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Abstract 23 

The global long-term Climate Data Records (CDRs) of atmospheric SO2 and NO2 have been 24 

obtained from multiple satellite sensors since 1990s, and all these CDRs show consistently 25 

decreasing trends in developed countries and increasing trends in developing countries prior to 26 

2010. However, much less clear is the quantitative differences among these CDRs and how such 27 

differences affect the inferences for atmospheric SO2 and NO2 climatology in terms of their 28 

annual means as well as their frequency distributions. Here, we compare and contrast the CDRs 29 

from the aged OMI sensor (the flagship for measuring NO2 and SO2 since 2005) and 30 

the young OMPS sensor series (that started measuring NO2 and SO2 in 2012 and will continue in 31 

next 2-3 decades). We show that after 2012, the difference of average SO2 between OMPS and 32 

OMI is 0.12 DU and it only decreases to 0.04 DU after bias correction, despite their consistence 33 

in spatial pattern. NO2 CDRs from OMPS and OMI overall exhibit general agreement in both 34 

magnitude and spatial pattern between.  Furthermore, the CDR differences can lead to the 35 

opposite trend signs in developed countries and the difficulty to reconcile trend magnitude in 36 

developing countries.  Notable consistence in trend signs does exist, regardless of radiative cloud 37 

fraction, mainly showing decline of SO2 and NO2 in China and increasing in Indian; much 38 

inconsistence is, however, found in many parts of developed countries. No SO2 trends and 39 

inconsistent NO2 trends are found over Europe, and notable differences are found over U.S. 40 

where OMI SO2 and NO2’s declining trends are consistent with surface observations, but OMPS 41 

SO2, albeit its better spatial agreement with surface data, shows increasing trend. This study calls 42 

the importance to assess CDRs from different satellite sensors with the account of frequency 43 

distributions for extreme events. This importance is emergent as the atmospheric SO2 and 44 

NO2 amounts are closer to the uncertainties of satellite-based retrievals in developed countries 45 

and are or will be declining in developing countries in the coming decades, all of which make the 46 

detection of signs, magnitudes, and spatiotemporal dichotomy a challenge from space.  47 

 48 

Keywords: SO2, NO2, OMPS, OMI, Inconsistent trends  49 
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1. Introduction 50 

SO2 and NO2 are the largest contributors to anthropogenic aerosols (Seinfeld & Pandis, 2016). 51 

Hence, a Climate Data Record (CDR) describing their spatial and temporal variations have 52 

shown to be critical to investigate atmospheric composition and climate change especially as a 53 

result of aerosol radiative forcing (Myhre et al., 2013). Furthermore, these CDRs have been used 54 

to study processes such as emissions (Qu et al., 2017; Streets et al., 2013; Y. Wang et al., 2016), 55 

deposition (Liu et al., 2017), transport (Zhou et al., 2012), chemistry (Valin et al., 2013), and 56 

trends of atmospheric SO2 and NO2 (Kharol et al., 2015; Kharol et al., 2017; Krotkov et al., 2016; 57 

Lamsal et al., 2015; Andreas Richter et al., 2005; Zhou et al., 2012). Here, according to National 58 

Research Council (2014), CDR is defined as “a time series of measurements of sufficient length, 59 

consistency and continuity to determine climate variability and change”, and hence, 60 

anthropogenic climate change is an inherent part of the CDR. 61 

 62 

Satellites have been providing observation-based global SO2 and NO2 CDRs for more than two 63 

decades, which contrasts with ground in situ observational sites that are sparse and unevenly 64 

distributed in space. The global tropospheric Vertical Column Density (VCD) distributions of 65 

SO2 and NO2 were first retrieved by Global Ozone Monitoring Experiment (GOME) during 66 

1996-2004 (Burrows et al., 1999; Lee et al., 2009; Martin et al., 2002), and are subsequently 67 

continued by two GOME-2 sensors since 2006 and 2011, respectively (Munro et al., 2016; 68 

Nowlan et al., 2011; A. Richter et al., 2011), by SCanning Imaging Absorption SpectroMeter for 69 

Atmospheric CHartographY (SCIAMACHY) during 2002-2012 (Bovensmann et al., 1999; Lee 70 

et al., 2009), by Ozone Monitoring Instrument (OMI) since 2004 (Krotkov et al., 2017; Li et al., 71 

2013), by two Ozone Mapping and Profiler Suite (OMPS) sensors since 2011 and 2017, 72 
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respectively (Yang et al., 2014; Yang et al., 2013), and by TROPOspheric Monitoring Instrument 73 

(TROPOMI) since 2017 (Veefkind et al., 2012). The third OMPS is scheduled to launch in 2022 74 

and will extend the long-term CDRs of SO2 and NO2 for the next 2-3 decades. 75 

Observations from GOME, GOME-2, SCIAMACHY, and OMI have been widely applied to 76 

estimate SO2 and NO2 trends. However, in most past studies, only CDRs from single sensor were 77 

used to study corresponding SO2 and NO2 trend during the sub-period (usually no more than 10 78 

years) of the past two decades, and the results varied by region and time period (Kharol et al., 79 

2015; Kharol et al., 2017; Krotkov et al., 2016; Lamsal et al., 2015; Schneider et al., 2015; 80 

Schneider & van der A, 2012; Zhou et al., 2012). For studies that using CDRs from two or more 81 

sensors, with or without adjusting bias among CRDs, little attention was paid to quantitatively 82 

compare difference of these CDRs for their overlapped time period (Georgoulias et al., 2019; 83 

Ghude et al., 2009; Hilboll et al., 2013; Lin et al., 2019; Richter et al., 2005; van der A et al., 84 

2006), or only focus on strong polluted regions (Zhang et al., 2017).  85 

Despite the progress in trend analysis of SO2 and NO2 from GOME, GOME-2, SCIMACHY, 86 

and OMI CDRs, outstanding questions remain especially regarding the consistencies or 87 

differences of trend sign and magnitude detected by different sensors, the impacts of cloud on 88 

trend detection, and the change of frequency distribution or probability density functions for both 89 

species that include not only mean, but also median and extreme values.  Addressing these issues 90 

is critical due to three factors. Firstly, emission decline at slower pace over developed countries 91 

(Jiang et al., 2018) is expected to make weak trend signals that may or may not be consistently 92 

described by different satellite CDRs, which has not been revealed in literature. Secondly, SO2 93 

and NO2 CDRs are usually retrieved under all-sky conditions while the impact of cloud cover 94 

selection on trend detection is still unclear. Thirdly, past researches focused on analyzing trends 95 
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of monthly or yearly mean rather than evolution of frequency of extreme SO2 and NO2 event 96 

while the latter is more meaningful for air quality scientific community. These problems are 97 

compounded as trend analysis of NO2 and SO2 after 2010 may be subject to large uncertainties 98 

caused by row anomalies (Schenkeveld et al., 2017) in aged OMI as well as that large differences 99 

in overpassing times of GOME, SCIMACHY and GOME-2 against OMI, which ultimately lead 100 

to no temporal overlaps with OMI. Fortunately, OMPS started observations in 2012 with similar 101 

overpassing time of OMI, and in this work, we make the first attempt to address these issues by 102 

using concurrent measurements of tropospheric VCD of SO2 and NO2 from OMI and OMPS 103 

during April 2012 – July 2018.  104 

2. Data and Methods 105 

2.1 Data 106 

OMI and OMPS VCD products for SO2 and NO2 from NASA are used in this study, and their 107 

detailed description is provided in S1 and S2. Briefly, OMI SO2 retrieved by means of principal 108 

component analysis have the precision of 0.5 DU (1 DU = 2.69x1016 molecules cm-2 ) (Li et al., 109 

2013), which is a factor of 2.5 lower than that of OMPS SO2 (0.2 DU) retrieved through Direct 110 

Vertical Column Fitting (DVCF) algorithm (Yang et al., 2013).  The better precision of OMPS 111 

SO2 is possibly caused by the fact that OMPS use a single detector array to cover 310 nm, where 112 

strong SO2 absorption exists, while the band is not used in OMI SO2 retrieval due to channel split 113 

near 310 nm for OMI (Yang et al., 2013). OMI and OMPS NO2 are retrieved through variation 114 

of differential optical absorption spectroscopy algorithm (Krotkov et al., 2017) and DVCF (Yang 115 

et al., 2014), respectively. Although the precision of NO2 total slant column density is about 116 

0.033 DU for both OMPS and OMI, tropospheric VCD precision is 0.011 DU for OMPS, which 117 
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is better than 0.017 DU for OMI (Krotkov et al., 2017; Yang et al., 2014). The precision 118 

difference between  OMPS  and OMI tropospheric NO2 VCD is caused by different 119 

Stratosphere-Troposphere Separation (STS) approaches; OMI STS approach uses a small 120 

window to smooth stratospheric VCD, leaving some intrinsic measurement noise in the 121 

tropospheric VCD (Yang et al., 2014).   122 

 123 

Ground-based daily SO2 and NO2 measurements are obtained from U.S. EPA’s Air Quality 124 

System Data Mart (https://www.epa.gov/airdata). SO2 is measured through coulometry or UV 125 

fluorescence methods, and NO2 is observed by chemiluminescence approach (Demerjian, 2000). 126 

The NO2 observational method actually measures NO by decomposing NO2 to NO, which could 127 

systematically lead to positive bias, as NOz (all compounds that are products of the atmospheric 128 

oxidation of NOx) will be also reduced to NO (Lamsal et al., 2015). However, the systematic 129 

positive has very small impacts on relative trend values (Silvern et al., 2019), let alone the sign 130 

of trend. 131 

2.2 Methods 132 

The OMI Level-3 SO2 and NO2 products at 0.25°x0.25° grids are preprocessed to construct 133 

monthly mean datasets at 1°x1° grids through “drop-in-the-box” gridding method (Sun et al., 134 

2018). 1°x1°, instead of 0.25°x0.25° grids are used as OMPS pixel size (50 km x 50 km at nadir) 135 

is much larger than 0.25°x0.25° grids.  In the OMI Level-3 products, only the pixels that are not 136 

affected by row anomalies and have little cloud contamination, or Radiative Cloud Fraction 137 
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(RCF) < 0.2 and 0.3 for SO2 and NO2, respectively, are retained. To remove the impacts of 138 

transient SO2 cloud, only retrievals that are less than 15 DU are used, although passive volcanic 139 

degassing signals still exists. In the research, we mainly focus on China, India, the U.S., Europe, 140 

equatorial Pacific ocean (10°S–10°N,120°W–150°W ), to where volcanic sources do not 141 

contribute SO2 except southern Europe (SO2 source distribution is available at 142 

https://so2.gsfc.nasa.gov/). The same gridding approach and RCF thresholds are applied to 143 

OMPS SO2 and NO2 except in the investigation of how cloud affects trends, in which RCF 144 

thresholds vary.  145 

Trend analysis approach introduced by Weatherhead Elizabeth et al. (1998) is applied to all 146 

CDRs as well as in situ observations. This method not only detects linear trend with 147 

consideration of seasonal variabilities and noise, but also conduct statistical significant test of it. 148 

The linear trend analysis model is shown as 149 

�� = � + �� +���+	�								� = 1, 2, … , �      (1) 150 

where �� is monthly mean time series of observational variables (SO2 or NO2), � is the offset at 151 

the start of time series, T is the total number of month, �� = � 12⁄  is number of years, � is the 152 

magnitude of linear trend per year, �� = ∑ ���,� sin(2��� 12⁄ ) + ��,� cos(2��� 12⁄ )!"�#�  153 

represents seasonal variations, and 	�	 is noise that cannot be represented by the model. 	�	 is 154 

assumed as red noise and represented as 	�	 = $	�%� + &� , where $  is the autocorrelation 155 

between 	�	 and 	�%�	and &� is white noise. The standard deviation of the yearly linear trend is 156 

represented as 157 

'( = )*
+, -⁄ .�/0

�%0      (2) 158 



  

 

  

 

8

where '1 is the standard deviation of 	�	, and n equals � 12⁄ . If the absolute value of � '(⁄  is 159 

larger than 2, it indicates that the linear trend is at 95% confidence level. 160 

 161 

Figure 1. Averages VCD of OMI SO2 (a) and NO2 (b) and OMPS SO2 (c) and NO2 (d) during 162 

April 2012 - July 2018. South Atlantic Anomaly (SAA) region is masked by grey ellipse. (e) and 163 

(f) are scatter plots of monthly average of OMPS SO2 versus OMI SO2 over North China plain 164 

(black box) and Eastern India (red box), respectively. (g) and (h) are similar to (e) and (f), 165 

respectively, but for NO2.  Also shown on the scatter plots are 1:1 line (dash), linear regression 166 

line (solid), linear regression formula, Pearson correlation coefficient (R), p-value (p), root mean 167 

squared difference (RMSD), number of collocated pairs (N), OMI average and standard 168 

deviation (x), OMPS average and standard deviation (y), and density of collocated pairs 169 

(colorbar). 170 

3. Results 171 

Global distributions of SO2 and NO2 from OMI and OMPS during April 2012 - July 2018 are 172 

shown in figure 1. OMI and OMPS observe similar patterns with the largest SO2 level over 173 

China and India, followed by Europe, and the U.S., and the largest NO2 level over China, 174 

followed by Europe, the U.S., and India. OMPS SO2 VCD in global average is 0.129 DU, which 175 
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is much larger than 0.004 DU of OMI, and the NO2 difference is smaller with OMPS and OMI 176 

NO2 0.023 DU and 0.017 DU, respectively. Despite good agreement in qualitative description of 177 

spatial distribution for both SO2 and NO2, OMI and OMPS CDRs have significant differences in 178 

the magnitudes and trends at regional scale during April 2012 - July 2018 (figure 2).   179 

 180 

Figure 2. Trends of VCD of OMI SO2 (a) and NO2 (b) and OMPS SO2 (c) and NO2 (d) during 181 

April 2012 - July 2018. Only pixels that show trends at 95% confidence level and over land are 182 

shown.  South Atlantic Anomaly (SAA) region is masked by grey ellipse. (e) and (f) are trends 183 

of OMPS SO2 and NO2, respectively, over North China Plain (NCP) and Eastern India (EI) at 184 

various radiative cloud fraction thresholds. Trends that are at 95% confidence level and not are 185 

shown by solid circles and open circles, respectively. 186 

 187 

3.1 China and India 188 
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Consistent are the locations of hot spots for SO2 and NO2 over China and India (figure 1a-d), 189 

the two largest anthropogenic SO2 and NOx emitters in Asia (Janssens-Maenhout et al., 2015). 190 

Both OMI and OMPS observe the largest SO2 loadings over the North China Plain (NCP), 191 

Sichuan basin (30° N, 105° E), and  Eastern India  (EI) (figure 1a and 1c). As to NO2, hot spots 192 

are over NCP, the Yangtze River Delta (megacity clusters), Sichuan basin, the Pearl River Delta 193 

(megacity clusters), EI, and New Delhi, India’s capital (figure 1b and 1d).  194 

Though consistent qualitatively, tropospheric VCD of SO2 and NO2 from the two sensors over 195 

NCP and EI show systemic differences quantitatively. The averages of OMPS SO2 are 0.46 DU 196 

and 0.30 DU over the NCP and EI, respectively, which contrast with lower values of 0.27 DU 197 

and 0.14 DU for OMI (figure 1e and 1f), and pearson correlation coefficients (R) of OMI and 198 

OMPS monthly mean SO2 at 1°x1° grid cell are 0.56 (figure 1e) and 0.46 (figure 1f) over NCP 199 

and EI, respectively. OMPS shows stronger SO2 seasonal variability than OMI with coefficient 200 

of variation (standard deviation over average) of monthly mean 0.34 and 0.33 over NCP and EI, 201 

respectively, which are much larger than 0.16 and 0.25 for OMI (figure 3). Unlike large SO2 202 

difference between OMI and OMPS, averages of OMI NO2 retrievals over the NCP and EI are 203 

0.38 DU (figure 1g) and 0.09 DU (figure 1h), respectively, only slightly larger than OMI 204 

counterparts of 0.33 DU (figure 1g) and 0.08 DU (figure 1h). Moreover, R of monthly averaged 205 

NO2 between OMI and OMPS are large as 0.94 (figure 1g) and 0.84 (figure 1h) over the NCP 206 

and EI, respectively. Comparable seasonal variability of NO2 is detected by the two sensors over 207 

NCP (coefficient of variation of 0.43 and 0.47 for OMI and OMPS, respectively) as well as EI 208 

(coefficient of variation of 0.22 and 0.21 for OMI and OMPS, respectively) (figure 3). 209 
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 210 

Figure 3. (a) and (c) are relative frequency of OMI and OMPS SO2 vertical column density 211 

(regrided in 1°x1° gridbox) as a function of month over Northern China Plain (black box in 212 

figure 1) during April 2012 - March 2018, respectively. (b) and (d) are similar to (a) and (c), 213 

respectively, but for Eastern India (red box in figure 1). (e)-(h) are similar to (a)-(d), respectively, 214 

but for NO2.   215 

 216 
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Despite systematic differences, OMI and OMPS SO2 and NO2 retrievals constantly show 217 

decreasing trends over China and increasing trends over India (figure 2a-d). Downward SO2 218 

trends  219 

 220 
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Figure 4. Time series of monthly SO2 and NO2, and their decompositions over Northern China 221 

Plain (black box in figure 1) and Eastern India (red box in figure 1). (a) and (c) are SO2 over 222 

Northern China Plain from OMI, OMPS, respectively. (e) and (g) are similar to (a) and (c) but 223 

for NO2. (b), (d), (f), and (h) are similar to (a), (c), (e), and (g) but for Eastern India. Satellite 224 

vertical column density (blue line) is decomposed into linear trend (red line), seasonal 225 

component (green line), and noise (black line).  Linear trend � and its standard deviation '( are 226 

shown. 227 

 228 

are observed by both OMI and OMPS over the NCP (-0.069 DU/yr for OMI and -0.036 DU/yr 229 

for OMPS, shown in figure 4), the Sichuan basin (30° N, 105° E), and Xingjiang province (43° N, 230 

85° E), although OMI detects more pixels with decreasing trends than OMPS (Figure 2a and 2c). 231 

Over EI, both OMI and OMPS SO2 retrievals observe upward trends (0.013 DU/yr for OMI and 232 

0.014 DU/yr for OMPS, shown in figure 4), while OMPS detects more pixels with increasing 233 

trends than OMI (Figure 2a and 2c). The contrasting SO2 trends between NCP and EI could be a 234 

result of much higher rate of installation and operation of flue gas desulfurization over China 235 

than India (Krotkov et al., 2016; S. Wang et al., 2015). Moreover, India not only has overtaken 236 

U.S. as the world’s second largest SO2 emitting country in 2014 (Krotkov et al., 2016) but also is 237 

surpassing, if not already, China to be the world’s largest SO2 emitter in 2016 (Li et al., 2017), 238 

which is reflected by the downward trends over NCP and upward trends over EI that are detected 239 

by both OMI and OMPS. As for NO2, both sensors observe strong decreasing trends over the 240 

NCP (-0.026 DU/yr for OMI and -0.018 DU/yr for OMPS, shown in figure 4), although OMI 241 

observes the weak downward trends that are not detected by OMPS over parts of Southern China 242 

(Figure 2b and 2d). The penetration of denitration devices for coal-fired power plants and strict 243 

regulation for vehicle emissions should be primary reasons for these reductions (Fei et al., 2016). 244 

Conversely, stronger upward trends of NO2 over EI (0.005 DU/yr for OMI and 0.003 DU/yr for 245 

OMPS, shown in figure 4) than Western India are detected by both OMI and OMPS (figure 2b 246 
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and 2d), which should be mainly ascribed to the increasing fuel consumption of coal-fired power 247 

plants without emission regulation (Krotkov et al., 2016). 248 

Trends signs detected by OMPS are independent of RCF, but trend magnitudes are positively 249 

correlated with RCF. OMPS SO2 (NO2) trends change from -0.008 DU/yr (-0.003 DU/yr) to -250 

0.056 DU/yr (-0.023 DU/yr) over NCP and from 0.007 DU/yr (0.0022 DU/yr) to 0.018 DU/yr 251 

(0.0035 DU/yr) over EI as RCF threshold increases from 0.01 to 0.5, and all these trends are at 252 

95% confidence level when RCF threshold is no less than 0.1 (figure 2e-f).  253 

 254 

Figure 5. (a) and (b) are relative frequency of OMI and OMPS SO2 vertical column density 255 

(regrided in 1°x1° gridbox) as a function of year over Northern China Plain (NCP, black box in 256 

figure 1) during April 2012 - March 2018, respectively. (c) and (d) are similar to (a) and (b), 257 
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respectively, but for Eastern India (EI, red box in figure 1). (e)-(h) are similar to (a)-(d), 258 

respectively, but for NO2.  259 

 260 

To investigate the trends of extremely high monthly mean SO2 and NO2 loading, relative 261 

frequency distribution of the two trace gases over NCP and EI as a function of year are shown in 262 

figure 5. Over NCP, OMI and OMPS SO2 maximums reduce from ~2.0 DU and ~ 2.6 DU in 263 

2012 to ~0.6 DU and ~1.2 DU in 2017, respectively (figure 5a and 5b), in contrast to Eastern 264 

India, where they increase from ~0.50 DU and ~0.55 DU to ~0.85 DU and ~0.95 DU, 265 

respectively (figure 5c and 5d). Not only OMI and OMPS SO2 loading averages and medians 266 

show downward (upward) trends over NCP (EI), but also the relative frequencies of SO2 larger 267 

than 0.5 DU decrease from 42.7% (47.1%) in 2012 to 0.2% (24.7%) in 2017 for OMI (OMPS) 268 

over NCP and increase from 0.0% (0.2%) to 2.9% (11.8%) over EI (figure 5a-d). As for NO2, 269 

maximums of both OMI and OMPS are ~1.9 DU in 2012, reducing to ~1.2 DU and ~0.8 DU in 270 

2017, respectively, over the NCP (figure 5e and 5f); conversely, they increase from ~0.17 DU 271 

and ~0.15 DU to ~0.27 DU and ~0.21 DU, respectively, over EI (figure 5g and 5h). Moreover, 272 

decreasing trends of NO2 averages and medians over NCP and increasing trends over EI are also 273 

observed by the two sensors. Relative frequencies of NO2 larger than 0.5 DU are 23.0% and 14.8% 274 

in 2017, down from 36.3% and 27.7% in 2012 for OMI and OMPS, respectively, over NCP, 275 

while NO2 loadings over EI are constantly less the 0.5 DU. If the threshold is 0.15 DU, relative 276 

frequencies over EI rise from 2.7 % and 0.0% to 16.0% and 3.5% for OMI and OMPS, 277 

respectively. 278 

3.2 U.S. 279 
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In contrast to overall consistent finding over China and India, the averages of OMI and OMPS 280 

SO2 retrievals sampled at EPA sites as well as their trends are quite different. EPA in situ SO2 281 

observations show hot spots over Illinois, Indiana, Ohio, and Pennsylvania states (figure 6a), 282 

where OMPS (figure 6b) also detects large SO2, while OMI (figure 6c) does not. Moreover, the 283 

spatial R between OMPS SO2 retrievals and EPA in situ SO2 observations is 0.27 (p<0.01) while 284 

there is no correlation between OMI retrievals and EPA observations (R=0.08, p>0.05). OMPS 285 

SO2 retrievals are in the range of 0.08 to 0.35 DU (figure 6c) which are much larger than OMI 286 

counterparts of being less than 0.07 DU. Although many EPA sites over eastern U.S. show 287 

decreasing trends of SO2 (figure 6d), OMI detects only downward trends at a small number of 288 

EPA sites over eastern U.S. and both upward and downward trends are detected by OMPS.  289 

 290 
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Figure 6. (a) is averages of EPA in situ SO2 during April 2012 - December 2017. (b) and (c) are 291 

averages of OMI and OMPS SO2 VCD sampled at EPA sites, respectively. (d), (e), and (f) are 292 

trends of EPA in situ SO2, OMI SO2 VCD and OMPS SO2 VCD, respectively. (g)-(l) are similar 293 

to (a)-(f), but for NO2. Only sites that show trends at 95% confidence level are plotted. 294 

 295 

The typical SO2 levels over the U.S. are quite low, and likely below the detection limit of OMI 296 

SO2 retrieval algorithm, as illustrated by the lack of spatial correlation between OMI SO2 and 297 

EPA in situ observations. While both OMI and OMPS have very stable performance over time 298 

with less than 0.5% degradation per year, long-term trends over regions with low SO2 299 

concentrations determined from OMI and OMPS retrievals may be impacted by small 300 

instrumental changes (Schenkeveld et al., 2017; Seftor et al., 2014), which have not yet been 301 

corrected in the OMI and OMPS products used in this investigation. 302 

For NO2, the averages of OMI and OMPS retrievals sampled at EPA sites are similar, while 303 

their trends are quite different. EPA observations, OMI retrievals, and OMPS retrievals all detect 304 

NO2 hotspots around Los Angeles, Chicago and New York (figure 6g-i); the spatial R for EPA in 305 

situ observations with OMI and OMPS retrievals are 0.61 (p<0.01) and 0.50 (p<0.01), 306 

respectively. OMI and EPA consistently show decreasing trends; conversely, OMPS detects 307 

increasing trends. 308 

3.4 Europe 309 

OMPS SO2 is larger than OMI over Europe, and neither of the two products shows significant 310 

trend. OMPS SO2 is in the range of 0.15 to 0.25 DU (figure 1c) over almost all the Europe, 311 

which contrasts to the small value of less than 0.1 DU for OMI (figure 1a). OMPS observes large 312 

SO2 levels over England, Bosnia and Herzegovina, Serbia, and Bulgaria, where large coal-fired 313 

power plants exist (Fioletov et al., 2016), and OMI also detects these hot spots except England. 314 
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There are, however, no significant trend observed by either of the two products over these 315 

countries. 316 

For NO2, OMI and OMPS show a similar spatial pattern over Europe while trends are not 317 

always in accord. OMI and OMPS observe NO2 hot spots around metropolises which include 318 

Manchester, Liverpool, and London in England, Amsterdam in Netherlands, Brussels in Belgium, 319 

Cologne, Frankfurt, and Berlin in Germany, Paris in France, and Moscow in Russia, and 320 

industrial areas around Milan in Italy and Katowice in Poland (figure 1b and 1d). Decreasing 321 

trends over areas around London in England, Amsterdam in Netherland, Brussels in Belgium, 322 

Cologne and Frankfurt in German, Milan in Italy are detected by OMI while OMPS does not 323 

show trends in those regions (figure 2b and 2d). Both instruments, however, observe enhanced 324 

NO2 levels over western Turkey (figure 2b and 2d). 325 

4. Discussion 326 

SO2 and NO2 tropospheric VCD retrievals from OMI and OMPS are compared, which reveals 327 

their inconsistencies at different regions and seasons. Discussion of several factors that may or 328 

may not cause the differences of loadings and trend signs of SO2 and NO2 from both an 329 

algorithm and sensor characteristics point of view are provided below.  330 

First, some differences can be explained by analyzing the bias and trends over the clean 331 

equatorial Pacific ocean (10°S–10°N,120°W–150°W ) where averages and trends of SO2 and 332 

NO2 are expected to be zero. Thus, the non-zero averages and trends are considered as 333 

systematic artifacts inherent in the algorithm. Positive OMPS SO2 trends widely exist over 334 

remote clean ocean (Figure S1c in the supporting information), and a positive trend of 8.9x10-4 
335 

DU/year (Figure S2b) even exist over the clean equatorial Pacific ocean; in contrast, OMI 336 
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observes both positive and negative SO2 trends randomly exist over remote clean ocean (Figure 337 

S1a), and the positive trend of 7.3x10-5 DU/year (Figure S2a) over the clean equatorial Pacific 338 

ocean for OMI is much less than that derived from OMPS. For NO2 over clean ocean, OMPS 339 

retrievals generally show positive trends (Figure S1d), while OMI retrievals overall show 340 

negative trends (Figure S1b); the NO2 trends are 7.4x10-5 DU/year for OMPS (Figure S2d) for 341 

OMI and -1.0x10-4 DU/year (Figure S2c)  for OMI. Thus, the positive SO2 and NO2 trends 342 

(artifacts) derived from OMPS may partly explain why (a) inconsistent NO2 trends are found 343 

over Europe and (b) notable differences are found over U.S. where OMI SO2 and NO2’s 344 

declining trends are consistent with surface observations, but OMPS SO2, albeit its better spatial 345 

agreement with surface data, shows increasing trends. 346 

Second, averages of SO2 over the clean equatorial Pacific ocean (10°S–10°N,120°W–150°W ) 347 

are 0.0035 DU for OMI and 0.0789 DU for OMPS (Figure S2), and these values are considered 348 

as systematic bias.  The differences of average SO2 between OMPS and OMI are 0.12 DU 349 

globally and 0.2 DU over Eastern China; their counterparts, after bias correction, decrease to 350 

0.04 DU and 0.12 DU respectively. Bias correction partly helps to reconcile the two products, 351 

but the large differences still exist.  352 

 353 

Third, NO2 fitting windows are 345-378 nm for OMPS and 402-465 nm for OMI, but such 354 

difference is not expected to lead to inconsistent NO2 trends over the US and Europe between 355 

OMI and OMPS. OMI NO2 Slant Column Density (SCD) is retrieved by a DOAS approach and 356 

it is converted to VCD by a AMF. The OMI NO2 AMF is assumed to be wavelength-357 

independent. This assumption could lead to errors in the VCD, but we don’t expect the error can 358 

change the sign of NO2 trend. OMPS NO2 is retrieved through Direct Vertical Column Fitting 359 
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(DVCF) algorithm. In the DVCF approach, average AMF (or photon path lengths) for each 360 

wavelength (, which is  implicitly determined in the spectral fitting process) is used. Thus, for 361 

OMPS NO2 VCD, wavelength-dependent of AMF is considered, and this is a key improvement 362 

of the DVCF approach over the DOAS method (Yang et al., 2014). However, DVCF method 363 

itself presumably won’t lead to statistically significant trend in the retrieval products.   364 

 365 

Fourth, aerosols are not considered in AMF calculation by the algorithms generating the data 366 

used in this study. This simplification may affect trend strength to some extent. McLinden et al. 367 

(2016) estimated that uncertainty of AMF due to aerosols is 10% by adjusting aerosol optical 368 

depth of ±0.25 and recalculating AMFs. Considering AOD trends are less than 0.04 per year (or 369 

0.25 during April 2012 - July 2018) almost everywhere (except some regions over China and 370 

Western Asia) (Figure S3), we can expect that the impact aerosol loading on SO2 and NO2 trends 371 

are less than 10% at most locations, which doesn’t change the key results of our findings. 372 

 373 

Finally, both systematic bias and random error can also be introduced in the SO2 retrievals due to 374 

O3 interference, which may affect trend analysis. Trends derived over the clean equatorial Pacific 375 

ocean (10°S–10°N,120°W–150°W ) (Figure S2) can be considered as the lower limit of 376 

systematic bias over other regions. In the trend analysis, time series of original retrievals are 377 

decomposed into linear trend, seasonal component, and noise. The random error due to O3 378 

interference is expected in the noise part, thus they should not affect trend estimations, but affect 379 

standard deviations of trend. 380 

 381 
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In summary, the user guides for OMPS and OMI SO2 and NO2 data are used in our analysis, and 382 

so, a thorough analysis of the algorithm differences that contribute to the product difference is 383 

out the scope of this study that has a primary focus on the data analysis.   For OMPS Level-2 384 

product, we only use data labeled as good pixel. Data quality control has been applied to in 385 

generation of OMI Level-3 product from its Level-2 data, and here; all OMI Level-3 data are 386 

considered as good. Nevertheless, to reconcile the differences of SO2 and NO2 CDRs from 387 

different sensors and algorithms, algorithm inter-comparison studies supplemented with ground-388 

based observations for validating the data products are needed. 389 

5. Conclusions 390 

Satellite-based CDRs for atmospheric SO2 and NO2 play an increasingly significant role in 391 

trend analysis. We compared CDRs of SO2 and NO2 tropospheric VCD retrievals from OMI and 392 

OMPS during their overlapped period (2012-2018) and showed their consistencies and 393 

inconsistencies. The two sensors observe similar spatial distribution of SO2 and NO2 globally. 394 

OMPS SO2 is much larger than OMI SO2 in global average, while NO2 difference is much 395 

smaller than SO2 difference. The inconsistencies among CDRs can be caused by differences in 396 

sensors, calibration procedures, sampling processes, retrieval algorithms and spatial 397 

aggregation/averaging approaches (Levy et al., 2015), which should be addressed in future 398 

studies. The differences of magnitudes and trends observed by the two sensors vary by region.  399 

Both OMI and OMPS observe large SO2 and NO2 levels over North China Plain as well as 400 

Eastern India, although OMI SO2 is systemically lower than OMPS. Despite magnitude variation 401 

between OMI and OMPS, downward (upward) trends of mean, median, maximum, and the 402 

frequency of extreme event for SO2 and NO2 are detected by the two sensors over North China 403 
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Plain (Eastern India). Radiative cloud fraction has no impact on trend signs, but is positively 404 

correlated with trend magnitudes.  405 

OMI and OMPS NO2 are spatial correlated with EPA in situ surface measurements over the 406 

U.S., but for SO2, only OMPS shows significant spatial correlation with EPA. Downward trends 407 

of SO2 and NO2 are found by OMI, which are consistent with EPA surface observations, while 408 

OMPS mainly show upward trends for both SO2 and NO2. Over Europe, SO2 and NO2 hot spots 409 

are observed by OMI and OMPS over metropolises and industrial areas. Although both show no 410 

SO2 trends, OMI and OMPS NO2 trends are not always in accord with each other. 411 

Surface SO2 and NO2 levels have become low and stable in some regions of the U.S. and 412 

Europe. As a result, future research should focus on local areas around their sources, hence 413 

requiring data with higher spatial resolution. TROPOMI (Veefkind et al., 2012) was launched in 414 

2017 and would provide SO2 and NO2 retrievals with higher spatial resolution (7 km x 3.5 km) 415 

than both OMI (13km x 24 km) and OMPS (50km x 50 km). Considering the short lifetime of 416 

SO2 and NO2 in the troposphere, the importance of satellite observations will be enhanced by the 417 

launch of geostationary satellites which includes TEMPO (Zoogman et al., 2017) monitoring 418 

North America, Sentinel-4 (Ingmann et al., 2012) monitoring Europe, and GEMS (Kim, 2012) 419 

monitoring Eastern Asia in the near future. All these advancements will provide hourly SO2 and 420 

NO2 retrievals during daytime with high spatial resolution (2.1 km x 4.4 km for TEMPO, 8.9 km 421 

x 11.7 km for Sentinel-4, and 7 km x 8km for GEMS). These high-resolution data enable an 422 

unprecedented opportunity to investigate SO2 and NO2 variability in different spatiotemporal 423 

scale, thereby providing benchmarks to address OMPS-OMI trend differences revealed in this 424 

study, especially those over developed countries where pollutant levels are low and trend signals 425 

(if any) can be difficult to be sensed by the current generation of satellite sensors.   426 
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