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Abstract

The global long-term Climate Data Records (CDRshawhospheric Sgand NQ have been
obtained from multiple satellite sensors since E9%hd all these CDRs show consistently
decreasing trends in developed countries and isicrgdrends in developing countries prior to
2010. However, much less clear is the quantitatifferences among these CDRs and how such
differences affect the inferences for atmosphe@ &d NQ climatology in terms of their
annual means as well as their frequency distribstitiere, we compare and contrast the CDRs
from the aged OMI sensor (the flagship for measuriNOG, and SQ@since 2005) and
the young OMPS sensor series (that started megshfth and SQ in 2012 and will continue in
next 2-3 decades). We show that after 2012, tHferdiice of average S®etween OMPS and
OMl is 0.12 DU and it only decreases to 0.04 Dl¢mhiias correction, despite their consistence
in spatial pattern. NOCDRs from OMPS and OMI overall exhibit generalesgnent in both
magnitude and spatial pattern between. Furtherntbee CDR differences can lead to the
opposite trend signs in developed countries anddiffieulty to reconcile trend magnitude in
developing countries. Notable consistence in trggds does exist, regardless of radiative cloud
fraction, mainly showing decline of S@nd NQ in China and increasing in Indian; much
inconsistence is, however, found in many parts @fetbped countries. No S@ends and
inconsistent N@trends are found over Europe, and notable diffesenare found over U.S.
where OMI SQ@ and NQ’s declining trends are consistent with surfaceeolions, but OMPS
SO, albeit itsbetter spatial agreement with surface data, shoereasing trend. This study calls
the importance to assess CDRs from different sigtedensors with the account of frequency
distributions for extreme events. This importanseeimergent as the atmospheric,%6d
NO, amounts are closer to the uncertainties of stgddised retrievals in developed countries
and are or will be declining in developing courdrie the coming decades, all of which make the

detection of signs, magnitudes, and spatiotempubchbtomy a challenge from space.

Keywords: SO, NO,, OMPS, OMI, Inconsistent trends
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1. Introduction

SO, and NQ are the largest contributors to anthropogenic sso(Seinfeld & Pandis, 2016).
Hence, a Climate Data Record (CDR) describing tkpatial and temporal variations have
shown to be critical to investigate atmospheric position and climate change especially as a
result of aerosol radiative forcing (Myhre et 2013). Furthermore, these CDRs have been used
to study processes such as emissions (Qu et al7, Bdreets et al., 2013; Y. Wang et al., 2016),
deposition (Liu et al., 2017), transport (Zhou kf 2012), chemistry (Valin et al., 2013), and
trends of atmospheric S@nd NQ (Kharol et al., 2015; Kharol et al., 2017; Krotketsal., 2016;
Lamsal et al., 2015; Andreas Richter et al., 2@0Wu et al., 2012). Here, according to National
Research Council (2014), CDR is defined as “a temes of measurements of sufficient length,
consistency and continuity to determine climate iality and change”, and hence,

anthropogenic climate change is an inherent patteCDR.

Satellites have been providing observation-basebla)lSQ and NQ CDRs for more than two
decades, which contrasts with ground in situ olmtemal sites that are sparse and unevenly
distributed in space. The global tropospheric \aftiColumn Density (VCD) distributions of
SO, and NQ were first retrieved by Global Ozone Monitoring@ximent (GOME) during
1996-2004 (Burrows et al., 1999; Lee et al., 200@8rtin et al., 2002), and are subsequently
continued by two GOME-2 sensors since 2006 and 2€dgpectively (Munro et al., 2016;
Nowlan et al., 2011; A. Richter et al., 2011), lyaBning Imaging Absorption SpectroMeter for
Atmospheric CHartographY (SCIAMACHY) during 2002420 (Bovensmann et al., 1999; Lee
et al., 2009), by Ozone Monitoring Instrument (OMince 2004 (Krotkov et al., 2017; Li et al.,

2013), by two Ozone Mapping and Profiler Suite (G)IPsensors since 2011 and 2017,
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respectively (Yang et al., 2014; Yang et al., 20480 by TROPOspheric Monitoring Instrument
(TROPOMI) since 2017 (Veefkind et al., 2012). Thed OMPS is scheduled to launch in 2022

and will extend the long-term CDRs of génd NQ for the next 2-3 decades.

Observations from GOME, GOME-2, SCIAMACHY, and Ohve been widely applied to
estimate S@and NQ trends. However, in most past studies, only CDBsfsingle sensor were
used to study corresponding S&nd NQ trend during the sub-period (usually no more th@n
years) of the past two decades, and the resulisdvhy region and time period (Kharol et al.,
2015; Kharol et al., 2017; Krotkov et al., 2016;msal et al., 2015; Schneider et al., 2015;
Schneider & van der A, 2012; Zhou et al., 2012). $tadies that using CDRs from two or more
sensors, with or without adjusting bias among CREg attention was paid to quantitatively
compare difference of these CDRs for their overabpme period (Georgoulias et al., 2019;
Ghude et al., 2009; Hilboll et al., 2013; Lin et &019; Richter et al., 2005; van der A et al.,

2006), or only focus on strong polluted regionsg@d et al., 2017).

Despite the progress in trend analysis of &ad NQ from GOME, GOME-2, SCIMACHY,
and OMI CDRs, outstanding questions remain espgci@garding the consistencies or
differences of trend sign and magnitude detecteditigrent sensors, the impacts of cloud on
trend detection, and the change of frequency Higinn or probability density functions for both
species that include not only mean, but also mealmhextreme values. Addressing these issues
is critical due to three factors. Firstly, emissibecline at slower pace over developed countries
(Jiang et al., 2018) is expected to make weak tegguials that may or may not be consistently
described by different satellite CDRs, which has lmeen revealed in literature. Secondly,,SO
and NQ CDRs are usually retrieved under all-sky condgiavhile the impact of cloud cover

selection on trend detection is still unclear. @iy past researches focused on analyzing trends
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of monthly or yearly mean rather than evolutionfreiquency of extreme SCand NQ event
while the latter is more meaningful for air qualggientific community. These problems are
compounded as trend analysis of ND@d SQ after 2010 may be subject to large uncertainties
caused by row anomalies (Schenkeveld et al., 201aged OMI as well as that large differences
in overpassing times of GOME, SCIMACHY and GOMEgamst OMI, which ultimately lead

to no temporal overlaps with OMI. Fortunately, OM&t8rted observations in 2012 with similar
overpassing time of OMI, and in this work, we mdke first attempt to address these issues by
using concurrent measurements of tropospheric VEB® and NQ from OMI and OMPS

during April 2012 — July 2018.
2. Data and M ethods
2.1 Data

OMI and OMPS VCD products for S@nd NQ from NASA are used in this study, and their
detailed description is provided in S1 and S2. Bri@©MI SO, retrieved by means of principal
component analysis have the precision of 0.5 DD1= 2.69x16° molecules ci ) (Li et al.,
2013), which is a factor of 2.5 lower than thatQ¥IPS SQ (0.2 DU) retrieved through Direct
Vertical Column Fitting (DVCF) algorithm (Yang eL,a2013). The better precision of OMPS
SO, is possibly caused by the fact that OMPS use@esitetector array to cover 310 nm, where
strong SQ absorption exists, while the band is not usedMi S0, retrieval due to channel split
near 310 nm for OMI (Yang et al., 2013). OMI and P®INQ are retrieved through variation
of differential optical absorption spectroscopyaaithm (Krotkov et al., 2017) and DVCF (Yang
et al., 2014), respectively. Although the precismnNO, total slant column density is about

0.033 DU for both OMPS and OMI, tropospheric VC2@sion is 0.011 DU for OMPS, which
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is better than 0.017 DU for OMI (Krotkov et al., 120 Yang et al., 2014). The precision
difference between OMPS and OMI tropospheric ,N@CD is caused by different
Stratosphere-Troposphere Separation (STS) appreaddkll STS approach uses a small
window to smooth stratospheric VCD, leaving somérinsic measurement noise in the

tropospheric VCD (Yang et al., 2014).

Ground-based daily SCand NQ measurements are obtained from U.S. EPA’s Air Qual

System Data Mart_(https://www.epa.gov/airdata)., 8dmeasured through coulometry or UV

fluorescence methods, and N® observed by chemiluminescence approach (Deanei2i000).
The NG observational method actually measures NO by dposmg NQ to NO, which could
systematically lead to positive bias, as N@&ll compounds that are products of the atmospheri
oxidation of NQ) will be also reduced to NO (Lamsal et al., 2013pwever, the systematic
positive has very small impacts on relative treatugs (Silvern et al., 2019), let alone the sign

of trend.

2.2 Methods

The OMI Level-3 SQ and NQ products at 0.2%0.25 grids are preprocessed to construct

monthly mean datasets atx1° grids through “drop-in-the-box” gridding methoduSet al.,

2018). £x1°, instead of 0.2%0.25 grids are used as OMPS pixel size (50 km x 50 knadir)

is much larger than 0.280.25 grids. In the OMI Level-3 products, only the gixéhat are not

affected by row anomalies and have little cloudtapmnnation, or Radiative Cloud Fraction
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(RCF) < 0.2 and 0.3 for SCand NQ, respectively, are retained. To remove the impatts

transient S@cloud, only retrievals that are less than 15 D& @sed, although passive volcanic
degassing signals still exists. In the researchmamly focus on China, India, the U.S., Europe,
equatorial Pacific ocean (10°S-10°N,120°W-150yWto where volcanic sources do not
contribute S@ except southern Europe ($Osource distribution is available at

https://so2.gsfc.nasa.gov/). The same gridding agmgbr and RCF thresholds are applied to

OMPS SQ and NQ except in the investigation of how cloud affeatsnts, in which RCF
thresholds vary.

Trend analysis approach introduced by Weatherhdadleth et al. (1998) is applied to all
CDRs as well as in situ observations. This methad only detects linear trend with
consideration of seasonal variabilities and ndisg,also conduct statistical significant test of it

The linear trend analysis model is shown as
Vi=u+S+wX;+N, t=1,2,...,T (1)

whereY; is monthly mean time series of observational \deis (SQ or NO,), u is the offset at
the start of time series, T is the total numbemaointh,X, = t/12 is number of yearsy is the
magnitude of linear trend per yeas, = Yj_,[B:;sin(2mjt/12) + B, cos(2mjt/12)]
represents seasonal variations, Aipds noise that cannot be represented by the mogeak
assumed as red noise and representel; as ¢N;_; + &, where¢ is the autocorrelation
betweenV, andN;_; andeg; is white noise. The standard deviation of the lyelamear trend is
represented as

o 1+¢
0w =g @
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wheregy, is the standard deviation &f, and n equal%/12. If the absolute value @/g,, is

larger than 2, it indicates that the linear tremdti 95% confidence level.
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Figure 1. Averages VCD of OMI S©(a) and NQ (b) and OMPS S©(c) and NQ (d) during
April 2012 - July 2018. South Atlantic Anomaly (SARegion is masked by grey ellipse. (e) and
(f) are scatter plots of monthly average of OMPS 8€sus OMI S@ over North China plain
(black box) and Eastern India (red box), respebtivgg) and (h) are similar to (e) and (f),
respectively, but for N@ Also shown on the scatter plots are 1:1 linesliglalinear regression
line (solid), linear regression formula, Pearsonraation coefficient (R), p-value (p), root mean
squared difference (RMSD), number of collocatedrpdN), OMI average and standard
deviation (x), OMPS average and standard deviafgn and density of collocated pairs
(colorbar).

3. Results

Global distributions of S@and NQ from OMI and OMPS during April 2012 - July 201&ar
shown in figure 1. OMI and OMPS observe similartgrats with the largest SQevel over
China and India, followed by Europe, and the Ughd the largest NOlevel over China,

followed by Europe, the U.S., and India. OMPS, @D in global average is 0.129 DU, which
8



176  is much larger than 0.004 DU of OMI, and the Ndfifference is smaller with OMPS and OMI

177 NO, 0.023 DU and 0.017 DU, respectively. Despite gagreement in qualitative description of
178  spatial distribution for both SCand NQ, OMI and OMPS CDRs have significant differences in
179  the magnitudes and trends at regional scale déyomg 2012 - July 2018 (figure 2).
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181  Figure 2. Trends of VCD of OMI S©(a) and NQ@ (b) and OMPS S©&(c) and NQ (d) during
182  April 2012 - July 2018. Only pixels that show trerat 95% confidence level and over land are
183 shown. South Atlantic Anomaly (SAA) region is madkoy grey ellipse. (e) and (f) are trends
184 of OMPS SQ@ and NQ, respectively, over North China Plain (NCP) andtEm India (El) at
185 various radiative cloud fraction thresholds. Tretits are at 95% confidence level and not are
186  shown by solid circles and open circles, respelstive

187

188 3.1 China and India
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Consistent are the locations of hot spots fop 8@ NQ over China and India (figure 1a-d),
the two largest anthropogenic $é&nd NQ emitters in Asia (Janssens-Maenhout et al., 2015).

Both OMI and OMPS observe the largest,S@adings over the North China Plain (NCP),

Sichuan basin (30N, 105 E), and Eastern India (EI) (figure 1a and 1Q.t8 NQ, hot spots

are over NCP, the Yangtze River Delta (megacitgtelts), Sichuan basin, the Pearl River Delta

(megacity clusters), EI, and New Delhi, India’s italpfigure 1b and 1d).

Though consistent qualitatively, tropospheric VCI5@, and NQ from the two sensors over
NCP and EI show systemic differences quantitativEhe averages of OMPS g@re 0.46 DU
and 0.30 DU over the NCP and El, respectively, Whiontrast with lower values of 0.27 DU

and 0.14 DU for OMI (figure 1le and 1f), and pearsomrelation coefficients (R) of OMI and

OMPS monthly mean Sat I'x1° grid cell are 0.56 (figure 1e) and 0.46 (figurg d¥er NCP

and El, respectively. OMPS shows stronger S€asonal variability than OMI with coefficient
of variation (standard deviation over average) ohthly mean 0.34 and 0.33 over NCP and El,
respectively, which are much larger than 0.16 aia® Gor OMI (figure 3). Unlike large SO
difference between OMI and OMPS, averages of OM} K&frievals over the NCP and El are
0.38 DU (figure 1g) and 0.09 DU (figure 1h), redpesdy, only slightly larger than OMI
counterparts of 0.33 DU (figure 1g) and 0.08 Dlgyfie 1h). Moreover, R of monthly averaged
NO, between OMI and OMPS are large as 0.94 (figureahg) 0.84 (figure 1h) over the NCP
and El, respectively. Comparable seasonal variglufiNG, is detected by the two sensors over
NCP (coefficient of variation of 0.43 and 0.47 foMI and OMPS, respectively) as well as El

(coefficient of variation of 0.22 and 0.21 for Olsihd OMPS, respectively) (figure 3).

10
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212 (regrided in 1°x1° gridbox) as a function of moraher Northern China Plain (black box in
213 figure 1) during April 2012 - March 2018, respeeti (b) and (d) are similar to (a) and (c),
214  respectively, but for Eastern India (red box irufigg1). (e)-(h) are similar to (a)-(d), respectyel
215  but for NG.
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217 Despite systematic differences, OMI and OMPS, $@d NQ retrievals constantly show

218 decreasing trends over China and increasing trends India (figure 2a-d). Downward S0
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Figure 4. Time series of monthly S@ind NQ, and their decompositions over Northern China
Plain (black box in figure 1) and Eastern Indiad(i®ox in figure 1). (a) and (c) are SOver
Northern China Plain from OMI, OMPS, respectivdly) and (g) are similar to (a) and (c) but
for NO.. (b), (d), (f), and (h) are similar to (a), (cg)(and (g) but for Eastern India. Satellite
vertical column density (blue line) is decomposedoilinear trend (red line), seasonal
component (green line), and noise (black line)nelr trendv and its standard deviatier), are
shown.

are observed by both OMI and OMPS over the NCR@DDU/yr for OMI and -0.036 DU/yr

for OMPS, shown in figure 4), the Sichuan basir® (80105 E), and Xingjiang province (43\,

85° E), although OMI detects more pixels with decnegsrends than OMPS (Figure 2a and 2c).

Over El, both OMI and OMPS SQ@etrievals observe upward trends (0.013 DU/yrGddl and
0.014 DUlyr for OMPS, shown in figure 4), while OMRletects more pixels with increasing
trends than OMI (Figure 2a and 2c). The contras8@gtrends between NCP and El could be a
result of much higher rate of installation and apien of flue gas desulfurization over China
than India (Krotkov et al., 2016; S. Wang et aQ12). Moreover, India not only has overtaken
U.S. as the world’s second largest,@mitting country in 2014 (Krotkov et al., 2016)tlalso is
surpassing, if not already, China to be the worldtgest S@ emitter in 2016 (Li et al., 2017),
which is reflected by the downward trends over N@B upward trends over El that are detected
by both OMI and OMPS. As for NQboth sensors observe strong decreasing trendstlowe
NCP (-0.026 DU/yr for OMI and -0.018 DU/yr for OMPShown in figure 4), although OMI
observes the weak downward trends that are notteéetby OMPS over parts of Southern China
(Figure 2b and 2d). The penetration of denitratiemices for coal-fired power plants and strict
regulation for vehicle emissions should be primagsons for these reductions (Fei et al., 2016).
Conversely, stronger upward trends of N@er EI (0.005 DU/yr for OMI and 0.003 DU/yr for

OMPS, shown in figure 4) than Western India areded by both OMI and OMPS (figure 2b
13



247  and 2d), which should be mainly ascribed to theeiasing fuel consumption of coal-fired power

248 plants without emission regulation (Krotkov et @0D16).

249 Trends signs detected by OMPS are independent &f B@ trend magnitudes are positively
250 correlated with RCF. OMPS SQNO,) trends change from -0.008 DU/yr (-0.003 DU/yr)-to
251  0.056 DUlyr (-0.023 DU/yr) over NCP and from 0.0DW/yr (0.0022 DU/yr) to 0.018 DU/yr
252 (0.0035 DU/yr) over El as RCF threshold increasemf0.01 to 0.5, and all these trends are at

253  95% confidence level when RCF threshold is notleas 0.1 (figure 2e-f).
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255  Figure 5. (@) and (b) are relative frequency of Cdnid OMPS S@vertical column density
256  (regrided in 1°x1° gridbox) as a function of yeaeoNorthern China Plain (NCP, black box in
257  figure 1) during April 2012 - March 2018, respeeti. (c) and (d) are similar to (a) and (b),
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respectively, but for Eastern India (El, red boxfigure 1). (e)-(h) are similar to (a)-(d),
respectively, but for N®

To investigate the trends of extremely high montimgan S@ and NQ loading, relative
frequency distribution of the two trace gases d&NEP and El as a function of year are shown in
figure 5. Over NCP, OMI and OMPS $@aximums reduce from ~2.0 DU and ~ 2.6 DU in
2012 to ~0.6 DU and ~1.2 DU in 2017, respectivéiigufe 5a and 5b), in contrast to Eastern
India, where they increase from ~0.50 DU and ~033 to ~0.85 DU and ~0.95 DU,
respectively (figure 5c¢ and 5d). Not only OMI antPS SQ loading averages and medians
show downward (upward) trends over NCP (EIl), babdhe relative frequencies of Slarger
than 0.5 DU decrease from 42.7% (47.1%) in 201Q.2686 (24.7%) in 2017 for OMI (OMPS)
over NCP and increase from 0.0% (0.2%) to 2.9%8%).over EI (figure 5a-d). As for NO
maximums of both OMI and OMPS are ~1.9 DU in 20&2ucing to ~1.2 DU and ~0.8 DU in
2017, respectively, over the NCP (figure 5e and &pversely, they increase from ~0.17 DU
and ~0.15 DU to ~0.27 DU and ~0.21 DU, respectivelyer El (figure 5g and 5h). Moreover,
decreasing trends of N@verages and medians over NCP and increasingstoared El are also
observed by the two sensors. Relative frequendibkg larger than 0.5 DU are 23.0% and 14.8%
in 2017, down from 36.3% and 27.7% in 2012 for OA\lid OMPS, respectively, over NCP,
while NO; loadings over El are constantly less the 0.5 Dlhé threshold is 0.15 DU, relative
frequencies over El rise from 2.7 % and 0.0% to0%6.and 3.5% for OMI and OMPS,

respectively.

3.2U.S.
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280 In contrast to overall consistent finding over Ghand India, the averages of OMI and OMPS
281 SO, retrievals sampled at EPA sites as well as theirds are quite different. EPA in situ SO
282  observations show hot spots over lllinois, India@&jo, and Pennsylvania states (figure 6a),
283  where OMPS (figure 6b) also detects large,Sthile OMI (figure 6c) does not. Moreover, the
284  spatial R between OMPS S@trievals and EPA in situ S@bservations is 0.27 (p<0.01) while
285 there is no correlation between OMI retrievals &RA observations (R=0.08, p>0.05). OMPS
286 SO, retrievals are in the range of 0.08 to 0.35 Diduyfe 6¢) which are much larger than OMI
287  counterparts of being less than 0.07 DU. AlthouggnynEPA sites over eastern U.S. show
288 decreasing trends of S@figure 6d), OMI detects only downward trends anaall number of

289 EPA sites over eastern U.S. and both upward anchaavd trends are detected by OMPS.
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Figure 6. (a) is averages of EPA in situ,RMring April 2012 - December 2017. (b) and (c) are
averages of OMI and OMPS $@CD sampled at EPA sites, respectively. (d), éaxd (f) are
trends of EPA in situ SQOMI SO, VCD and OMPS S©VCD, respectively. (g)-(I) are similar
to (a)-(f), but for NQ. Only sites that show trends at 95% confidencellaxe plotted.

The typical SQlevels over the U.S. are quite low, and likely belkbe detection limit of OMI
SO, retrieval algorithm, as illustrated by the lackspfatial correlation between OMI $@nd
EPA in situ observations. While both OMI and OMP&vda very stable performance over time
with less than 0.5% degradation per year, long-téremds over regions with low SO
concentrations determined from OMI and OMPS re#®evmay be impacted by small
instrumental changes (Schenkeveld et al., 201pSet al., 2014), which have not yet been

corrected in the OMI and OMPS products used inithigstigation.

For NO,, the averages of OMI and OMPS retrievals samplefiPA sites are similar, while
their trends are quite different. EPA observatidd®ll retrievals, and OMPS retrievals all detect
NO; hotspots around Los Angeles, Chicago and New Yigglire 6g-i); the spatial R for EPA in
situ observations with OMI and OMPS retrievals &®1 (p<0.01) and 0.50 (p<0.01),
respectively. OMI and EPA consistently show dedrepdrends; conversely, OMPS detects

increasing trends.

3.4 Europe

OMPS SQ is larger than OMI over Europe, and neither oftthe products shows significant
trend. OMPS S@is in the range of 0.15 to 0.25 DU (figure 1c) oeémost all the Europe,
which contrasts to the small value of less tharDJifor OMI (figure 1a). OMPS observes large
SO, levels over England, Bosnia and Herzegovina, Sgdnd Bulgaria, where large coal-fired
power plants exist (Fioletov et al., 2016), and Cdlflo detects these hot spots except England.
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There are, however, no significant trend observedeither of the two products over these

countries.

For NO&,, OMI and OMPS show a similar spatial pattern okZzerope while trends are not
always in accord. OMI and OMPS observe N®t spots around metropolises which include
Manchester, Liverpool, and London in England, Amddien in Netherlands, Brussels in Belgium,
Cologne, Frankfurt, and Berlin in Germany, ParisHrance, and Moscow in Russia, and
industrial areas around Milan in Italy and KatowicePoland (figure 1b and 1d). Decreasing
trends over areas around London in England, Amatarth Netherland, Brussels in Belgium,
Cologne and Frankfurt in German, Milan in Italy atetected by OMI while OMPS does not
show trends in those regions (figure 2b and 2d}hBastruments, however, observe enhanced

NO; levels over western Turkey (figure 2b and 2d).
4. Discussion

SO, and NQ tropospheric VCD retrievals from OMI and OMPS aoenpared, which reveals
their inconsistencies at different regions and sesisDiscussion of several factors that may or
may not cause the differences of loadings and tegds of SO2 and NO2 from both an

algorithm and sensor characteristics point of v@ee/provided below.

First, some differences can be explained by anadyzhe bias and trends over the clean
equatorial Pacific ocean (10°S-10°N,120°W-150yWhere averages and trends of,Smd
NO, are expected to be zero. Thus, the non-zero a@eragd trends are considered as
systematic artifacts inherent in the algorithm. itAes OMPS SQ trends widely exist over
remote clean ocean (Figure Sic in the supportifagrimation), and a positive trend of 8.9X10
DUl/year (Figure S2b) even exist over the clean iz Pacific ocean; in contrast, OMI
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observes both positive and negative, 3@nds randomly exist over remote clean ocearu(Eig
Sla), and the positive trend of 7.3%IDU/year (Figure S2a) over the clean equatorial fiRaci
ocean for OMI is much less than that derived froMRs. For NQ over clean ocean, OMPS
retrievals generally show positive trends (Figured)S while OMI retrievals overall show
negative trends (Figure S1b); the NtBends are 7.4x10DU/year for OMPS (Figure S2d) for
OMI and -1.0x10 DU/year (Figure S2c) for OMI. Thus, the positiv®,Sand NQ trends
(artifacts) derived from OMPS may partly explainya) inconsistent N&rends are found
over Europe and (b) notable differences are fouwmdr dJ.S. where OMI S@and NQ'’s
declining trends are consistent with surface olaerms, but OMPS SQalbeit itsbetter spatial

agreement with surface data, shows increasingdrend

Second, averages of $Over the clean equatorial Pacific ocean (10°S—1TPBFW-150°W)

are 0.0035 DU for OMI and 0.0789 DU for OMPS (Fig@82), and these values are considered
as systematic bias. The differences of average &®veen OMPS and OMI are 0.12 DU
globally and 0.2 DU over Eastern China; their ceqparts, after bias correction, decrease to
0.04 DU and 0.12 DU respectively. Bias correctiamtly helps to reconcile the two products,

but the large differences still exist.

Third, NG; fitting windows are 345-378 nm for OMPS and 40%46n for OMI, but such
difference is not expected to lead to inconsisi¢@t trends over the US and Europe between
OMI and OMPS. OMI N@ Slant Column Density (SCD) is retrieved by a DO#proach and

it is converted to VCD by a AMF. The OMI NOAMF is assumed to be wavelength-
independent. This assumption could lead to errothe VCD, but we don’t expect the error can

change the sign of NCrend. OMPS N@is retrieved through Direct Vertical Column Fitin
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(DVCF) algorithm. In the DVCF approach, average ANGF photon path lengths) for each
wavelength (, which is implicitly determined inetlspectral fitting process) is used. Thus, for
OMPS NQ VCD, wavelength-dependent of AMF is considered] #ms is a key improvement
of the DVCF approach over the DOAS method (Yanglgt2014). However, DVCF method

itself presumably won't lead to statistically sificant trend in the retrieval products.

Fourth, aerosols are not considered in AMF calautaby the algorithms generating the data
used in this study. This simplification may afféend strength to some extent. McLinden et al.
(2016) estimated that uncertainty of AMF due tooaels is 10% by adjusting aerosol optical
depth of £0.25 and recalculating AMFs. Conside@D trends are less than 0.04 per year (or
0.25 during April 2012 - July 2018) almost everywéexcept some regions over China and
Western Asia) (Figure S3), we can expect thatripgact aerosol loading on $@nd NQ trends

are less than 10% at most locations, which does$rhge the key results of our findings.

Finally, both systematic bias and random erroralaa be introduced in the $@trievals due to
Os interference, which may affect trend analysisn@iseederived over the clean equatorial Pacific
ocean (10°S-10°N,120°W-150°W (Figure S2) can be considered as the lower liofit
systematic bias over other regions. In the treralyais, time series of original retrievals are
decomposed into linear trend, seasonal componaat,naise. The random error due tg O
interference is expected in the noise part, thag #hould not affect trend estimations, but affect

standard deviations of trend.
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In summary, the user guides for OMPS and OM} 8@ NQ data are used in our analysis, and
so, a thorough analysis of the algorithm differentf&at contribute to the product difference is
out the scope of this study that has a primary domo the data analysis. For OMPS Level-2
product, we only use data labeled as good pixeta Q@ality control has been applied to in
generation of OMI Level-3 product from its Levedata, and here; all OMI Level-3 data are
considered as good. Nevertheless, to reconcileditfierences of S@ and NQ CDRs from

different sensors and algorithms, algorithm intemparison studies supplemented with ground-

based observations for validating the data prodargsieeded.

5. Conclusions

Satellite-based CDRs for atmospheric,S™d NQ play an increasingly significant role in
trend analysis. We compared CDRs of,3@d NQ tropospheric VCD retrievals from OMI and
OMPS during their overlapped period (2012-2018) asibwed their consistencies and
inconsistencies. The two sensors observe similatigpdistribution of S@ and NQ globally.
OMPS SQ is much larger than OMI SOn global average, while NQdifference is much
smaller than S@difference. The inconsistencies among CDRs canabsed by differences in
sensors, calibration procedures, sampling processesieval algorithms and spatial
aggregation/averaging approaches (Levy et al., R0dhich should be addressed in future

studies. The differences of magnitudes and trebderved by the two sensors vary by region.

Both OMI and OMPS observe large S&nd NQ levels over North China Plain as well as
Eastern India, although OMI $@ systemically lower than OMPS. Despite magnituaeation
between OMI and OMPS, downward (upward) trends eam median, maximum, and the

frequency of extreme event for $@d NQ are detected by the two sensors over North China

21



404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

Plain (Eastern India). Radiative cloud fraction masimpact on trend signs, but is positively

correlated with trend magnitudes.

OMI and OMPS NQ@ are spatial correlated with EPA in situ surfaceasugements over the
U.S., but for S@ only OMPS shows significant spatial correlatiotim\EPA. Downward trends
of SO, and NQ are found by OMI, which are consistent with EPAface observations, while
OMPS mainly show upward trends for both,Sdd NQ. Over Europe, S©and NQ hot spots
are observed by OMI and OMPS over metropolisesihastrial areas. Although both show no

SO, trends, OMI and OMPS NQrends are not always in accord with each other.

Surface S@ and NQ levels have become low and stable in some regibrtee U.S. and
Europe. As a result, future research should foaudocal areas around their sources, hence
requiring data with higher spatial resolution. TRON (Veefkind et al., 2012) was launched in
2017 and would provide S@nd NQ retrievals with higher spatial resolution (7 kn8% km)
than both OMI (13km x 24 km) and OMPS (50km x 50) k@onsidering the short lifetime of
SO, and NQ in the troposphere, the importance of satelliteeobations will be enhanced by the
launch of geostationary satellites which includésMPO (Zoogman et al., 2017) monitoring
North America, Sentinel-4 (Ingmann et al., 2012)nitaring Europe, and GEMS (Kim, 2012)
monitoring Eastern Asia in the near future. Allseedvancements will provide hourly S&hd
NO; retrievals during daytime with high spatial resimo (2.1 km x 4.4 km for TEMPO, 8.9 km
x 11.7 km for Sentinel-4, and 7 km x 8km for GEM3hese high-resolution data enable an
unprecedented opportunity to investigate, &0d NQ variability in different spatiotemporal
scale, thereby providing benchmarks to address QMRS trend differences revealed in this
study, especially those over developed countriesrgvpollutant levels are low and trend signals

(if any) can be difficult to be sensed by the catrgeneration of satellite sensors.
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