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Tropospheric SO2 and NO2 in 2012–2018: Contrasting views of two sensors 
(OMI and OMPS) from space 

Yi Wang a,**, Jun Wang a,b,* 

a Interdisciplinary Graduate Program in Informatics, The University of Iowa, Iowa City, IA, 52242, USA 
b Department of Chemical and Biochemical Engineering, Center for Global & Regional Environmental Research, The University of Iowa, Iowa City, IA, 52242, USA   

H I G H L I G H T S  

� SO2 and NO2 trends and frequency distributions from OMPS and OMI are compared. 
� Qualitatively consistent for upward trend in China and downward trend in India. 
� Quantitative differences in trend and sign exist in developed countries. 
� SO2 and NO2 signals for remote sensing are weakening in many parts of world. 
� Reconciling OMI and OMPS product differences is emergently important.  
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A B S T R A C T   

The global long-term Climate Data Records (CDRs) of atmospheric SO2 and NO2 have been obtained from 
multiple satellite sensors since 1990s, and all these CDRs show consistently decreasing trends in developed 
countries and increasing trends in developing countries prior to 2010. However, much less clear is the quanti-
tative differences among these CDRs and how such differences affect the inferences for atmospheric SO2 and NO2 
climatology in terms of their annual means as well as their frequency distributions. Here, we compare and 
contrast the CDRs from the aged OMI sensor (the flagship for measuring NO2 and SO2 since 2005) and the young 
OMPS sensor series (that started measuring NO2 and SO2 in 2012 and will continue in next 2-3 decades). We 
show that after 2012, the difference of average SO2 between OMPS and OMI is 0.12 DU and it only decreases to 
0.04 DU after bias correction, despite their consistence in spatial pattern. NO2 CDRs from OMPS and OMI overall 
exhibit general agreement in both magnitude and spatial pattern. Furthermore, the CDR differences can lead to 
the opposite trend signs in developed countries and the difficulty to reconcile trend magnitude in developing 
countries. Notable consistence in trend signs does exist, regardless of radiative cloud fraction, mainly showing 
decline of SO2 and NO2 in China and increasing in India; much inconsistence is, however, found in many parts of 
developed countries. No SO2 trends and inconsistent NO2 trends are found over Europe, and notable differences 
are found over U.S. where OMI SO2 and NO2’s declining trends are consistent with surface observations, but 
OMPS SO2, albeit its better spatial agreement with surface data, shows increasing trend. This study calls the 
importance to assess CDRs from different satellite sensors with the account of frequency distributions for extreme 
events. This importance is emergent as the atmospheric SO2 and NO2 amounts are closer to the uncertainties of 
satellite-based retrievals in developed countries and are or will be declining in developing countries in the 
coming decades, all of which make the detection of signs, magnitudes, and spatiotemporal dichotomy a challenge 
from space.   

1. Introduction 

SO2 and NO2 are the largest contributors to anthropogenic aerosols 

(Seinfeld and Pandis, 2016). Hence, a Climate Data Record (CDR) 
describing their spatial and temporal variations has been shown to be 
critical for investigating atmospheric composition and climate change 
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especially as a result of aerosol radiative forcing (Myhre et al., 2013). 
Furthermore, these CDRs have been used to study processes such as 
emissions (Qu et al., 2017; Streets et al., 2013; Wang et al., 2016; Wang 
et al., 2019a; Wang et al., 2019b), deposition (Liu et al., 2017), transport 
(Zhou et al., 2012), chemistry (Valin et al., 2013), evaluation (Xu et al., 
2013), and trends of atmospheric SO2 and NO2 (Kharol et al., 2015, 
2017; Krotkov et al., 2016; Lamsal et al., 2015; Richter et al., 2005; Zhou 
et al., 2012). Here, according to National Research Council (2014), CDR 
is defined as “a time series of measurements of sufficient length, con-
sistency and continuity to determine climate variability and change”, 
and hence, anthropogenic climate change is an inherent part of the CDR. 

Satellites have been providing observation-based global SO2 and NO2 
CDRs for more than two decades, which contrasts with ground in situ 
observational sites that are sparse and unevenly distributed in space. 
The global tropospheric Vertical Column Density (VCD) distributions of 
SO2 and NO2 were first retrieved by Global Ozone Monitoring Experi-
ment (GOME) during 1996–2004 (Burrows et al., 1999; Lee et al., 2009; 
Martin et al., 2002), and are subsequently continued by two GOME-2 
sensors since 2006 and 2011, respectively (Munro et al., 2016; Now-
lan et al., 2011; Richter et al., 2011), by SCanning Imaging Absorption 
SpectroMeter for Atmospheric CHartographY (SCIAMACHY) during 
2002–2012 (Bovensmann et al., 1999; Lee et al., 2009), by Ozone 
Monitoring Instrument (OMI) since 2004 (Krotkov et al., 2017; Li et al., 
2013), by two Ozone Mapping and Profiler Suite (OMPS) sensors since 
2011 and 2017, respectively (Yang et al., 2013, 2014), and by 
TROPOspheric Monitoring Instrument (TROPOMI) since 2017 (Veef-
kind et al., 2012). The third OMPS is scheduled to launch in 2022 and 
will extend the long-term CDRs of SO2 and NO2 for the next 2-3 decades. 

Observations from GOME, GOME-2, SCIAMACHY, and OMI have 
been widely applied to estimate SO2 and NO2 trends. However, in most 
past studies, only CDRs from single sensor were used to study corre-
sponding SO2 and NO2 trend during the sub-period (usually no more 
than 10 years) of the past two decades, and the results varied by region 
and time period (Kharol et al., 2015; Kharol et al., 2017; Krotkov et al., 
2016; Lamsal et al., 2015; Schneider et al., 2015; Schneider and van der 
A, 2012; Zhou et al., 2012). For studies that used CDRs from two or more 
sensors, with or without adjusting bias among CRDs, little attention was 
paid to quantitatively compare difference of these CDRs for their over-
lapped time period (Georgoulias et al., 2019; Ghude et al., 2009; Hilboll 
et al., 2013; Lin et al., 2019; Richter et al., 2005; van der A et al., 2006), 
or the only focus of these studies is the polluted regions (Zhang et al., 
2017). 

Despite the progress in trend analysis of SO2 and NO2 from GOME, 
GOME-2, SCIMACHY, and OMI CDRs, outstanding questions remain 
especially regarding the consistencies or differences of trend sign and 
magnitude detected by different sensors, the impacts of cloud on trend 
detection, and the change of both species in terms of their frequency 
distribution or probability density functions that provide yield statistics 
of not only mean but also median and extreme values. Addressing these 
issues is critical due to three factors. Firstly, emission decline at slower 
pace over developed countries (Jiang et al., 2018) is expected to make 
weak trend signals that may or may not be consistently described by 
different satellite CDRs, which has not been studied in literature. Sec-
ondly, SO2 and NO2 CDRs are usually retrieved under all-sky conditions 
while the impact of cloud cover selection on trend detection is still un-
clear. Thirdly, past researches focused on analyzing trends of monthly or 
yearly mean rather than evolution of frequency of extreme SO2 and NO2 
event while the latter is more meaningful for air quality scientific 
community. These problems are compounded as trend analysis of NO2 
and SO2 after 2010 may be subject to large uncertainties caused by row 
anomalies (Schenkeveld et al., 2017) in aged OMI as well as the large 
differences in overpassing times of GOME, SCIMACHY and GOME-2 (all 
in the morning) against OMI (in the afternoon). Fortunately, OMPS 
started observations in 2012 with the overpassing time that is only 15 
minutes ahead of OMI, and in this work, we make the first attempt to 
address these issues by using concurrent measurements of tropospheric 

VCD of SO2 and NO2 from OMI and OMPS during April 2012–July 2018. 

2. Data 

OMI and OMPS VCD products for SO2 and NO2 from NASA are used 
in this study, and their detailed description is provided in S1 and S2. 
Briefly, OMI SO2 data retrieved by means of principal component 
analysis have the precision of 0.5 DU (1 DU ¼ 2.69 � 1016 molecules 
cm� 2) (Li et al., 2013), which is a factor of 2.5 lower than that of OMPS 
SO2 (0.2 DU) retrieved through Direct Vertical Column Fitting (DVCF) 
algorithm (Yang et al., 2013). The better precision of OMPS SO2 is 
possibly caused by the fact that OMPS uses a single detector array to 
cover 310 nm where strong SO2 absorption exists, while the band is not 
used in OMI SO2 retrieval due to channel split near 310 nm for OMI 
(Yang et al., 2013). OMI and OMPS NO2 are retrieved through variation 
of differential optical absorption spectroscopy algorithm (Krotkov et al., 
2017) and DVCF (Yang et al., 2014), respectively. Although the preci-
sion of NO2 total slant column density is about 0.033 DU for both OMPS 
and OMI, tropospheric VCD precision is 0.011 DU for OMPS, which is 
better than 0.017 DU for OMI (Krotkov et al., 2017; Yang et al., 2014). 
The precision difference between OMPS and OMI tropospheric NO2 VCD 
is caused by different Stratosphere-Troposphere Separation (STS) ap-
proaches; OMI STS approach uses a small window to smooth strato-
spheric VCD, leaving some intrinsic measurement noise in the 
tropospheric VCD (Yang et al., 2014). 

Ground-based daily SO2 and NO2 measurements are obtained from 
U.S. EPA’s Air Quality System Data Mart (https://www.epa.gov/ 
airdata). SO2 is measured through coulometry or UV fluorescence 
methods, and NO2 is observed by chemiluminescence approach 
(Demerjian, 2000). The NO2 observational method actually measures 
NO by decomposing NO2 to NO, which could systematically lead to 
positive bias, as NOz (all compounds that are products of the atmo-
spheric oxidation of NOx) will be also reduced to NO (Lamsal et al., 
2015). However, the systematic positive has very small impacts on 
relative trend values (Silvern et al., 2019), let alone the sign of trend. 

3. Methods 

The OMI Level-3 SO2 and NO2 products at 0.25� � 0.25� grids are 
processed to construct monthly mean datasets at 1� � 1� grids through 
“drop-in-the-box” gridding method (Sun et al., 2018). 1� � 1� (instead of 
0.25� � 0.25�) grids are used as OMPS pixel size (50 km � 50 km at 
nadir) is much larger than 0.25� � 0.25� grids. In the OMI Level-3 
products, only the pixels that are not affected by row anomalies and 
have little cloud contamination, or Radiative Cloud Fraction (RCF) < 0.2 
and 0.3 for SO2 and NO2, respectively, are retained. To remove the 
impacts of transient SO2 cloud, only retrievals that are less than 15 DU 
are used, although passive volcanic degassing signals still exists. For this 
research, we mainly focus on China, India, the U.S., Europe, equatorial 
Pacific ocean (10�S–10�N, 120�W–150�W), the regions to which volca-
nic sources do not contribute SO2 except southern Europe (SO2 source 
distribution is available at https://so2.gsfc.nasa.gov/). The same 
gridding approach and fixed RCF thresholds are applied to OMPS SO2 
and NO2 except in the investigation of how cloud affects trends, in which 
RCF thresholds vary. 

Trend analysis approach introduced by Weatherhead et al., 1998 is 
applied to all CDRs as well as in situ observations. This method not only 
detects linear trend with consideration of seasonal variabilities and 
noise, but also conduct statistical significant test of it. The linear trend 
analysis model is shown as 

Yt ¼ μþ St þ ωXt þ Nt t ¼ 1; 2;…; T (1)  

where Yt is monthly mean time series of observational variables (SO2 or 
NO2), μ is the offset at the start of time series, T is the total number of 
month, Xt ¼ t=12 is number of years, ω is the magnitude of linear trend 
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per year, St ¼
P4

j¼1
½β1;j sinð2πjt =12Þþβ2;j cosð2πjt =12Þ� represents sea-

sonal variations, and Nt is noise that cannot be represented by the 
model. Nt is assumed as red noise and represented as Nt ¼ φNt� 1 þ εt , 
where φ is the autocorrelation between Nt and Nt� 1 and εt is white noise. 
The standard deviation of the yearly linear trend is represented as 

σω¼
σN

n3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ φ
1 � φ

s

(2)  

where σN is the standard deviation of Nt, and n equals T= 12. If the 
absolute value of ω=σω is larger than 2, it indicates that the linear trend 
is at 95% confidence level. 

4. Results 

Global distributions of SO2 and NO2 from OMI and OMPS during 
April 2012–July 2018 are shown in Fig. 1. OMI and OMPS observe 
similar patterns with the largest SO2 level over China and India, fol-
lowed by Europe and the U.S., and the largest NO2 level over China, 
followed by Europe, the U.S., and India. OMPS SO2 VCD in global 
average is 0.129 DU, which is much larger than 0.004 DU of OMI; the 
NO2 difference is smaller between OMPS and OMI counterparts with 
values of 0.023 DU and 0.017 DU, respectively. Despite good agreement 
in qualitative description of spatial distribution for both SO2 and NO2, 
OMI and OMPS CDRs have significant differences in the magnitudes 
(Fig. 1), trends (Fig. 2), and seasonal variations (Fig. 3) at regional scale 
during April 2012–July 2018. 

4.1. China and India 

Consistent are the locations of hot spots for SO2 and NO2 over China 
and India (Fig. 1a–d), the two largest anthropogenic SO2 and NOx 
emitters in Asia (Janssens-Maenhout et al., 2015). Both OMI and OMPS 
observe the largest SO2 loadings over the North China Plain (NCP), 
Sichuan basin (30� N, 105� E), and Eastern India (EI) (Fig. 1a and c). As 
to NO2, hot spots are over NCP, the Yangtze River Delta (megacity 
clusters), Sichuan basin, the Pearl River Delta (megacity clusters), EI, 
and New Delhi, India’s capital (Fig. 1b and d). 

Though consistent qualitatively, tropospheric VCD of SO2 and NO2 
from the two sensors over NCP and EI show systemic differences 
quantitatively. The averages of OMPS SO2 are 0.46 DU and 0.30 DU over 
the NCP and EI, respectively, which contrast with lower values of 0.27 
DU and 0.14 DU for OMI (Fig. 1e and f). The pearson correlation co-
efficients (R) between OMI and OMPS monthly mean SO2 at 1� � 1� grid 
cell are 0.56 (Fig. 1e) and 0.46 (Fig. 1f) over NCP and EI, respectively. 
OMPS shows stronger SO2 seasonal variability than OMI with coefficient 
of variation (standard deviation over average) of monthly mean 0.34 
and 0.33 over NCP and EI, respectively, which are much larger than 0.16 
and 0.25 for OMI (Fig. 3). Unlike large SO2 difference between OMI and 
OMPS, averages of OMI NO2 retrievals over the NCP and EI are 0.38 DU 
(Fig. 1g) and 0.09 DU (Fig. 1h), respectively, only slightly larger than 
OMI counterparts of 0.33 DU (Fig. 1g) and 0.08 DU (Fig. 1h). Moreover, 
R of monthly averaged NO2 between OMI and OMPS are as large as 0.94 
(Fig. 1g) and 0.84 (Fig. 1h) over the NCP and EI, respectively. Compa-
rable seasonal variability of NO2 is detected by the two sensors over NCP 
(coefficient of variation of 0.43 and 0.47 for OMI and OMPS, 

Fig. 1. Averages of VCD of OMI SO2 (a) and NO2 (b) and OMPS SO2 (c) and NO2 (d) during April 2012–July 2018. South Atlantic Anomaly (SAA) region is masked by 
grey ellipse. (e) and (f) are scatter plots of monthly average of OMPS SO2 versus OMI SO2 over North China plain (black box) and Eastern India (red box), 
respectively. (g) and (h) are similar to (e) and (f), respectively, but for NO2. Also shown on the scatter plots are 1:1 line (dash), linear regression line (solid), linear 
regression formula, Pearson correlation coefficient (R), p-value (p), root mean squared difference (RMSD), number of collocated pairs (N), OMI average and standard 
deviation (x), OMPS average and standard deviation (y), and density of collocated pairs (colorbar). (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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respectively) as well as EI (coefficient of variation of 0.22 and 0.21 for 
OMI and OMPS, respectively) (Fig. 3). 

Despite systematic differences, OMI and OMPS SO2 and NO2 re-
trievals constantly show decreasing trends over China and increasing 
trends over India (Fig. 2a–d). Downward SO2 trends are observed by 
both OMI and OMPS over the NCP (� 0.069 DU/yr for OMI and � 0.036 
DU/yr for OMPS, shown in Fig. 4), the Sichuan basin (30� N, 105� E), 
and Xingjiang province (43� N, 85� E), although OMI detects more pixels 
with decreasing trends than OMPS (Fig. 2a and c). Over EI, both OMI 
and OMPS SO2 retrievals observe upward trends (0.013 DU/yr for OMI 
and 0.014 DU/yr for OMPS, shown in Fig. 4), while OMPS detects more 
pixels with increasing trends than OMI (Fig. 2a and c). The contrasting 
SO2 trends between NCP and EI could be a result of much higher rate of 
installation and operation of flue gas desulfurization over China than 
India (Krotkov et al., 2016; Wang et al., 2015). Moreover, India not only 
has overtaken U.S. as the world’s second largest SO2 emitting country in 
2014 (Krotkov et al., 2016) but also is surpassing, if not already, China to 
be the world’s largest SO2 emitter in 2016 (Li et al., 2017), which is 
reflected by the downward trends over NCP and upward trends over EI 
that are detected by both OMI and OMPS. As for NO2, both sensors 
observe strong decreasing trends over the NCP (� 0.026 DU/yr for OMI 
and � 0.018 DU/yr for OMPS, shown in Fig. 4), although OMI observes 
the weak downward trends that are not detected by OMPS over parts of 
Southern China (Fig. 2b and d). The penetration of denitration devices 
for coal-fired power plants and strict regulation for vehicle emissions 
should be primary reasons for these reductions (Liu et al., 2016). 
Conversely, stronger upward trends of NO2 over EI (0.005 DU/yr for 
OMI and 0.003 DU/yr for OMPS, shown in Fig. 4) than Western India are 
detected by both OMI and OMPS (Fig. 2b and d), which should be mainly 

ascribed to the increasing fuel consumption of coal-fired power plants 
without emission regulation in EI (Krotkov et al., 2016). 

Trend signs detected by OMPS are independent of RCF, but trend 
magnitudes are positively correlated with RCF. OMPS SO2 (NO2) trends 
change from � 0.008 DU/yr (� 0.003 DU/yr) to � 0.056 DU/yr (� 0.023 
DU/yr) over NCP and from 0.007 DU/yr (0.0022 DU/yr) to 0.018 DU/yr 
(0.0035 DU/yr) over EI as RCF threshold increases from 0.01 to 0.5. All 
these trends are at 95% confidence level when RCF threshold is no less 
than 0.1 (Fig. 2e–f). 

To investigate the trends of extremely high monthly mean SO2 and 
NO2 loading, relative frequency distribution of the two trace gases over 
NCP and EI as a function of year are shown in Fig. 5. Over NCP, OMI and 
OMPS SO2 maximums reduce from ~2.0 DU and ~2.6 DU in 2012 to 
~0.6 DU and ~1.2 DU in 2017, respectively (Fig. 5a and b), in contrast 
to EI, where they increase from ~0.50 DU and ~0.55 DU to ~0.85 DU 
and ~0.95 DU, respectively (Fig. 5c and d). Not only OMI and OMPS SO2 
loading averages and medians show downward (upward) trends over 
NCP (EI), but also the relative frequencies of SO2 larger than 0.5 DU 
decrease from 42.7% (47.1%) in 2012 to 0.2% (24.7%) in 2017 for OMI 
(OMPS) over NCP and increase from 0.0% (0.2%) to 2.9% (11.8%) over 
EI (Fig. 5a–d). As for NO2, maximums of both OMI and OMPS are ~1.9 
DU in 2012, reducing to ~1.2 DU and ~0.8 DU in 2017, respectively, 
over the NCP (Fig. 5e and f); conversely, they increase from ~0.17 DU 
and ~0.15 DU to ~0.27 DU and ~0.21 DU, respectively, over EI (Fig. 5g 
and h). Moreover, decreasing trends of NO2 averages and medians over 
NCP and increasing trends over EI are also observed by the two sensors. 
Relative frequencies of NO2 larger than 0.5 DU are 23.0% and 14.8% in 
2017, down from 36.3% and 27.7% in 2012 for OMI and OMPS, 
respectively, over NCP, while NO2 loadings over EI are persistently less 

Fig. 2. Trends of VCD of OMI SO2 (a) and NO2 (b) and OMPS SO2 (c) and NO2 (d) during April 2012–July 2018. Only pixels that show trends at 95% confidence level 
and over land are shown. South Atlantic Anomaly (SAA) region is masked by grey ellipse. (e) and (f) are trends of OMPS SO2 and NO2, respectively, over North China 
Plain (NCP) and Eastern India (EI) at various radiative cloud fraction thresholds. Trends that are at 95% confidence level and not are shown by solid circles and open 
circles, respectively. 
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than 0.5 DU. If the threshold is 0.15 DU, relative frequencies over EI rise 
from 2.7% and 0.0% to 16.0% and 3.5% for OMI and OMPS, 
respectively. 

4.2. U.S 

In contrast to overall consistent finding over China and India, the 
averages of OMI and OMPS SO2 retrievals sampled at EPA sites as well as 
their trends are quite different. EPA in situ SO2 observations show hot 
spots over Illinois, Indiana, Ohio, and Pennsylvania states (Fig. 6a), 
where OMPS (Fig. 6b) also detects large SO2, while OMI (Fig. 6c) does 
not. Moreover, the R between OMPS SO2 retrievals and EPA in situ SO2 
observations is 0.27 (p < 0.01) while there is no correlation between 
OMI retrievals and EPA observations (R ¼ 0.08, p > 0.05). OMPS SO2 
retrievals are in the range of 0.08–0.35 DU (Fig. 6c) which are much 
larger than OMI counterparts of being less than 0.07 DU. Although many 
EPA sites over eastern U.S. show decreasing trends of SO2 (Fig. 6d), OMI 

detects only downward trends at a small number of EPA sites over 
eastern U.S. and both upward and downward trends are detected by 
OMPS. 

The typical SO2 levels over the U.S. are quite low, and likely below 
the detection limit of OMI SO2 retrieval algorithm, as illustrated by the 
lack of spatial correlation between OMI SO2 and EPA in situ observa-
tions. While both OMI and OMPS have very stable performance over 
time with less than 0.5% degradation per year, long-term trends over 
regions with low SO2 concentrations determined from OMI and OMPS 
retrievals may be impacted by small instrumental changes (Schenkeveld 
et al., 2017; Seftor et al., 2014), which have not yet been corrected in the 
OMI and OMPS products used in this investigation. 

For NO2, the averages of OMI and OMPS retrievals sampled at EPA 
sites are similar, while their trends are quite different. EPA observations, 
OMI retrievals, and OMPS retrievals all detect NO2 hotspots around Los 
Angeles, Chicago and New York (Fig. 6g–i); the R values for EPA in situ 
observations with OMI and OMPS retrievals are 0.61 (p < 0.01) and 0.50 

Fig. 3. (a) and (c) are relative frequency of OMI and OMPS SO2 vertical column density (regrided in 1� � 1� gridbox) as a function of month over Northern China 
Plain (black box in Fig. 1) during April 2012–March 2018, respectively. (b) and (d) are similar to (a) and (c), respectively, but for Eastern India (red box in Fig. 1). 
(e)–(h) are similar to (a)–(d), respectively, but for NO2. 
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(p < 0.01), respectively. OMI and EPA consistently show decreasing 
trends; conversely, OMPS detects increasing trends. 

4.3. Europe 

OMPS SO2 is larger than OMI over Europe, and neither of the two 
products shows significant trend. OMPS SO2 is in the range of 0.15–0.25 
DU (Fig. 1c) over almost all the Europe, which contrasts to the small 
values of less than 0.1 DU for OMI (Fig. 1a). OMPS observes large SO2 
levels over England, Bosnia and Herzegovina, Serbia, and Bulgaria, 
where large coal-fired power plants exist (Fioletov et al., 2016), and 
similarly, OMI also detects these hot spots except England. There are, 
however, no significant trend observed by either of the two products 
over these countries. 

For NO2, OMI and OMPS show a similar spatial pattern over Europe 
while trends are not always in accord. OMI and OMPS observe NO2 hot 
spots around metropolises which include Manchester, Liverpool, and 
London in England, Amsterdam in Netherlands, Brussels in Belgium, 
Cologne, Frankfurt, and Berlin in Germany, Paris in France, and Moscow 
in Russia, and industrial areas around Milan in Italy and Katowice in 
Poland (Fig. 1b and d). Decreasing trends over areas around London in 
England, Amsterdam in Netherland, Brussels in Belgium, Cologne and 
Frankfurt in German, Milan in Italy are detected by OMI while OMPS 
does not show trends in those regions (Fig. 2b and d). Both instruments, 
however, observe enhanced NO2 levels over western Turkey (Fig. 2b and 
d). 

Fig. 4. Time series of monthly SO2 and NO2, and their decompositions over Northern China Plain (black box in Fig. 1) and Eastern India (red box in Fig. 1). (a) and 
(c) are SO2 over Northern China Plain from OMI, OMPS, respectively. (e) and (g) are similar to (a) and (c) but for NO2. (b), (d), (f), and (h) are similar to (a), (c), (e), 
and (g) but for Eastern India. Satellite vertical column density (blue line) is decomposed into linear trend (red line), seasonal component (green line), and noise (black 
line). Linear trend ω and its standard deviation σω are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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5. Discussion 

SO2 and NO2 tropospheric VCD retrievals from OMI and OMPS are 
compared, which reveals their inconsistencies at different regions and 
seasons. Discussion of several factors that may or may not cause the 
differences of loadings and trend signs of SO2 and NO2 from both an 
algorithm and sensor characteristics point of view are provided below. 

First, some differences can be explained by analyzing the bias and 
trends over the clean equatorial Pacific ocean (10�S–10�N, 
120�W–150�W) where averages and trends of SO2 and NO2 are expected 
to be zero. Thus, the non-zero averages and trends are considered as 
systematic artifacts inherent in the algorithm. Positive OMPS SO2 trends 
widely exist over remote clean ocean (Fig. S1c in the supporting infor-
mation), and a positive trend of 8.9 � 10� 4 DU/year (Fig. S2b) even exist 
over the clean equatorial Pacific ocean; in contrast, OMI observes both 
positive and negative SO2 trends randomly exist over remote clean 
ocean (Fig. S1a), and the positive trend of 7.3 � 10� 5 DU/year (Fig. S2a) 
over the clean equatorial Pacific ocean for OMI is much less than that 
derived from OMPS. For NO2 over clean ocean, OMPS retrievals 
generally show positive trends (Fig. S1d), while OMI retrievals overall 
show negative trends (Fig. S1b); the NO2 trends are 7.4 � 10� 5 DU/year 
for OMPS (Fig. S2d) and � 1.0 � 10� 4 DU/year (Fig. S2c) for OMI. Thus, 
the positive SO2 and NO2 trends (artifacts) derived from OMPS may 
partly explain why (a) inconsistent NO2 trends are found over Europe 
and (b) notable differences are found over U.S. where OMI SO2 and 
NO2’s declining trends are consistent with surface observations, but 
OMPS SO2, albeit its better spatial agreement with surface data, shows 
increasing trends. 

Second, averages of SO2 over the clean equatorial Pacific ocean 

(10�S–10�N, 120�W–150�W) are 0.0035 DU for OMI and 0.0789 DU for 
OMPS (Fig. S2), and these values are considered as systematic bias. The 
differences of average SO2 between OMPS and OMI are 0.12 DU globally 
and 0.2 DU over Eastern China; their counterparts, after bias correction, 
decrease to 0.04 DU and 0.12 DU respectively. Bias correction partly 
helps to reconcile the two products, but the large differences still exist. 

Third, NO2 fitting windows are 345–378 nm for OMPS and 402–465 
nm for OMI, but such difference is not expected to lead to inconsistent 
NO2 trends over the US and Europe between OMI and OMPS. NO2 
absoportion cross sections have larger differential structures in the range 
of 402–465 nm than 345–378 nm, thus the fitting window of 402–465 
nm is more suitable for retrieving NO2. Inspite of this, Slant Column 
Density (SCD) precision is about 0.033 DU for both OMPS and OMI 
(Krotkov et al., 2017; Yang et al., 2014). OMI NO2 SCD is retrieved by a 
DOAS approach and it is converted to VCD by a AMF. The OMI NO2 AMF 
is assumed to be wavelength-independent. This assumption could lead 
to errors in the VCD, but we don’t expect the error can change the sign of 
NO2 trend. OMPS NO2 is retrieved through Direct Vertical Column 
Fitting (DVCF) algorithm. In the DVCF approach, average AMF (or 
photon path lengths) for each wavelength, which is implicitly deter-
mined in the spectral fitting process is used. Thus, for OMPS NO2 VCD, 
wavelength-dependent AMF is considered, and this is a key improve-
ment of the DVCF approach over the DOAS method (Yang et al., 2014). 
However, DVCF method itself presumably won’t lead to statistically 
significant trend in the retrieval products. 

Fourth, aerosols are not considered in AMF calculation by the algo-
rithms generating the data used in this study. This simplification may 
affect trend strength to some extent. McLinden et al. (2016) estimated 
that uncertainty of AMF due to aerosols is 10% by adjusting aerosol 

Fig. 5. (a) and (b) are relative frequency of 
OMI and OMPS SO2 vertical column density 
(regrided in 1� � 1� gridbox) as a function of 
year over Northern China Plain (NCP, black 
box in Fig. 1) during April 2012–March 
2018, respectively. (c) and (d) are similar to 
(a) and (b), respectively, but for Eastern 
India (EI, red box in Fig. 1). (e)–(h) are 
similar to (a)–(d), respectively, but for NO2. 
(For interpretation of the references to color 
in this figure legend, the reader is referred to 
the Web version of this article.)   

Y. Wang and J. Wang                                                                                                                                                                                                                         



Atmospheric Environment 223 (2020) 117214

8

optical depth of �0.25 and recalculating AMFs. Considering AOD trends 
are less than 0.04 per year (or 0.25 during April 2012–July 2018) almost 
everywhere (except some regions over China and Western Asia) 
(Fig. S3), we can expect that the impact aerosol loading on SO2 and NO2 
trends are less than 10% at most locations, which doesn’t change the key 
results of our findings. 

Finally, both systematic bias and random error can also be intro-
duced in the SO2 retrievals due to O3 interference, which may affect 
trend analysis. Trends derived over the clean equatorial Pacific ocean 
(10�S–10�N, 120�W–150�W) (Fig. S2) can be considered as the lower 
limit of systematic bias over other regions. In the trend analysis, time 
series of original retrievals are decomposed into linear trend, seasonal 
component, and noise. The random error due to O3 interference is ex-
pected in the noise part, thus they should not affect trend estimations, 
but affect standard deviations of trend. 

In summary, the user guides for OMPS and OMI SO2 and NO2 data 
are followed in our analysis, and so a thorough analysis of the algorithm 
differences that contribute to the product difference is out the scope of 
this study that has a primary focus on the data analysis. For OMPS Level- 
2 product, we only use data labeled as good pixel. Data quality control 
has been applied to the generation of OMI Level-3 product from its 
Level-2 data, and consequently, all OMI Level-3 data are considered as 
good. Nevertheless, to reconcile the differences of SO2 and NO2 CDRs 
from different sensors and algorithms, algorithm inter-comparison 
studies supplemented with ground-based observations for validating 
the data products are needed. 

6. Conclusions 

Satellite-based CDRs for atmospheric SO2 and NO2 play an increas-
ingly significant role in trend analysis. We compared CDRs of SO2 and 

NO2 tropospheric VCD retrievals from OMI and OMPS during their 
overlapped period (2012–2018) and showed their consistencies and 
inconsistencies. The two sensors observe similar spatial distribution of 
SO2 and NO2 globally. OMPS SO2 is much larger than OMI SO2 in global 
average, while NO2 difference is much smaller than SO2 difference. The 
inconsistencies among CDRs can be caused by differences in sensors, 
calibration procedures, sampling processes, retrieval algorithms and 
spatial aggregation/averaging approaches (Levy et al., 2015), which 
should be addressed in future studies. The differences of magnitudes and 
trends observed by the two sensors vary by region. 

Both OMI and OMPS observe large SO2 and NO2 levels over North 
China Plain as well as Eastern India, although OMI SO2 is systemically 
lower than OMPS. Despite magnitude variation between OMI and 
OMPS, downward (upward) trends of mean, median, maximum, and the 
frequency of extreme event for SO2 and NO2 are detected by the two 
sensors over North China Plain (Eastern India). Radiative cloud fraction 
has no impact on trend signs, but is positively correlated with trend 
magnitudes. 

OMI and OMPS NO2 are spatial correlated with EPA in situ surface 
measurements over the U.S., but for SO2, only OMPS shows significant 
spatial correlation with EPA data. Downward trends of SO2 and NO2 are 
found by OMI, which are consistent with EPA surface observations, 
while OMPS mainly show upward trends for both SO2 and NO2. Over 
Europe, SO2 and NO2 hot spots are observed by OMI and OMPS over 
metropolises and industrial areas. Although both show no SO2 trends, 
OMI and OMPS NO2 trends are not always in accord with each other. 

Surface SO2 and NO2 levels have become low and stable in some 
regions of the U.S. and Europe. As a result, future research should focus 
on local areas around pollution sources, hence requiring data with 
higher spatial resolution. TROPOMI (Veefkind et al., 2012) was 
launched in 2017 and provides SO2 and NO2 retrievals with higher 

Fig. 6. (a) is averages of EPA in situ SO2 during April 2012–December 2017. (b) and (c) are averages of OMI and OMPS SO2 VCD sampled at EPA sites, respectively. 
(d), (e), and (f) are trends of EPA in situ SO2, OMI SO2 VCD and OMPS SO2 VCD, respectively. (g)–(l) are similar to (a)–(f), but for NO2. Only sites that show trends at 
95% confidence level are plotted. 
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spatial resolution (7 km � 3.5 km) than both OMI (13  km � 24 km) and 
OMPS (50  km � 50 km). Considering the short lifetime of SO2 and NO2 
in the troposphere, the importance of satellite observations will be 
enhanced by the launch of geostationary satellites which includes 
TEMPO (Zoogman et al., 2017) monitoring North America, Sentinel-4 
(Ingmann et al., 2012) monitoring Europe, and GEMS (Kim, 2012) 
monitoring Eastern Asia in the near future. All these advancements will 
provide hourly SO2 and NO2 retrievals during daytime with high spatial 
resolution (2.1 km � 4.4 km for TEMPO, 8.9 km � 11.7 km for 
Sentinel-4, and 7 km � 8 km for GEMS). These high-resolution data 
enable an unprecedented opportunity to investigate SO2 and NO2 vari-
ability in different spatiotemporal scale, thereby providing benchmarks 
to address OMPS-OMI trend differences revealed in this study, especially 
those over developed countries where pollutant levels are low and trend 
signals (if any) can be difficult to be sensed by the current generation of 
satellite sensors. 
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