often finer than or comparable to the Brewer
spectrophotometer used to measure global UV spectral irradiance
on the ground (i.e., 0.55e0.60 nm depending on specific in-
struments) (Ant�on et al., 2010; Fioletov et al., 2004). OMI can
the UV and solar irradiance datasets.



Table 1
Summary of input data sources and newly produced UV and solar irradiance datasets.

Dataset name Time period Parameters Input dataset name Spatial resolution of
input data

Methods for assigning input data to census tracts

UV irradiance dataset 2005e2015 EDD, EDR, I305, I310,
I324 and I380

Level-2 OMI surface UV data
(v.003) (Levelt et al., 2006)

13 km� 24 km at
nadir

Finding the nearest pixel

Sunlight irradiance
dataset

1991e1997 GHI NSRDB (Wilcox, 2012) 1454 locations,
unevenly
distributed

Universal kriging with elevation as a predictor

1998e2012 GHI SolarAnywhere (Perez et al.,
2002; Wilcox, 2012)

10 km� 10 km Match when the centroid of the census tract falls into
the SolarAnywhere grid

Solar irradiance
dataset for
comparison

1991e2011 Surface downward
shortwave radiation

NLDAS solar irradiance data
(CDC, 2018a)

1/8th-degree
(~14 km)

Aggregate the values of grids with centroids located
within the corresponding county's boundary
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provide daily coverage of the sunlit portion of the atmosphere.
The Level-2 OMI surface UV data (v.003) (Jari Hovila and

Tamminen, 2007) were used in our study. For year 2005e2015,
we first extracted the following parameters from OMI surface UV
dataset to include in our UV dataset: erythemally weighted daily
dose (EDD) (J/m2), erythemally weighted irradiance at local solar
noon time and OMI overpass time (EDR) (mW/m2), and daily
spectral irradiance at local solar noon time at 305, 310, 324, and
380 nm (I305, I310, I324 and I380) (mW/m2/nm). EDD represents
the accumulated amount of UV radiation that can cause sunburn
over the course of the day. EDR represents the amount of UV ra-
diation that can cause sunburn around noonwhen the dose is likely
the highest. To estimate EDR at noon, OMI first measures EDR at its
overpass time (~13:45 local solar time). Then, EDR at overpass time
was scaled to the local solar noon time using different solar zenith
angles, while assuming a constant atmospheric profile, e.g., aerosol
loadings, clouds. Spectral irradiance at 305 nm and 310 nm is part
of UVB irradiance, while spectral irradiance at 324 nm and 380 nm
is part of UVA irradiance. The algorithm of OMI UV dataset was
summarized in Part 1 of Supplementary material.

OMI surface UV data has the nominal resolution of
13 km� 24 km (along� across) at nadir, and the pixel size grows
quickly across the scan, which can be up to 13 km� 128 km at the
most outer swath-angle (57�) (http://projects.knmi.nl/omi/
research/instrument/characteristics.php?tag¼full). After extract-
ing the variables described above for all OMI pixels, we assigned UV
irradiance values to U.S. census tracts by finding the nearest OMI
pixel within a search radius of 100 km of the census tract. The “row
anomaly” occurred due to the technical issues of OMI which pro-
duced invalid data in the center-right part of each swath of obser-
vations (McPeters et al., 2015) since 2008. Hence census tracts
matched with invalid UV irradiance values were assigned “not
applicable” for that day. Finally, county level UV irradiance values
were calculated using population weighted census tract values in
each county based on Equation (1), which puts more weight on
census tract with more people.

Population�weighted UV irradiance ¼
P

UVt � POPt
POPc

(1)

Where the UVt is the UV irradiance at tract t, POPt is population in
tract t, and POPc is the total population of all tracts in county c. Note
that census tracts are small, relatively permanent statistical sub-
divisions of a county or county equivalent in the population census
data.
2.2. Solar irradiance dataset

Given the limited number of years in the current UV irradiance
data (2005e2015), we also generated a population-weighted solar
irradiance dataset which includes daily GHI (Wh/m2) from 1991 to
2012. There were two data sources of GHI data used in this proj-
ectdNational Solar Radiation Data Base (NSRDB) and
SolarAnywhere.

The updated 1991e2010 NSRDB dataset (Wilcox, 2012) holds
solar data for 1454 locations (Fig. S1) in the United States and its
territories. Nearly all of the solar data in the NSRDB are modeled,
and only 40 sites have measured solar datadnone of them with
complete records. The hourly NSRDB GHI data produced by the
METSTAT (Meteorological/Statistical) model were used in this
study. The SolarAnywhere data (version 2.4) is gridded data at a
10� 10 km resolution since 1998. The SolarAnywhere algorithm
estimates solar radiation based on Geostationary Operational
Environmental Satellite (GOES) imagery (Perez et al., 2002; Perez
et al., 2010). The algorithms of NSRDB and SolarAnywhere data-
sets were summarized in Part 1 of Supplementary material. The
hourly GHI data of SolarAnywhere during 1998e2012 were pro-
vided to CDC and academic partners via data-use agreement
(https://www.solaranywhere.com/).

The original GHI values from both NSRDB and SolarAnywhere
were at hourly level. We calculated the daily GHI values by sum-
ming the 24 hourly GHI values if hourly data were available for all
24 h within the calendar day; otherwise, the daily GHI was marked
as “not applicable” for that day. The final GHI dataset were pro-
duced based on NSRDB data from 1991 to 1997 and SolarAnywhere
data from 1998 to 2012.

For data from NSRDB, we used universal kriging (UK) with
elevation as a predictor to interpolate daily GHI values to the
nearest census tracts. Part 2 of supplementary material provided
more details on model selection and evaluation. To interpolate GHI
values, there were several steps involved. First, we assumed that
data within the max search distance have spatial autocorrelations.
Therefore, we fitted the semivariogram with the average annual
mean GHI values from 1991 to 2010 to find the distance within
which GHI values were spatially auto-correlated. Second, the UK
model was built with elevation as a predictor at daily level, by
setting the maximum distance at 500 km, based on the range from
the semivariogram in the first step. Lastly, we predicted the daily
GHI values at the centroids of the census tracts using the UKmodel.

For data from SolarAnywhere, we assigned the gridded GHI
value to one census tract if the centroid of the census tract fell into
the SolarAnywhere grid. After assigning the NSRDB or SolarAny-
where GHI data to census tracts, we calculated county level GHI
values using population weighted census tract values, using a
similar approach for UV irradiance data as shown in Equation (1).

For years 1998e2005, data are available from both NSRDB and
SolarAnywhere. For these overlapping years, we chose to use
SolarAnywhere in the solar irradiance dataset because: 1) the
agreement between measured and modeled GHI was better
(regression R2¼ 0.88) for SolarAnywhere than that for NSRDB

http://projects.knmi.nl/omi/research/instrument/characteristics.php?tag=full
http://projects.knmi.nl/omi/research/instrument/characteristics.php?tag=full
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https://www.solaranywhere.com/


Fig. 2. Comparison of monthly national means of daily global horizontal irradiance (GHI), from NSRDB and SolarAnywhere in 1998e2005.

Fig. 3. Comparison between SolarAnywhere GHI and NSRDB GHI used for dataset
calibration between 1998 and 2005. The solid line is the 1:1 line and the dashed line
represents the regression of monthly mean GHI data at state level between NSRDB and
SolarAnywhere between 1998 and 2005. The unit for X-axis and Y-axis are both Wh/
m2.
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(regression R2¼ 0.83) (Myers et al., 2005; Wilcox, 2012), 2) the
NSRDB was developed based on data from 29 ground monitoring
sites while the SolarAnywhere algorithm runs on satellite images
with comprehensive spatial coverage, and 3) the NSRDB data at
1454 sites were distributed unevenly in space, while SolarAny-
where provided gridded data at 0.1� resolution nationwide. We
used these overlapping years to evaluate the consistency of the two
data sources before merging NSRDB data (1991e1997) with Solar-
Anywhere data (1998e2012) into the final solar irradiance dataset.
Fig. 2 shows the time series of the monthly national means of
population-weighted total solar irradiance levels calculated from
NSRDB and SolarAnywhere products for 1998 to 2005. They are
highly consistent.

The linear regression model (Equation (2)) was fitted based on
the monthly means of population weighted solar irradiance at that
state level using GHI values from NSRDB and SolarAnywhere be-
tween 1998 and 2005. The scatterplot is shown in Fig. 3.

SolarAnywhere_GHI¼ 131:66 þ 0:99 � NSRDB_GHI (2)

Fig. 3 and regression analysis results show that the NSRDB
irradiance is highly correlated with SolarAnywhere irradiance
when considering both temporal (month) and spatial (state) dis-
tributions. The R2 is 0.99 and slope is 0.99 in the regression, with
solar irradiance levels from SolarAnywhere being slightly higher
than those from NSRDB. To ensure the consistency of the combined
GHI estimates, we calibrated county level daily GHI values from
NSRDB for 1991e1997 using Equation (2). We then combined the
calibrated estimates from 1991 to 1997 with the estimates from
1998 to 2012 based on SolarAnywhere and created the dataset of
daily solar irradiance from 1991 to 2012 at the county level.

2.2.1. Comparison with North American Land Data Assimilation
System (NLDAS) solar irradiance data

We compared our solar irradiance estimates with North Amer-
ican Land Data Assimilation System (NLDAS) solar irradiance data
(1/8th-degree (~14 km) resolution) to further validate the long-
term trends of our solar irradiance estimates. NLDAS data is also
modeled data and is available through CDC WONDER online data-
base (CDC, 2018a). The county-level data were computed by aver-
aging the values of all the grid cells whose centroids were located
within the corresponding county's boundary. In the cases where
the county was so small that no grid cell's centroid is located in it
(i.e., the county is smaller than one grid cell), the value of the grid
cell that covers the largest portion of the county's areawas assigned
to such county.
To compare the two datasets, we first divided WONDER GHI

data by 3.6 to convert the unit from kJ/m2 to Wh/m2, which is the
unit for NSRDB and SolarAnywhere GHI data. Then we compared
the annual means between the two datasets at national and county
levels.

2.3. Spatial distribution and temporal trend analysis

Summary statistics were calculated for each environmental
measure at the national and state level, respectively. In addition, for
the years in which both UV and solar irradiance data are available
(2005e2012), we calculated the ratio of EDD to GHI by county to
study the spatial variations of the ratio of UV irradiance to solar
irradiance.

To determine the long-term temporal trends of solar irradiance,
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we conducted linear regression using “year” as independent vari-
able, and annual averages GHI as dependent variable, at the na-
tional and state level, respectively in SAS 9.4 (SAS Institute Inc, Cary,
NC, USA). The regression coefficient for the independent variable
“year” shows the average change in GHI per year. Similarly, we
conducted linear regression using annual average EDD and EDR as
Fig. 4. Spatial distribution of average daily global horizontal irradiance (GHI), erythemally
Intervals are based on quartiles. County boundary for year 2015 was used.
dependent variable respectively, and “year” as independent vari-
able to explore the long-term temporal trends of UV irradiance. In
addition, as there are natural fluctuations in solar and UV irradi-
ances, linear regression may not always provide the best fit when
determining long-term trend. Therefore, as a sensitivity analysis,
we used Joinpoint Trend Analysis Software (NCI, 2018) to test for an
weighted daily dose (EDD) of UV, and erythemally weighted irradiance (EDR) of UV.
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apparent change in trend that is statistically significant. Joinpoint is
a statistical software for the analysis of trends which allows several
different lines to be connected together at the “joinpoints”. We
allowed a minimum of 0 joinpoint (which means a straight line)
and a maximum of 4 joinpoints for solar irradiance and 1 joinpoint
for UV irradiance. Note that the maximum number of joinpoints are
determined based on the number of data points in these datasets
(NCI, 2018).

3. Results

3.1. Summary statistics

Table S1 in supplementary material shows the summary sta-
tistics of GHI for years 1991e2012, and EDD and EDR for years
2005e2015 on the state level. The national averages across all years
available for each variable are 4300Wh/m2, 2700 J/m2 and
130mW/m2 for daily GHI, EDD and EDR, respectively. Spectral ir-
radiances at 305, 310, 324, and 380 nm are on average 35, 64, 264,
and 491 mW/(m2∙nm) in the contiguous United States from 2005
to 2015. Average daily dose of UV irradiance (EDD) accounts for an
average of 0.016 percent of average daily total solar irradiance
(GHI).

3.2. Spatial distributions

Fig. 4 shows the spatial distributions of average daily GHI during
1991e2012 and average EDD and EDR during 2005e2015. In
summary, the UV and solar irradiances both increased toward the
South and theWest (likely due to higher altitude). The highest state
averages for GHI, EDD and EDR all occurred in Arizona. The lowest
averages occurred in Vermont, Maine, and North Dakota for GHI,
EDD and EDR, respectively.

The correlation coefficient between average annual mean EDD
and GHI at county level was 0.87. Fig. 5 illustrates the spatial dis-
tribution of the ratios of EDD to GHI, which shows the percentage of
UV irradiance in total solar irradiance. Fig. 5 shows that the ratios
mainly increased toward the South and in some areas with high
Fig. 5. Spatial distribution of the ratio of UV (EDD) to solar irradiance (GHI)
altitude, e.g. Colorado, New Mexico and west Wyoming. Even
though UV and solar irradiances both increased toward the South
and the West (as shown in Fig. 4), and they are highly correlated,
the spatial pattern of the ratio of UV to solar irradiance in Fig. 5
means that the increase in UV irradiance was faster than solar
irradiance in the South and in areas with high elevation. This
suggests that UV exposure may be underestimated when solar
irradiance is used as proxy in areas with high UV to solar irradiance
ratio and vice versa.
3.3. Temporal trends

Fig. 6 suggests that temporal patterns of solar irradiance datawe
derived based on NSRDB and SolarAnywhere data are mostly
consistent with NLDAS solar irradiance data at the national level.
The average difference is 5% between our data and NLDAS data at
county level. The average difference between year 1991 and 1997 is
6.8%, which is slightly larger than the average difference of 4.0%
between 1998 and 2011, whenwe switched from using NSRDB data
to SolarAnywhere data as input. The largest difference (9.4%) is in
1992 while the smallest difference (2.2%) is in 2002. To investigate
whether combining NSRDB and SolarAnywhere data caused the
larger difference between NLDAS and our solar irradiance data
before 1998, we also calculated the annual mean values of GHI from
all NSRDB stations with valid GHI values between 1991 and 2005.
Fig. S2 in supplementary material shows that the difference in GHI
values between NLDAS data and NSRDB stations data is also larger
before 1998, suggesting that combining the NSRDB and SolarAny-
where data is unlikely the main cause of the larger difference be-
tween NLDAS and our irradiance data before 1998.

Trend analysis based on newly produced solar irradiance data in
this study shows that there is a statistically significant increase in
national average daily GHI of 14Wh/m2 (0.3%) per year from 1991
to 2012 (p-value <0.01) (Fig. S3a). Linear regressions at state level
suggest that total solar irradiance increased significantly in all
states except for Maine, Massachusetts, Rhode Island, Vermont,
North Dakota, and Montana (Fig. 7). The national annual average
UV irradiances also have increased significantly over the years.
(in percentage) between 2005 and 2012. Intervals are based on quartile.



Fig. 6. Comparison of county annual average of daily global horizontal irradiance (GHI) from NLDAS data with GHI estimates based on combined NSRDB and SolarAnywhere data.
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There is a statistically significant increase of 13 J/m2 (0.5%) per year
in EDD (p-value <0.01) (Fig. S3b) and a statistically significant in-
crease of 0.52 (mW/m2) (0.4%) per year in EDR (p-value¼ 0.02)
(Fig. S3c) on average at the national level. For the two measures of
UV irradiance, 25 states had statistically significant increasing trend
in EDD from 2005 to 2015, while 18 states had statistically signif-
icant increasing trend in EDR (Fig. 7). We calculated national
average EDD and EDR by averaging the county estimates. Therefore,
states with more counties are likely to have more impact on na-
tional level estimates. The 5 states with most counties are Texas,
Georgia, Virginia, Kentucky, and Missouri. In addition, the states
which increased enough to impact the national level increase are
likely those with the biggest regression coefficients in the trend
analysis. For EDD, the 5 states with the biggest regression co-
efficients are: NewMexico, Kentucky, California, South Carolina and
New Hampshire. For EDR, the 5 states with the largest regression
coefficients are: California, Kentucky, New Hampshire, NewMexico
and Massachusetts.
3.4. Sensitivity analysis

In the sensitivity analysis for solar irradiance, when we allowed
joinpoints, results for the national average and 33 out of 48
contiguous states and the District of Columbia remained the same,
i.e., there is no change in trend and linear regression provides the
best fit. Fig. S4a is an example of the output from Joinpoint analysis
for Alabama, which shows no change in trend. The remaining 16
states had statistically significant change in the trend. For example,
Fig. S4b shows the result from Joinpoint analysis for GHI in Colo-
rado. A joinpoint was identified in 2002. Before 2002, there was a
significant increase in annual average daily GHI of 37Wh/m2 per
year. After 2002, no significant trend was detected. The majority of
the 16 states had one significant change in trend which occurred
between the years of 1998e2006 (See supplemental material,
Table S2). The general temporal trend pattern in these 16 states is
similar: a significant increase in GHI for the years before the first
join point (i.e., slope significantly greater than 0), followed by a
change in slope, e.g. leveling off (Fig. S4b), or decrease. Four states
had 2 joinpoints (Arkansas, Kansas, Missouri, South Dakota) and
Mississippi has 4 joinpoints, though none of these slopes after the
first joinpoint is significantly different from 0. Fig. S4c is an example
of Kansas which had two joinpoints. For EDD, whenwe allowed join
points, one state (New Mexico) had a significant change in trend:
therewas a significant increase in EDD between 2005 and 2011, and
no significant change after 2011. For EDR, two states (Arizona and
NewMexico) had one joinpoint in 2011 following the same pattern
as EDD.
4. Discussion

4.1. Spatial and temporal trends of the UV and solar irradiances
data

In this study, we produced daily county level UV (2005e2015)
and solar irradiance estimates (1991e2012) in the contiguous
United States. Solar irradiance and UV irradiance both generally
increased toward the South and the altitude, suggesting that lati-
tude and altitude increase UV irradiance as they increase. The ratio
of UV to solar irradiance also mainly increased toward the South
and in some areas with high altitude. The national annual average
solar and UV irradiances have increased significantly over the years
included in this analysis. UV irradiance can be impacted by a series
of complex factors, including solar activity, geographical parame-
ters (e.g. latitude, elevation and features of the receiving terrain),
atmospheric absorption (e.g., absorption by ozone depending on
wavelength range), scattering (e.g., the Rayleigh scattering of air
molecules and the Mie scattering of clouds and aerosol particles),
and surface reflection (Chang et al., 2012). For spatial distribution,
the increase to the West is likely due to the higher elevation in the
Western half of the United States. Earlier studies reported similar
findings. For example, using measurements from 29 observation
sites in the United States and its borders, Gao et al. found that
latitude and altitude were the principles factors that regulate
average daily UV dosage (Gao et al., 2007). The study reported that
statistically significant nonlinear relationships can be established
between averaged daily UV dose and latitude and altitude, with
latitude having a more significant effect than altitude. In compar-
ison, longitude was not statistically significant in predicting UV



Fig. 7. Regression coefficients in trend analysis for daily horizontal irradiance (GHI), erythemally weighted daily dose (EDD) of UV, and erythemally weighted irradiance at local
solar noon time (EDR) of UV by state. These regression coefficients show the average change per year of daily GHI (in Wh/m2 per year), EDD (in J/m2 per year), and EDR (in mW/m2

per year), respectively.
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irradiance. The Colorado and Indiana sites in that study have similar
latitude, however, UV irradiances in the Colorado site, which is
3000m higher in altitude, was significantly higher than the Indiana
site (Gao et al., 2007). Another study found that daily erythemal UV
doses on the Tibetan Plateau, the highest plateau in theworld, were
about twice those observed at geographically close, lower-altitude
locations, such as Chengdu in China and New Delhi in India
(Norsang et al., 2011). Several factors could contribute to the alti-
tude effect. The higher the altitude, the thinner, dryer and cleaner
the air, and therefore there is less atmospheric scattering and ab-
sorption of UV (e.g., by tropospheric ozone), resulting in higher UV
radiation levels at the surface (Chang et al., 2012; Norsang et al.,
2011).

For temporal trend, fewer states showed significant increase in
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UV irradiance than solar irradiance. This could be because UV
irradiance has increased less significantly than solar irradiance, or
because there are fewer years of UV irradiance data available than
solar irradiance data. We also plan to expand the dataset to cover
more years after 2015 as OMI data become available. Several factors
have been linked with the variations of UV and solar irradiance
data. In situ surface observations showed that downward surface
solar radiation in two surface observation sites in Illinois and
Mississippi increased by 0.58 and 1.0W/m2 per year respectively
between 2000 and 2014 (Cusworth et al., 2017). Their modeling
results showed that decreasing aerosols may have driven clear-sky
downward surface solar radiation in these two surface observation
sites (Cusworth et al., 2017). One study using data generated from
TOMS (predecessor of OMI) found that the UVB trend over the
United States between 1980 and 2002 was mainly driven by the
effects of total ozone variations combined with some auxiliary
factors such as aerosols and total cloud amount (Chang et al., 2012).
Another study assessed the influence of synoptic weather patterns
on solar irradiance variability over time in northern Europe
(Parding et al., 2016). It concluded that while large-scale atmo-
spheric circulation can explain some variability in shortwave irra-
diances at the Earth's surface, other factors (e.g., decreasing aerosol
emissions) also play an important role in northern Europe. We
explored the temporal trend of cloud amount data (Fig. S5) from
International Satellite Cloud Climatology Project (ISCCP, https://
www.ncdc.noaa.gov/isccp) and found a negative correlation be-
tween cloud amount and solar irradiance. For example, the cloud
amount dropped dramatically from 1997 to 1998, when the solar
irradiance increased; the cloud amount increased in 2009, when
the solar irradiance decreased in that year. Taking the change be-
tween 2008 and 2009 for example, the differences of cloud amount
between 2008 and 2009 was highly negatively correlated with the
differences of solar irradiance at state level (R2¼ 0.7, Fig. S6). The
spatial distributions of the increase in cloud amount and the
decrease in solar irradiance are highly consistent (Fig. S7), sug-
gesting that the changes of cloud amount might be one of the
factors leading to the change in solar irradiance in year 2009. Future
study is needed on the potential mechanisms that result in the
variations of solar and UV irradiances.
4.2. Comparison with previous GHI interpolations

Tatalovich et al. (2006) compared the model performances
based on universal kriging (UK) method and ANUPLIN package,
which was based on thin plate smoothing splines (TPS), with 30-
year (1961e1990) averaged GHI values from 239 NSRDB stations
and found that the root mean square error (RMSE) of UK was
significantly higher than that from ANUPLIN. Limited by the access
of ANUPLIN package, we compared the model performance of UK
and TPS for our data with R packages (‘gstat’ and ‘fields’, respec-
tively). We found that theywere comparable in model performance
at daily level (Part 2 in supplementarymaterial). The reasons for the
different results between our study and Tatalovich et al. (2006)
might be the differences in study periods, temporal resolution
(30-year mean vs. daily), number and spatial distributions of
NSRDB stations involved, and packages used for conducting the TPS
procedure. For example, Tatalovich et al. (2006) interpolated 239
station-based GHI values to grids at much finer resolution
(1 km� 1 km). In our study, we interpolated GHI values from 1454
locations to the centroids of census tracts. The difference in spatial
resolution (i.e., from 239 stations to 1 km� 1 km grids vs. from
1454 locations to census tracts) may have contributed to the dif-
ference in performance of the different interpolation methods.
4.3. Strengths

The county level daily UV irradiance dataset developed in this
project is to our knowledge currently the only publicly available
spatially resolved long-term UV irradiance dataset covering the
contiguous United States. Along with the solar irradiance data, our
products provide both direct and indirect estimates of UV exposure
for future epidemiological studies. There are several strengths in
our study.

First, when UV Index is used, UV exposure with the same UV
Index value is assumed to be the same. Our product provides UV
irradiance estimates as a continuous value which allows for more
accuracy and flexibility in quantitative analysis. For example, on
one hand, exposure-response relationship in epidemiology studies
can be calculated based on UV irradiance estimate as a continuous
variable. On the other hand, UV irradiance values can be easily
converted to UV Index if there is a need to compare with previous
studies that used UV Index to estimate UV exposure. Second,
comparing with previous TOMS UV data, OMI UV data we used as
input in this study has higher spatial resolution, finer spectral
resolution, and lower bias. The spatial resolution for OMI surface
UV dataset is 13 km� 24 km at nadir and its spectral resolution is
about 0.5 nm from 270 nm to 500 nm, whereas the spatial resolu-
tion of TOMS is 50� 50 km2 at nadir and it only has six 1-nm wide
spectral bands in the UV range. Additionally, previous research
found a good agreement between OMI UV estimates and ground
measurements, as shown by strong correlation with the ground
measurements (r¼ 0.88) and low bias. Overall, OMI data un-
derestimates overpass EDR by ~4%, solar noon time EDR by ~8%
(Zhang et al., 2019). Third, our products are designed especially for
health researchers who are not familiar with processing satellite
and raw solar irradiance data. Our UV and solar irradiance data can
be linked with health data at county level directly by the county
Federal Information Processing Standard (FIPS) code. Our
population-weighted estimates give more weight to more popu-
lous census tracts, and hence are more relevant for studying the
corresponding population health effects due to UV exposure.
Fourth, our results show that the UV proportion of solar irradiance
mainly increases toward the South and in high altitude areas,
suggesting that using solar irradiance as indicator of UV irradiance
may bias the true pattern of UV exposure in studies covering large
geographic regions. We provide both UV and solar irradiance data
for 11-overlapping years, which allow researchers to calculate the
UV proportion of solar irradiance and use it to calibrate the solar
irradiance to better estimate the UV exposurewhen UV data are not
available. Finally, our UV and solar irradiance datasets are at the
daily level and could be aggregated easily to longer time intervals.
The high temporal resolution and flexibility could support health
effects studies of both long-term and short-term UV exposures.
There are two ways to access these datasets through the Tracking
Network. They can be directly downloaded at https://ephtracking.
cdc.gov/download. Currently, county-level daily Global Horizontal
Irradiance (GHI) data are available daily from January 1991 to
December 2012, and county-level daily OMI UV irradiance data are
available daily from October 2004 to December 2015. Alternatively,
based on these datasets, we developed indicators and measures
under the content area “Sunlight and UV.” Users can access these
measures through the Data Explorer on Tracking Network (EPHT,
2017).

4.4. Limitations

There are several limitations of our study. First, the current OMI
surface UV algorithm assumes that aerosol loadings, the total col-
umn ozone, and the cloud optical depth remain the same

https://www.ncdc.noaa.gov/isccp
https://www.ncdc.noaa.gov/isccp
https://ephtracking.cdc.gov/download
https://ephtracking.cdc.gov/download
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throughout the day. This could cause errors when estimating EDD
or scaling OMI overpass time EDR to local noontime EDR. Future
geostationary satellite such as TEMPO, Sentinel-4 and GEMS would
be able to help resolve the issue. Second, the current OMI surface
UV algorithm uses a monthly aerosol climatology to correct the
absorbing aerosol effects, which may not account for the daily and
diurnal variations. Note that in spite of this assumption, the com-
parisons between ground observational data and EDR estimates
based on OMI surface UV algorithm at OMI overpass time showed
good agreement with ground observations, with high correlation
and low bias. Third, we found good agreement between our solar
irradiance estimates and NLDAS data, but there was still a small
systematic difference between them, which was larger before 1998.
This difference might be because we calculated our county-level
GHI based on population-weighted census tract values, while
NLDAS did not take population into consideration. In addition,
different data sources and methods for estimating solar irradiances
were used. For example, the native spatial resolutions are
10 km� 10 km for SolarAnywhere, 14 km� 14 km for NLDAS, while
1991 to 2010 NSRDB contains data for 1454 sites, which are not
evenly distributed (Wilcox, 2012). Additionally, the interpolation
from NSRDB stations to census tracts could also introduce errors.
However, since NLDAS is also modeling data (instead of real mea-
surement data), this comparison is mainly intended to help us
understand the variability of solar data from different data sources.
Fourth, slope is another factor affecting the solar energy incident
(Dubayah and Rich, 1995), as the south facing slopes receive more
heat than the north facing slopes in the Northern Hemisphere.
Tatalovich et al. (2006)'s analysis reported that 23 percent of
counties in the continental USA have predominantly north- or
south-facing slopes, which could introduce some bias to our solar
irradiance estimates in those counties between 1991 and 1997.
Therefore, the exposure uncertainty should be paid attention in
future epidemiological studies, especially in areas where have
predominantly north- or south-facing slopes.

5. Conclusion

In this study, we generated and made publicly available two
spatially resolved long-term datasets for UV and solar irradiance
data covering the contiguous United States. The UV irradiance
dataset is currently the only data source for surface UV irradiances
for all counties in the contiguous United States after 2005. Spatially,
solar and UV irradiances both increased toward the South and the
West (likely due to higher altitude). The ratio of UV to solar irra-
diance mainly increased toward the South and in some areas with
high altitude, suggesting that simply using solar irradiance as in-
dicator in studies covering large geographic regions may bias the
true pattern of UV exposure, especially at large spatial scale. Our
datasets make it possible to quantitatively characterize the bias
associated with using solar irradiance as a proxy for UV exposure.
Temporally, the national annual average solar and UV irradiances
both increased significantly over the years included in this analysis.
These newly generated datasets allow for improved characteriza-
tion of solar and UV exposure in future skin cancer epidemiology
studies and for designing targeted public health interventions.
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