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A B S T R A C T

PM2.5 estimates solely based on the Moderate Resolution Imaging Spectroradiometer (MODIS) AOD products
may lead to a substantial bias because of non-random AOD sampling deficiency in cloudy conditions and swap-
gap regions. Furthermore, this non-random sampling issue can be exacerbated in polluted regions where heavy
aerosol loadings are likely misclassified into clouds. Here, to mitigate non-random sampling deficiency in MODIS
AOD product for surface-level PM2.5 estimates, we have combined Bayesian maximum entropy (BME) method
with the Linear Mixed-Effects (LME) model, for the first time, to produce more spatiotemporally complete and
precise AOD products and thereafter PM2.5 estimates. This combined BME-LME approach was applied to MODIS
and sunphotometer AOD products over the North China Plain. Relative to the standard MODIS AOD product, the
integration of MODIS and sunphotometer AOD through BME showed increases in both spatiotemporal com-
pleteness (up to 96%) and the quality. The resultant monthly PM2.5 estimates from the BME-LME had a bias of
3.5 μg m−3 and a root mean square error (RMSE) of 5.5 μg m−3, showing substantial improvement over PM2.5

estimations from original MODIS AOD product (a bias of 84.1 and a RMSE of 112.1 μg m−3). Merging sun-
photomter and satellite AOD observations with BME-LME is a prospective method to simultaneously improve
AOD and PM2.5 estimates.

1. Introduction

Knowledge of spatiotemporal distribution of fine particulate matter
with aerodynamic diameter of 2.5 μm or less (PM2.5) is highly needed
since PM2.5 particles can enter the lungs, cause respiratory diseases,
increase risk of cardiovascular and even lung cancer (Hoek et al., 2013;
Pope and Dockery, 2006; Pope III, 2002; Pui et al., 2014). Establish-
ment of ground monitoring network is the ideal way to accurately
measure ground-level PM2.5 concentration, which is exactly why
thousands of ground sites have been deployed in the United States and

Western Europe (Li et al., 2015; Van Donkelaar et al., 2015). However,
sparse geographic coverage of the network is not dense enough for
monitoring PM2.5 at spatial scales of a few kilometers (Gupta et al.,
2016). and maintaining such networks are very costly. In addition, most
developing nations have few or no surface PM2.5 measurements,
therefore, alternative methods are highly required to monitor PM2.5.

It has been proved that satellite-based aerosol optical depth (AOD),
the column-integrated aerosol extinction, is a good surrogate for PM2.5

(Wang and Christopher, 2003). Since then, ground-level PM2.5 con-
centrations have been estimated from many satellite sensors, for
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example, Moderate Resolution Imaging Spectroradiometer (MODIS),
Multi-angle Imaging SpectroRadiometer (MISR), Polarization and Di-
rectionality of the Earth's Reflectances (POLDER) onboard PARASOL,
and Visible Infrared Imaging Radiometer Suite (VIIRS). Numerous
methods have been adopted to address the relationship between AOD
and PM2.5 (AOD-PM2.5) varying from conventional linear regression to
advanced machine learning algorithms (Chudnovsky et al., 2013; Liu
et al., 2005; Van Donkelaar et al., 2016; Wu et al., 2016). Much effort
has been paid to obtain better AOD-PM2.5 relationships for which the
availability of AOD from space is one of fundamental requirements.
Unfortunately, non-random missing values in AOD retrievals often
occur due to cloud cover, high surface reflectance (Xiao et al., 2017) or
even misclassification of heavy pollution to clouds (Fu et al., 2018;
Song et al., 2018), let alone to mention the inherent limitations of these
satellites in spatial and temporal coverage (Geng et al., 2015; Strickland
et al., 2016; Zhan et al., 2017). This very likely leads to a substantial
bias of PM2.5 estimation since the difference between PM2.5 con-
centrations in the presence and absence of satellite AOD retrievals may
be substantially large, for example, the difference in monthly PM2.5

concentration could exceed 20 μg m−3 at some heavily polluted sites in
North China (Song et al., 2019).

A couple of methods have been implemented to fill AOD gaps. A
combination MODIS and MISR AOD products has been approved to
improve coverage, especially in western China where AOD is not
available from the operational MODIS dark target algorithm (Ma et al.,
2014). Certainly, cloud contamination and misclassification of heavy
aerosol loading cannot be resolved by this method. The cloud screening
criteria of the MODIS algorithm was relaxed to increase AOD coverage
during a biomass burning episode in Moscow (Van Donkelaar et al.,
2011), which was mainly adopted by case studies. Fu et al. (2018)
merged Aerosol Robotic Network (AERONET) and MODIS AOD pro-
ducts to increase AOD sampling rate by 59% in winter when the MODIS
aerosol algorithm may not provide AOD product in many cases. This
method is subjected to sparse coverage of AERONET stations. Xiao et al.
(2017) combined satellite AOD with chemical transport model (CTM)
simulations to fill AOD gaps. This method is subjected to the CTM
uncertainty and its relatively coarse spatial resolution, although the
spatial resolution of some CTM simulations can be as high as 5 km (or
less with high computation demand) in regional scale. Statistical
methods are developed to fill satellite AOD gaps, for example, the kri-
ging interpolation method, PM2.5 based iterative imputation, multiple
imputation and machine learning methods have been shown great po-
tential in filling AOD gaps (Lv et al., 2017; Xiao et al., 2017; Zhang
et al., 2018). These methods need many extra inputs that may be un-
available in many cases, in addition, AOD uncertainties have not be
fully considered.

Given the fact that the Bayesian Maximum Entropy (BME) devel-
oped by Christakos (1990a, 1990b) can fully take advantage of the
high-order space/time moments of AOD fields as wells as explicitly
account for the uncertainties of the measurements, it has potential to
tackle missing AODs. The BME has been widely applied in spatio-
temporal estimation (He and Christakos, 2018; Shi et al., 2015; Zhang
et al., 2018), in particular, showing encouraging performance in filling
missing AODs from multiple-sensor AOD retrievals (Tang et al., 2016).

North China Plain (NCP: 34.4–42.6° N; 113.5–122.7° E) is one of
heavily populated plain in the world, which is often attacked by wide-
spread heavy air pollution events. Much progress has been in ground
remote sensing AODs by the establishment of sun photometers as a part
of the Aerosol Robotic Network (AERONET) and China Aerosol Remote
Sensing Network (CARSNET) (Che et al., 2014). The objective of this
study is to enhance AOD sampling rate by using the BME method and
study how such enhancement may improve PM2.5 estimation. The study
differs from previous studies in following aspects. First, uncertainties
associated with satellite AOD are carefully evaluated and accounted for.
Second, both AERONET and CARSNET AOD products are synergized to
improve AOD filling. Third, BME-based filling AODs are evaluated

against independent sunphotometer measurements. Fourth, potential
errors of monthly PM2.5 estimation from AOD are detailed evaluated.
The paper is organized as follows. Section 2 introduces AOD and PM2.5

data. The BME is described in Section 3. The results of BME-based AOD
and corresponding PM2.5 concentration prediction are illustrated in
Section 4.

2. Materials and methods

2.1. AERONET and CARSNET

Ground-based AOD measurements from Sun-photometers (Cimel
Electronique, CE-318) were collected at 9 stations as a part of CARSNET
or AERONET in NCP (Fig. 1). Stations are installed at diverse land-
scapes, for example, in mega-cities (Beijing and Tianjin), suburban re-
gion (Xianghe) and background area (for example, Shangdianzi, a sta-
tion at the top of hills). CIMEL Sun-photometer makes direct spectral
solar radiation measurements in a 1.2° field of view angle every nom-
inal 15 min (Holben et al., 1998). Direct solar spectral radiation at
wavelengths from 0.34 μm to 1.02 μm is used to derive spectral AOD
with accuracy of 0.01–0.02 (Che et al., 2014; Eck et al., 1999). AOD at
0.55 μm is interpolated from AOD at 0.44, 0.67 and 0.87 μm. The latest
Version 3 cloud-screened and quality assured AOD data (Level 2.0) are
used for calculating daily mean AOD. These daily AOD data are taken as
hard data in the BME method. To validate filling AOD products, we
choose the Level 1.5 AOD measurements at Beijing RADI site (not used
in the BME method) as the independent dataset in the validation.

2.2. MODIS AOD

Even though the MODIS sensors aboard Terra and Aqua have op-
erated for more than a decade, the algorithms are still being updated
(Hsu et al., 2013; Levy et al., 2013). The latest Collection 6.1 was
completed and released in March 2018 that was used in this study. The
MODIS Adaptive Processing System (MODAPS) uses two mainstream
algorithms, dark target (DT) and deep blue (DB), for the retrievals. In
brief, DT algorithm parameterized the ratio of the surface reflectance at
0.47 and 0.65 μm to that at 2.13 as a function of view angle and nor-
malized vegetation index (Levy et al., 2013). The DB method expands
MODIS AOD coverage to bright arid surfaces by using MODIS re-
flectance measurement at 0.412 μm, where surface reflectance is rela-
tively dark (Hsu et al., 2013).

Compared to C6, a revised surface characterization when the urban

Fig. 1. Spatial distribution PM2.5 stations and their annual average concentra-
tion (μg m−3) in North China Plain. The plus markers are the AERONET/
CARSNET sites (green for AEORNET and blue for CARSNET). AERONET RADI
site is specially marked as triangle point.
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percentage is greater than 20% is adopted in the C6.1 DT algorithm.
This can correct AOD biases over urban areas and increase AOD re-
trievals falling within expected error by 20% (Gupta et al., 2016). Re-
garding the DB algorithm, several principal improvements include ar-
tifact reduction in heterogeneous terrain and improved surface
modeling in elevated terrain. Since heavy smoke events could some-
times be identified as cloud in the C6 DB algorithm, internal smoke
detection masks have been improved to minimize false cloud con-
tamination (Eck et al., 2018). Although the 3 km AOD product (only the
DT algorithm) was available in 2016 that is widely used in the esti-
mation of PM2.5 (Gupta et al., 2018), here MODIS 10 km AOD merged
DT and DB product is used because of very few 3 km AOD retrievals in
the winter season in NCP (4%).

The MODIS AOD data are gridded into 10 km by 10 km by using the
nearest-neighbor interpolation method. Given the fact that AOD shows
a distinct diurnal variation in NCP (Qu et al., 2016; Song et al., 2018;
Xia et al., 2006) and daily AOD sampling rate can be improved by a
combination of Terra and Aqua AOD (Ma et al., 2014), we combine
these two datasets by following procedures to obtain a more completed
and accurate daily AOD. First, the linear regression analysis is used to
build the relationship between Terra and Aqua AODs for each grid if
both are available. Second, missing Terra (Aqua) AOD is filled by using
the linear-fit equation (1) with Aqua (Terra) AOD if available.

= ∗ +− a bAOD AODTerra fit i i Aqua i i, ,

= −− b aAOD (AOD )/Aqua fit i Terra i i i, , (1)

where i represents the grid, ai and bi are slope and intercept from linear
regression for the grid. Third, the combined AOD are obtained as fol-
lows:
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2.3. PM2.5 data

Hourly PM2.5 concentrations from September 2014 to February
2015 at 264 monitors (Fig. 1) are obtained from the website of the
China Environmental Monitoring Center (CEMC) (http://106.37.208.
233:20035/). Detailed data quality assurance was applied to dis-
criminate four types of outliers (Wu et al., 2018).

(1) Spatiotemporal inconsistent outliers: values greatly deviated from
other values observed at the adjacent time (one month) or in
neighboring areas (25 km); (2) Low variance outliers: data points
having a very low temporal variance compared with adjacent sites,
likely as a result of the depletion of the filter tape; (3) Periodic
outliers: those abnormal values occurring every 24 h caused by the
regular calibration for the instruments; (4) outliers characterized by
PM10 smaller than PM2.5.

Based on these quality-controlled hourly PM2.5 data, we calculate
daily average PM2.5 concentrations if there are 20 hourly measurements
each day.

2.4. The linear mixed-effects model

There are many methods to estimate PM2.5 from AOD. Here we use
linear mixed-effects model (LME) to estimate PM2.5 concentrations from
AOD products as a result of its simplicity and robustness (LME) (Lee
et al., 2011).

= + + + + +PM (α u ) (β v )AOD s εi,j j j i,j i i,j (3)

∑(u v ~N[(00), ])j j

where PMi,j represents PM2.5 value at site i on day  j; α and β are fixed
intercept and slope; uj and vj are the random intercept and slope. si~N
(0σs

2) and εi,j~N (0σ2) represent the random intercept of site i and the
error term at site i on day j, respectively. σs

2 and σ2 denote the variances
for si and εi,j. ∑ is the variance-covariance matrix for the day-specific
random effects.

The LME model, with a nested form, establishes the day-specific
PM2.5-AOD relationships that are based on daily AOD and PM2.5 at 264
stations in NCP. Compared with more complicated models, the LME
model can predict PM2.5 from a single independent variable AOD with
comparable quality to other methods. The ten-fold cross-validation
(CV) approach was used to assess the performance of the method. For
this cross-validation, we randomly divided the data pairs into 10 equal-
size groups. At each of 10 iterations, 9 groups of data were used to build
a day-specific LME model, and the remaining group was used to test its
performance.

2.5. The BME method

The BME is a nonlinear interpolation method and provides a rig-
orous approach for integrating various physical knowledge: general
knowledge (G-KB, such as statistical moments of any order, physical
laws, scientific theories, empirical relationships) and site-specific
knowledge (S-KB; including hard AOD data obtained from site mea-
surements and soft data characterized by considerable degrees of un-
certainty (Christakos and Serre, 2000; Yu et al., 2007). The nonlinear
mean estimation xk of AOD at time t of a grid cell can be estimated by
AOD measurements from adjacent time or neighboring areas:

∫=x x f x x dx( | )k k k obs k (4)

=x x x( , )obs soft hard

where xobs means the observed field consisting of soft data and hard
data. f x x( | )k obs is the posterior probability density function (PDF) and
can be calculated according to the Bayesian rule.

= =f x x
f x x

f x
f x
f x

( | )
( , )

( )
( )
( )k obs

obs k

obs

map

obs (5)

where f x( )obs is the prior PDF of the xobs data. Specifically, the hard
data are mean CIMEL observation data and the soft data represent
MODIS AOD. =f x f x x( ) ( , )map obs k is a joint PDF that is derived by
maximizing the entropy under the constraint of the G-KB. A set of
statistical moments can represent the G-KB stochastically according to
equation (6). For example, the mean and covariance space/time mo-
ment are obtained from equation (6) if gα is xi and − −x x x x( )( )i i j j (the
bar denotes stochastic expectation).

∫ ⎟= ⎞
⎠

g x dx g x f x( ) ( ) ( )α map map α map map
(6)

∫= − d x f x logf xH ( ) ( ) ( )map map map (7)

To maximize H in equation (7) subject to the physical constraints in
Eq. (6), ∫= −G f x dx g x f x g x[ ( )] ) ( ) ( ) ( )α map map α map map α map is set and
Lagrange multiplier is introduced.

∑= − ⋅
=

L f x λ G f x[ ( )] H [ ( )]map
α

N

α α map
0 (8)

Setting the partial derivatives to zero and solving the system of
equations with respect to the λα yields the maximum entropy solution
for joint PDF f x( )map . Finally, the joint PDF is substituted in equations
(5) and (4) to solve xk (Christakos and Serre, 2000; Modis et al., 2013;
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Tang et al., 2016; Yu et al., 2007).
Daily mean AODs at AERONET and CARSNET stations are calcu-

lated and taken as the hard data for the BME algorithm. Soft data are
assumed to be in the shape of probability functions and constructed by
comparing the satellite and sun-photometer AODs. The uncertainty of
soft data is calculated as follows.

= +− εAOD AODcombine sun photometer (9)

ε μ σ~N( , )2

Daily sun-photometer and MODIS AOD are collocated to estimate
the difference (ε) and its PDF. ε is assumed to follow the normal dis-
tribution with mean (μ) and variance (σ )2 (Fig. 2). For pixels with sa-
tellite AODs are available, the Gaussian distribution probability soft
data follows the normal distribution − μ σ N(AOD , )combine

2 .
Mean and covariance of satellite AOD are served as g x( )α map in this

study. To meet the assumption of second-order stationarity (constant
mean and variance) throughout the spatiotemporal domain, the spa-
tiotemporal trend of the original satellite AOD data is removed using
the spatiotemporal moving window filter method (Lee et al., 2008). The
spatiotemporal trend component AOD(x, y, t) was calculated using the
mean value of AODs at pixels within the filter window (x±20 grids,
y± 20 grids, and t± 2 days) that were extracted from the original
data. The residuals were assumed to be spatiotemporally stationary and
were used for the spatiotemporal covariance calculation (Fig. 3).

In spatiotemporal geo-statistics, the spatiotemporal covariance is a
function of distance in space and time (Fig. 3). Covariance functions are
used to present the spatiotemporal dependency of the known data field
and then to estimate the entire random field. We modeled the spatio-
temporal covariance of the detrended AOD field by using a nested
spatiotemporal covariance model with a sum of two combined models
(exponential/spherical and spherical/exponential):
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Where r is the spatial lag and τ is the temporal lag between AOD grids
at coordinates (x, y, t) and coordinates (x′, y′, t′). C1 and C2 are the
partial sill variances of the two models. ar1 and ar2 are the spatial ranges
of the two combined models; aτ1 and aτ2 are the temporal ranges of the
two models (Hayunga and Kolovos, 2016).

For comparison, two BME AOD products are derived, i.e., BME-S
AOD derived with only soft data and BME-SH AOD derived with sa-
tellite and sunphotometer AOD as soft and hard data, respectively.

Since hard data exert little influence on the covariance model, the
parameters of the BME-S AOD covariance model in Table 1 are also
used for the BME-SH AOD production. The coefficient of determination
parameter (R2), the mean prediction error (MPE), and the root mean
squared error (RMSE) are used to evaluate the performance.

3. Results

Since seasonal PM2.5 values if the presence of satellite AOD re-
trievals are notably lower than the counterparts in the absence of AOD
in the autumn and winter (Song et al., 2019), we quantitatively assessed
the extent to which the BME improved MODIS AOD coverage and
thereby PM2.5 estimation in these two seasons.

3.1. BME-based AOD data fusion

Fig. 4 presents the statistics of original MODIS, BME-S and BME-SH
AOD. The averaged completeness of the original MODIS data over NCP
is 52.4%. The BME substantially improves the AOD completeness. The
BME-S AOD and BME-SH AOD, with seasonal averaged completeness of
94.8% and 95.7%, respectively. The spatial mean and standard devia-
tion values of MODIS AOD and COV (coefficient of variation, ratio of
one standard deviation to mean in temporal scale) over NCP are
0.42±0.25 and 103.5%±37.5%. Larger COV of AOD indicates larger
temporal AOD variability and therefore to some extent indicating larger
PM2.5 variability. With the application of the BME method, the seasonal
mean BME-S AOD value is 0.48±0.28 and AOD is 0.49±0.27 for the
BME-SH method. The BME leads to a notably increase in mean AOD and
its standard deviation, which is consistent with our expectation that
heavy aerosol pollution events are often misclassified into cloud by the
MODIS cloud screening algorithm. This is very likely leading to po-
tentially lower AOD and then PM2.5.

The quality of the BME merged AOD product is assessed by com-
paring independent AERONET data at Beijing-RADI (Fig. 5). Daily AOD
from sun-photometer is matched with the average of AOD retrievals
within 30 km of the station. The original MODIS product is in good
agreement with AERONET AOD, which is characterized by R2 of 0.84,
MPE of 0.11 and RMSE of 0.16. The quality of the BME-S AOD product
is slightly worse than the original AOD, which is reflected by R2 of 0.70,
MPE of 0.16 and RMSE (0.29). This is likely because the BME method is
based on the spatiotemporal trend and covariance of data, which cer-
tainly smooths the spatiotemporal variation to some extent. Combining
surface-based AOD measurements, the quality of BME-SH AOD is
comparable to that of the original MODIS data (R2 of 0.85, MPE of 0.10
and RMSE of 0.22). Therefore, it would be encouraging by in-
corporating not only soft data but also hard data into the BME method
because the latter is able to produce the merged AOD data with not only
good completeness but also high quality.

3.2. LME model validation

CV results of PM2.5 concentrations based on three different AOD
datasets are presented in Fig. 6. Three quantitative parameters of CV
based on 24350 collocated daily MODIS AOD and PM2.5 data points,
i.e., R2, MPE, and RMSE are 0.76, 18.7 μg m−3 and 29.0 μg m−3, re-
spectively. This CV performance is similar to the work of Zheng et al.
(2016), which evaluated LME model in Beijing−Tianjin−Hebei area
with an R2 = 0.77 and RMSE = 23.1 μg m−3. Compared to the CV
results of satellite derived PM2.5 from the original MODIS AOD, much
more matched data records are available for the BME-S PM2.5 estimates
(N of 45050, increased by nearly 85%) but show slightly lower accuracy
(R2 of 0.70, MPE of 21.9 μg m−3 and RMSE of 36.7 μg m−3). In addition
to a remarkable improvement in matched data points, the BME-SH
PM2.5 CV validation shows a comparable accuracy to that from the
original MODIS AOD, with MPE of 22.2 and RMSE of 33.8 μg m−3. As
expected, the BME resulted in much larger AOD and thereby PM2.5, for

Fig. 2. Gaussian probability density function of ε.
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example, the percentage of PM2.5 exceeding 100 μg m−3 increased by
2.7%. A previous study by Lv et al. (2016) used a novel two-step
method (linear regression and ordinary Kriging methods) to predict
missing AOD values, with R2 = 0.78 for PM2.5 in the 10-fold leave-
10%-monitors-out cross validation. In this study, the value of R2 (0.74)
in CV is comparable to previous one, meanwhile, AOD products have
high accuracy (R2 of 0.85 in Fig. 5).

3.3. PM2.5 estimation and evaluation

Spatial distributions of seasonal mean PM2.5 concentrations derived
from three AOD datasets are shown in Fig. 7, in which station mean
PM2.5 values are overlaid for comparison. Averaged PM2.5 concentra-
tions over NCP were 70.1±12.1, 74.0±11.8 and 75.8±10.7 μg m−3

derived from these three datasets, respectively. Increase in seasonal
PM2.5 based on BME AOD is associated with much more AOD-PM2.5

pairs with high PM2.5 values. PM2.5 values in the central part of NCP
(Hebei and Shandong Province) estimated from the BME AOD (S or SH)
are larger than those from MODIS AOD by > 10 μg m−3, which is
much closer to the ground truth. Considering the sampling rate over
this region in Fig. 4, AOD filling using BME method over polluted areas
can substantially improve PM2.5 estimation.

Fig. 8 depicts time series of daily mean differences between re-
trieved and measured PM2.5 concentrations over entire ground PM2.5

sites. PM2.5 concentrations derived from the original MODIS AOD
usually tend to produce abnormal deviation from ground measure-
ments. For example, MODIS AOD retrieved PM2.5 biased from ground
measurements by 84.0 and 112.1 μg m−3 on 21 November, 2014 and
06 January, 2015, respectively. This is in accordance with the ex-
pectation that MODIS AOD cannot capture heavy pollution and cloudy
days. Fig. 9 shows a case study searching potential error sources of
these large PM2.5 biases. In this four-day case, almost the entire NCP

was covered by clouds or haze. On 20 October, 2014, valid MODIS
retrieved AODs were sparsely scattered in northwest of NCP and AOD
values were relatively low in this area. Large underestimation
(−55.0 μg m−3) is not surprising if only based on these limited AODs to
derived PM2.5 concentrations. Two contrary cases occurred on 30 Oc-
tober, 2014 and 01 November, 2014 when very high MODIS AODs were
found in a few pixels. In consequence, PM2.5 estimated from these pixels
would have produced positive biases against ground truth. By applying
the BME method to MODIS AOD products, the daily mean difference of
PM2.5 has decreased to 7.7 μg m−3 and most of abnormal differences
are eliminated. More accurate retrievals are from the BME-SH AOD as
the difference reduces to 6.9 μg m−3. In total, BME-SH AOD derived
PM2.5 can well reproduce the temporal short-term variation of PM2.5

across the NCP, which would favor for daily exposure assessment.
Improvement of seasonal PM2.5 estimation as a result of AOD

sampling enhancement by the BME is clearly shown in Fig. 10, in which
seasonal mean PM2.5 values at 264 stations derived from AOD are
compared with surface measurements. As shown in the left panel, re-
trieved seasonal PM2.5 from the original MODIS AOD has a remarkable
underestimation when surface concentration exceeds 100 μg m−3.
Stations with high PM2.5 concentrations (> 100 μg m−3) almost share
the feature that sampling rate is less than 50%. After filling the missing
MODIS AOD value, BME-S AOD has much better performance in the
derivation of seasonal mean PM2.5 by increased R2 (0.96), decreased
MPE (3.7 μg m−3) and RMSE (5.8 μg m−3). Further improvement is
evidenced if hard data are included in the BME method, with MPE and
RMSE decreasing to 3.5 and 5.5 μg m−3, respectively. Underestimation
of PM2.5 at heavy pollution stations is substantially overcome.

4. Conclusions and discussion

In order to improve MODIS AOD coverage in NCP where non-
random AOD missing is not rare, a few procedures have been adopted.
We created the linear relationship between Terra AOD and Aqua AOD
to obtain a more complete daily mean AOD. BME was implemented for
combining satellite AOD and sunphotometer AOD to produce AOD
fields with good spatiotemporal coverage and high quality. Potential
contribution of filling AOD gaps by using the BME to the PM2.5 pre-
diction has been investigated. Major conclusions are as follows.

Fig. 3. Calculated and the modeled spatiotemporal covariance (based on the residuals from soft data).

Table 1
Parameters of the fitted spatiotemporal covariance models.

MODEL-TYPE Sill Part1(a a,  r r1 2) Part2(a a,  τ τ1 2)

BME-S exponential/spherical 0.0621 4.0000 3.0000
spherical/exponential 0.0400 0.4000 3.0000
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By applying the BME method to MODIS AOD, a spatiotemporally
coherent daily AOD dataset was produced over NCP. The seasonal mean
completeness of the BME-S AOD is 94.8%, which is much higher than
that of MODIS AOD data (52.4%). The comparison of BME-S AOD
against AERONET RADI site shows a systematic underestimation (R2 of
0.70, slope of 0.83). A more accurate AOD product (with R2 of 0.85,
slope of 0.89) can be derived when the AERONET/CARSNET data are
synergized into the model. Monthly PM2.5 predictions from the original
MODIS AOD are generally smaller than corresponding ground mea-
surements, especially in these polluted stations. Daily variation of and
monthly mean PM2.5 concentrations are substantially improved from

the BME derived AOD fields with enhancement of AOD spatiotemporal
completeness.

As a robust probabilistic method, BME can substantially increase
MODIS AOD sampling. Moreover, the accuracy of the BME-derived
AOD products can be remarkably improved if sun-photometer AOD
data are incorporated in the model. It should be noted that current
sunphotometer stations are mostly located in north of NCP. . Further
deployment of AERONET/CARSNET sites in south of NCP may further
improve the performance of the BME method (Li et al., 2015) given the
fact that the spatial representativeness of sunphotomter station is lim-
ited (Fu et al., 2018).

Fig. 4. Sample fraction of MODIS AOD, BME-S AOD and BME-SH data. Three columns are seasonal mean AOD, coefficient of variation (COV) for AOD (ratio of one
standard deviation to mean) and the sampling rate (fraction of days with AOD retrievals to total days) from left to right. Three rows represent the results for MODIS
AOD, BME-S AOD and BME-SH AOD, respectively.

Fig. 5. Comparisons of AERONET Beijing-RADI AOD against MODIS AOD, BME-S AOD and BME-SH AOD in cold season of 2014.
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The performance of this fusion method depends on the data avail-
ability. In areas where MODIS AODs have large data gaps in space and
time, insufficient observations may lead to physically unrealistic fea-
tures in the merged AOD data. Considering more satellite AOD products
with different retrieval protocols as soft data for the BME may improve
the BME performance in filling AOD gaps. We used MODIS 10 km AOD
data that may not capture fine features of local aerosol pollution, which
may be remedied by using satellite AOD products with finer resolution,
for example, the Multi-Angle Implementation of Atmospheric
Correction (MAIAC) aerosol products with resolution of 1 km
(Lyapustin et al., 2011).

Previous studies used a few statistical methods to fill AOD gaps, for
example, the random forest method (Zhang et al., 2018). This method
requires many other geographical variables, for example, land use and
meteorological variables. Though the random forest method is less
sensitive to overfitting than other machine learning methods (Belgiu
and Drăgu, 2016), this issue is not completely fixed yet since so many
variables are incorporated. On the contrary, the BME only requires AOD

as input that facilitates its application. Since results on the AOD filling
are based on different methods in different regions, we appeal for a
carefully organized study to evaluate the performances of all these data
filling methods that should be performed under the same condition.
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