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Abstract This work is the first of a two‐part study that aims to develop a computationally efficient bias
correction framework to improve surface PM2.5 forecasts in the United States. Here, an ensemble‐based
Kalman filter (KF) technique is developed primarily for nonrural areas with approximately 500 surface
observation sites for PM2.5 and applied to three (GEOS‐Chem, WRF‐Chem, and WRF‐CMAQ) chemical
transport model (CTM) hindcast outputs for June 2012. While all CTMs underestimate daily surface PM2.5

mass concentration by 20–50%, KF correction is effective for improving each CTM forecast. Subsequently,
two ensemble methods are formulated: (1) the arithmetic mean ensemble (AME) that equally weights
each model and (2) the optimized ensemble (OPE) that calculates the individual model weights by
minimizing the least‐square errors. While the OPE shows superior performance than the AME, the
combination of either the AME or the OPE with a KF performs better than the OPE alone, indicating the
effectiveness of the KF technique. Overall, the combination of a KF with the OPE shows the best results.
Lastly, the Successive Correction Method (SCM) was applied to spread the bias correction from model
grids with surface PM2.5 observations to the grids lacking ground observations by using a radius of influence
of 125 km derived from surface observations, which further improves the forecast of surface PM2.5 at the
national scale. Our findings provide the foundation for the second part of this study that uses satellite‐based
aerosol optical depth (AOD) products to further improve the forecast of surface PM2.5 in rural areas by
performing statistical analysis of model output.

Plain Language Summary Air quality forecasting plays an important role in informing the
general public and decision‐makers on reducing exposure to air pollution. Air quality models simulating
atmospheric constituents such as particulate matter with a diameter less than 2.5 μm (PM2.5) are often
used to provide daily forecasts. However, these models are subject to large error and uncertainty as a result of
the incomplete representation of the real atmosphere. Here, we develop a computationally efficient
framework to improve model forecasts by performing bias correction on model outputs. We focus on
nonrural areas in the continental United States and show that our technique improves model forecasts of
surface PM2.5. In a companion paper, we focus on the application of satellite data to improve PM2.5

forecasting in rural areas.

1. Introduction

Exposure to ambient PM2.5 (fine particulate matter with aerodynamic diameter less than 2.5 μm) can cause
adverse health issues such as cardiovascular and respiratory illness (Peng et al., 2005; Pope et al., 2009). The
Global Burden of Disease Study ranked ambient particulate matter pollution as one of the top risk factors for
global deaths (Forouzanfar et al., 2016) and a recent study by Cohen et al. (2017) estimated that exposure to
ambient PM2.5 caused more than 4 million deaths worldwide and 88,400 deaths in the United States in 2015.
PM2.5 is one of the criteria air pollutants regulated in the United States. The U.S. Environmental Protection
Agency (EPA) established the national ambient air quality standards (NAAQs) for 24‐hr‐averaged PM2.5

concentration as 65 μg m−3 in 1997 and has made revisions in 2006 and 2012 to lower the concentration
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to 35 μg m−3. Air quality forecasting has played an important role in providing information to alert the gen-
eral public and decision makers to take preventive cautions.

Air quality models are subject to large uncertainty associated with the parametrization of chemical and phy-
sical processes, inaccurate emission inventories, and errors in model initial and boundary conditions (Simon
et al., 2012; Solazzo et al., 2012). As a result, different techniques have been developed to improve model
forecasts such as postprocessing bias correction, chemical data assimilation, and ensemble forecasting meth-
ods (Bocquet et al., 2015; Wang, Nair, & Christopher, 2004; Zhang et al., 2012a, 2012b). Commonly used che-
mical data assimilation techniques are the variational method (3D‐Var or 4D‐Var) (Schwartz et al., 2012;
Wang et al., 2012; Wang et al., 2014; Xu et al., 2013; Wang, Wang, et al., 2016; Zhang et al., 2008), optimal
interpolation (OI) (Chai et al., 2017), and the Kalman filter (KF) or ensemble KF (Carmichael et al., 2008;
Tang et al., 2011) to optimize initial and/or boundary conditions or to adjust emission factors. Due to the
large computational cost in advanced data assimilation techniques, modelers have used simple bias correc-
tion techniques in postprocessing, for example, the so‐calledmean subtraction (McKeen et al., 2005; Wilczak
et al., 2006) and the KF (De Ridder et al., 2012; DelleMonache, Nipen, et al., 2006; DelleMonache et al., 2008;
Delle Monache et al., 2011; Djalalova et al., 2010; Kang et al., 2008; Kang et al., 2010a). All techniques
resulted in improved forecasts, especially when using a Kalman filter, which can reduce systematic errors.
Kang et al. (2010b) were the first to show the operational capability of the KF technique in predicting surface
ozone (O3) and PM2.5 in real time over the continental United States.

In addition to the KF, the ensemble approach is widely used in numerical weather forecasts (Kalnay, 2003).
In recent years, the ensemble approach has been applied to air quality forecasting. The ensemble technique
has usually been performed by either using one model (such as WRF‐Chem) with different emission inven-
tory inputs and metrological fields from various global models (Ge et al., 2017) or multimodels. Early work
by Delle Monache and Stull (2003) found that the ensemble mean of all four photochemical model forecasts
performed better than any of the individual models while studying an ozone event in Europe. The following
work also showed improvements in O3 forecasts using an ensemble technique (Delle Monache, Deng,
et al., 2006; McKeen et al., 2005; Pagowski et al., 2005). Similar to McKeen et al. (2005) but focusing on
real‐time PM2.5 forecasts, McKeen et al. (2007) again indicated that the ensemble average of seven air quality
forecasting models calculated with equal weights for each model member resulted in the best performance
when compared with the observational data. One possible reason for the improved performance is that
ensemble modeling can reduce random errors. Additionally, some work has combined the KF technique
with an ensemble technique. For instance, Delle Monache, Nipen, et al. (2006) demonstrated that the
ensemble mean (EM) of 12 KF‐corrected O3 air quality forecast models and KF‐corrected EM showed the
best forecasting skill. Djalalova et al. (2010) applied two bias correction techniques (a simple running mean
average and a KF approach) separately to seven individual air quality forecasting models before generating
the ensembles. Weighted model ensembles were further created using a linear regression method to mini-
mize the bias. Overall, the combination of KF and weighted averaging provided the best performance.

Real‐time data repositories such as the U.S. EPA's AirNow program (Dye et al., 2004) contribute significantly
to the successful implementation of some of the aforementioned techniques. Currently, the AirNow pro-
gram provides near‐real‐time hourly surface PM2.5 concentration measurements at about 600 ground sites
across the United States and daily air quality forecasts for major U.S. cities. The air quality information is
distributed to the general public and social media outlets in the form of an air quality index (AQI). The mea-
sured hourly surface PM2.5 is crucial for real‐time forecasts as well as model evaluation. However, the spatial
coverage is still limited and unevenly distributed with more monitoring sites along the west and east coast in
urban areas and less in between such as the Great Plains and RockyMountain region. Because of this limita-
tion, most of the previous bias correction conducted in the U.S. has only focused on places where ground
observations were available. Recently, the work of Djalalova et al. (2015) propagated the bias information
obtained from surface PM2.5 measurement sites to surrounding areas with no ground observations. This
method is integrated into the operational PM2.5 forecast of the CMAQ modeling system provided by the
U.S. National Air Quality Forecasting Capability (NAQFC) (Huang et al., 2017; Lee et al., 2017).

Satellite data could also fill in the gaps due to its global spatial coverage (Hoff & Christopher, 2009). The
launch of the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) satel-
lite Terra in 1999 started a new era of studying air quality from space (Hoff & Christopher, 2009;

10.1029/2019JD032293Journal of Geophysical Research: Atmospheres

ZHANG ET AL. 2 of 21

Writing ‐ original draft: Huanxin
Zhang, Jun Wang
Writing – review & editing: Huanxin
Zhang, Jun Wang



Martin, 2008; Wang & Christopher, 2003). Aerosol optical depth (AOD) is one of the satellite‐derived aerosol
properties and has been correlated with surface measured PM2.5 (Chu et al., 2003; Liu et al., 2004; Van
Donkelaar et al., 2006; Van Donkelaar et al., 2010; Wang & Christopher, 2003). Satellite‐derived surface
PM2.5 has been widely used in studying air quality and human health. Furthermore, a few studies
(Al‐Saadi et al., 2005; Szykman et al., 2004; Szykman et al., 2012) have demonstrated the potential of using
satellite observations for forecasting air quality.

This is the first of a two‐part study that aims to develop a bias correction framework to improve surface PM2.5

forecasts in the United States by integrating chemical transport model outputs, surface observations and
satellite remote sensing data. Since hourly measured surface data is mostly located in nonrural areas, the
present work will apply a multi‐model ensemble approach along with the KF technique and a successive cor-
rection technique to adjust model forecast biases in these nonrural areas. The companion paper investigates
the use of a multi‐AOD ensemble approach for model forecast bias correction with a special focus on rural
areas. As the first of a two‐part series, this paper is motivated by the poor forecasting skills of PM2.5 (as dis-
cussed above), and hence, we continue investigating the robustness of the KF technique in PM2.5 forecasting
in the continental United States, especially its combination with both equally weighted and nonequally
weighted (optimized) ensemble techniques. Furthermore, we refine the radius of influence that propagates
the model bias information from ground sites to nearby places that have no surface measurements available.
More importantly, this paper sets the foundation for the two‐part series of work that as a whole, differs from
past work in that multiple model outputs andmultiple satellite data products are used as ensemble members
for Kalman filter processing, and the emphasis is on the synergy between surface observation networks and
satellite observations for improving air quality forecasts in rural areas. This paper is organized as follows: In
section 2, we describe the chemical transport models and surface measurements of PM2.5. Section 3 presents
the bias correction techniques. Results are summarized in section 4, and discussion and conclusions make
up section 5.

2. Model Description and Observational Data

We used hindcast outputs from three chemical transport models here. The hindcast used the reanalysis
meteorology data and therefore, it does not resemble exactly an operational air quality forecasting (because
only the atmospheric chemistry is forecasted with no constraints from observations). Nevertheless, the hind-
cast has been commonly used in the research for developing new techniques that are valuable for improving
real‐time forecasts, and in section 3.4 we describe how the bias correction techniques were implemented as if
they were in a forecasting mode. At the time of performing model simulations, the GEOS‐Chem model did
not carry the forecasting capability, but the recent development of WRF‐GC (http://wrf.geos-chem.org/)
would make the GEOS‐Chem model applicable in real‐time air quality forecasting. Furthermore, its chem-
istry has been implemented in NASA's Earth system models (Hu et al., 2018; Long et al., 2015), creating
opportunities for experimental global air quality forecasting. Detailed model configurations are provided
in this section, and a brief summary is also given in Table 1.

2.1. GEOS‐Chem

We use the global 3‐D chemical transport model (GEOS‐Chem) (Bey et al., 2001) Version v11‐01 (http://
geos-chem.org) together with its nested version over the North American domain (10–70°N and 40–140°
W) (Chen et al., 2009; Wang, McElroy, et al., 2004). Both global and nested simulations are driven by assimi-
lated meteorological fields from the NASA Goddard Earth Observing System (GEOS5). The GEOS5 data
have a native resolution of 0.5° latitude by 0.667° longitude and a temporal resolution of 3 hr (1 hr for surface
variables andmixing depths). First, we conducted a global GEOS‐Chem simulation at 2° latitude × 2.5° long-
itude horizontal resolution from 1 June 2011 to 30 June 2012 with the first 12 months as a spin up. Then, the
results from the global simulation provided the hourly dynamic boundary conditions for the nested simula-
tion with 0.5° latitude × 0.667° longitude horizontal resolution. The nested grid simulation ran from 1 May
2012 to 30 June 2012, where the first month was used for model initialization. Both global and nested simu-
lations had the same vertical distribution of 47 pressure levels as well as the samemodel setup, which will be
described below.
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The GEOS‐Chem aerosol simulation includes the sulfate‐nitrate‐ammonium system (Park et al., 2004; Pye
et al., 2009), primary (Park et al., 2003) and secondary (Liao et al., 2007) carbonaceous aerosols (SOAs),
mineral dust (Fairlie et al., 2007; Fairlie et al., 2010), and sea salt in accumulation and coarse modes
(Jaeglé et al., 2011). SOA is disabled in the current simulation. The aerosol chemistry was coupled to the
gas‐phase chemistry (HOx‐NOx‐VOC‐O3‐BrOx) through the gas‐aerosol equilibrium partitioning of nitric
acid and ammonia (Fountoukis & Nenes, 2007). Aerosol dry and wet deposition follow Zhang et al. (2001)
and Liu et al. (2001), respectively. Global anthropogenic emission inventories are taken from Emissions
Database for Global Atmospheric Research (EDGAR version v4.2) (http://edgar.jrc.ec.europa.eu/), overwrit-
ten by available regional emission inventories: the U.S. EPA 2011 National Emission Inventory (NEI) in the
United States (Travis et al., 2016), the Criterial Air Contaminants (CAC) in Canada, Big Bend Regional
Aerosol and Visibility Observational Study Emission Inventory (BRAVO) (Kuhns et al., 2005) in Mexico,
European Monitoring and Evaluation Programme (EMEP) in Europe, and MIX (Li et al., 2017) in Asia.
Biomass burning emissions are from the Fire INventory from NCAR (FINN) (Wiedinmyer et al., 2011) with
daily resolution. Biogenic emissions are from the MEGAN2.1 emission inventories and updates from
Guenther et al. (2012). When calculating the mass concentration of surface PM2.5, the modeled relationship
between each simulated aerosol mass and relative humidity for each aerosol type was accounted for (Van
Donkelaar et al., 2010), in order to comply with surface measurement standards. For dust and sea salt aero-
sols, only the fraction of the total aerosol mass within the cut off diameter of 2.5 μm were included in the
calculated PM2.5 mass concentration.

2.2. WRF‐Chem

TheWeather Research and Forecasting (WRF) model coupled with chemistry, WRF‐Chem Version v3.8.1 is
used in this study (Fast et al., 2006; Grell et al., 2005). The 1° × 1° National Center for Environmental
Prediction (NCEP) Final Analysis (FNL) data provide the meteorological initial and boundary condition
(Kalnay et al., 1996; Kistler et al., 2001). The default chemical boundary conditions representing a North
America summer day is used. This default boundary condition includes a limited number of species, of
which the majority are gas‐phase species and was originally developed for tropospheric ozone forecast.
The model simulation was conducted from 22 May to 30 June 2012 with the first 10 days of the simulation
for initialization. Model output from 1 June to 30 June was analyzed. The model was designed to have one
domain over the United States centered around 39.52°N and 94.68°W with a horizontal resolution of 12 km
and 28 vertical levels.

We use the Regional Acid Deposition Model, Version 2 (RADM2) for gas‐phase chemistry (Stockwell
et al., 1990). The aerosol modules are the Modal Aerosol Dynamics Model for Europe (MADE)
(Ackermann et al., 1998) and the Secondary Organic Aerosol Model (SORGAM) (Schell et al., 2001). In
the MADE/SORGAM model, aerosol species include sulfate, nitrate, ammonium, black carbon (BC),
organic matter (OM), sea salt, mineral dust, and water. The MADE/SORGAM model uses the modal
approach to represent the aerosol size distribution (Binkowski & Shankar, 1995). The modal approach
employs three modes (the Aitken, accumulation and coarse mode) and each mode assumes a log‐normal

Table 1
The Summary of Model Configurations

GEOS‐Chem WRF‐Chem CMAQ

Version v11‐01 v3.8.1 v5.0.2
Horizontal spatial resolution 0.5° × 0.667° 12 km 12 km
Temporal resolution Hourly Hourly Hourly
Meteorology GEOS5 WRFv3.8.1 WRFv3.4
Chemistry boundary conditions GEOS‐Chem v11‐01 (2° × 2.5°) Model defaulta GEOS‐Chem v8‐03‐02 with GEOS5
Anthropogenic emissions NEI 2011 NEI 2011 NEI 2011
Biomass burning emissions FINN FLAMBE BlueSky
Biogenic emissions MEGAN 2.1 Online MEGAN BEIS
Chemical mechanism (gas phase) Trop Chem

(NOx‐Ox‐Aer‐Br)
RADM2 CB05TUCL

Aerosol module MADE/SORGAM AERO6
aIn WRF‐Chem, the model default chemical boundary conditions represent a clean North America summer day. Only a limited number of chemical species are
included and the majority of them are gas species.
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distribution. In addition, aerosol species are assumed to be internally mixed in eachmode so that all particles
have the same chemical composition in each mode.

Anthropogenic emissions were taken from the U.S. EPA NEI 2011. Biomass burning emissions come from
Fire Locating and Modeling of Burning Emissions Inventory (FLAMBE) (Reid et al., 2009). The ratio of
organic carbon and black carbon in FLAMBE was set as 9 and more details of the FLAMBE implementation
in WRF‐Chem can be found in Wang et al. (2013) and Ge et al. (2014). The model calculates the biogenic
emissions online using the U.S. Geological Survey (USGS) land‐use classification, generated by the WRF
Preprocessing System. No dust and sea salt emissions were included in our simulations. As a result, the
PM2.5 mass concentration is calculated as the sum of sulfate, nitrate, ammonium, BC, and OM.

2.3. CMAQ

Output from the Community Multiscale Air Quality (CMAQ) (Byun & Schere, 2006) used in this study was
downloaded through the Remote Sensing Information Gateway (RSIG) (https://www.epa.gov/hesc/remote-
sensing-information-gateway). Here, we provide a brief summary of the model configuration that generated
the model output. The CMAQ modeling system Version 5.0.2 was used. The model simulations were per-
formed for the continental U.S. domain with a 12 km horizontal grid size and a Lambert Conformal projec-
tion. There are 35 vertical levels from the surface to the top of the free troposphere with a bottom layer
thickness of 19 m. The meteorology inputs for the CMAQ model came from the WRF Version 3.4
simulations (Skamarock et al., 2008). TheWRF simulations were conducted following Version 2 four‐dimen-
sional data assimilation (FDDA) with no nudging in the planetary boundary layer and using blended
3‐hourly reanalysis fields (combination of 6‐hr Meteorological Assimilation Data Ingest System (MADIS)
Data and intermediate North AmericanMesoscale Model (NAM) 3‐hr forecast). TheWRF outputs were post
processed with the Meteorology‐Chemistry Input Processor (MCIP v4.1.3) (Otte & Pleim, 2010). Hourly data
from global GEOS‐Chem simulations (v8‐03‐02) with GEOS5 meteorology provide the chemistry boundary
conditions (Bey et al., 2001).

The model used the CB05TUCL chemical mechanism for gas chemistry (Whitten et al., 2010; Yarwood
et al., 2005) and AERO6 (Appel et al., 2013; Binkowski & Roselle, 2003) for aerosol module. The aerosol
module simulates inorganic aerosols (sulfate, nitrate, and ammonium), water, secondary organic aerosols
(Carlton et al., 2010), elemental carbon, anthropogenic primary organic carbon, and unspecified material
of anthropogenic origin. Aerosols are represented in three log‐normal modes: Aitken, accumulation, and
coarse (Binkowski & Roselle, 2003). Inorganic aerosols in the Aitken and accumulation modes are assumed
to be in equilibrium with the gas phase using ISORROPIA II (Fountoukis & Nenes, 2007). Anthropogenic
emissions come from the U.S. EPA 2011 NEI projected to 2012. No dust emissions were included.
Biogenic emissions were calculated from the Biogenic Emission Inventory System (BEIS). Fire emissions
were developed using the U.S. Forest Service's BlueSky modeling framework (https://airfire.org). CMAQ
outputs PM2.5 concentrations by calculating online the fraction of each log‐normal particle mode that would
be collected with an aerodynamic cutoff diameter of 2.5 μm. All simulated pollutant species are included in
the calculation of PM2.5. Although aerosol water is included when calculating the size of the particles to
determine the PM2.5 fraction, it is then excluded as a constituent of PM2.5 mass, consistent with measure-
ment collection and sample preparation practices. Excluding dust emissions in the model could potentially
affect surface PM2.5 concentration in the southwestern United States as previous work have shown the large
number of dust events in the summer over this region (Tong et al., 2012) and that dust could contribute to
approximately 20–30% of surface PM2.5 concentration in the region (Hand et al., 2017).

2.4. Ground‐Based Measurements of PM2.5

Hourly surface PM2.5 measurements over the United States for June 2012 were obtained from the U.S. EPA
Air Quality System (AQS) (https://www.epa.gov/aqs). Even though the data from AQS have been quality
controlled, we applied several additional quality control techniques to ensure the continuous application
of Kalman filter: (1) For any site, if the difference between PM2.5 at the present hour and the previous
hour/next hour is both greater than 50 μg m−3, the PM2.5 concentration for this current hour is rejected;
(2) sites that have missing data on two consecutive days are excluded; (3) only sites that have at least 26 days
of data were kept. As a result, a total of 508 ground sites with hourly PM2.5 data from 1 June through 30 June
2012 were used for this work (see Figure 5 for the spatial distribution).
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3. Methodology

Categorically, the bias correction of model outputs includes two steps. First, we correct biases of
model‐simulated surface PM2.5 for the model grids colocated with EPA ground observational sites. Here,
we apply the KF, the ensemble technique or the combined technique of the two to correct the model biases.
Two ensemble techniques are used, one with the equal weights and the other one with optimized weights.
Second, we spread the corrected model bias to surrounding model grids without ground observations.
Experimentally, implementation of the bias correction for the hindcast data requires the elaboration of
the time window for making the correction, and it is described in section 3.4.

3.1. Bias Correction With the Kalman Filter Technique and its Implementations

Following Delle Monache, Nipen, et al. (2006) and Kang et al. (2008), we apply the Kalman filter in a post-
processing predictor bias correction manner. The KF algorithm applied here is recursive, adaptive and opti-
mal. It is recursive in a way that the KF coefficients at any time step depend on the previous time step. It is
adaptive because it can update the KF coefficients at each time step based on all the available information. It
is optimal in a least squares error sense (Delle Monache, Nipen, et al., 2006).

In the current KF framework, the state variable, in this case, the true bias xt, is defined as the difference
between model (i.e., WRF‐Chem) forecast of PM2.5 and the true (unobserved) concentration of PM2.5 at each
time step t. This true bias is related to the bias at the previous time step (t − Δt) plus a white noise η:

xt ¼ xt−Δt þ ηt−Δt (1)

Figure 1. The flow diagram of the KF technique used in this study and a more detailed description can be found in
section 3.1. At time step t = 0, the KF is initialized. After the initialization, the KF will update the KF parameters on
its own. First, the KF will predict the current estimates of the true biasbxt and the error covariance Pt (shown in blue box).
Then Kalman gain β can be calculated (5). Kalman gain is used to weight the difference of the forecast error yt and

the estimate of the true bias bxt to generate a corrected bias bxtþΔt and also update and correct the error covariance to P′

t

(shown in green box). At each time step, the corrected bias bxtþΔt will be outputted to correct model forecasts of surface
PM2.5 mass concentration; (3)–(6) corresponds to Equations 3–6 in section 3.1.
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where η is assumed to be uncorrelated in time and normally distributed with zero mean and variance σ2η.

Δt is the time interval of KF cycling (24 hr in this study) for updating the bias (for a given hour of a day) of
the model outputs of PM2.5 (as described in section 3.4).

At the same time, the forecast error, yt, can be defined as the difference between model forecasted PM2.5 and
measured PM2.5 concentration. While the true bias xt is not measurable, it can be related to the forecast error
yt after considering a random error εt in the observations. This random error is also assumed to be uncorre-
lated in time and normally distributed with zero mean and variance σ2ε :

yt ¼ xt þ εt (2)

In this postprocessing bias correction technique, the KF system uses all the available information (the fore-
cast and the observation) at the current time t to estimate the true bias at the future time (t+Δt).
Kalman (1960) has shown that the recursive predictor xt could be represented by the following equation:

bxtþΔt ¼ bxt þ βt yt − bxtð Þ (3)

where the hat (^) symbol indicates the variables are estimates of the truth. β is called Kalman gain and
more information is provided below.

Figure 1 shows the KF flow diagram for this study. Initial values of bxt and Pt (denoted as bx0 and P0 in
Figure 1, respectively) are needed to start the KF realization, where P is the expected mean square error

E xt−bxtð Þ2
h i� �

of the model forecast. After bx0 and P0 are specified and the KF is realized once, subsequent

realization of KF to predict the current state estimates of bxt and Pt (calculated in Equation 4) are based on
the information from the previous time step (shown in the blue box in Figure 1):

Pt ¼ P′

t−Δt þ σ2η (4)

The error covariance Pt is in turn used to calculate the Kalman gain:

βt ¼
Pt

Pt þ σ2
ε

(5)

which is further used to weigh the difference (yt − bxtÞ and apply the correction that was “learned” from
previous errors. This correction is then added to the projected current state of bxt to produce the estimate
of true bias bxtþΔt at the future time (t+Δt); meanwhile, the Kalman gain βt is used to update and correct
the error covariance P:

P′

t ¼ Pt 1 − βtð Þ (6)

where P′

t is the posterior covariance at time t. Thus, bothbxt and P are corrected and updated. Therefore, the
procedures as described in Equations 4–6 can be recycled at the period of Δt, while the parameters can be
used as inputs to the bias correction system to continue the cycle.

As the bias bxtþΔt is estimated for the next time step, the KF‐corrected model forecast of PM2.5 concentration
(KFt+Δt) can be computed as

KFtþΔt ¼ MtþΔt − bxtþΔt (7)

where Mt+Δt is the model forecast PM2.5 mass concentration at time (t+Δt). In addition, as demonstrated
in Delle Monache, Nipen, et al. (2006), σ2ε is also estimated using the KF framework and thus updated at
each time step.

Of the KF parameters, the error ratio (σ2η=σ
2
ε Þ plays an important role in the KF performance by determining

the relative contribution of forecast and observed values from the recent past to estimates at the next time
step. If the ratio is too high, the KF relies more on the past forecasts and is unlikely to successfully remove
any errors. If the ratio is too low, the KF has the difficulty to respond to changes in bias. Delle Monache,
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Nipen, et al. (2006) uses an optimal ratio of 0.01 following previous work (references therein). Kang
et al. (2008) used 3‐month ozone forecast time series in the continental United States to test a range of error
ratios (from 0.001 to 10 with increments of 0.0001) on the KF performance. It was found that the root‐mean‐
square error (RMSE) improved insignificantly when using an optimal error ratio at each ground station
compared with using a fixed ratio of 0.06 across all stations. The same conclusion was drawn for the
PM2.5 forecast by Kang et al. (2010a), who investigated the effects of applying error ratios ranging from
0.01 to 10 on the KF performance using a year of PM2.5 forecast in the continental United States. Here,
we adopt the uniform ratio of 0.06 at all ground sites for all three models.

In the actual implementation of KF, we use a time stepΔt= 24 hr to account for the time‐varying behavior of
surface PM2.5, which displays a diurnal variation (Fu et al., 2018; Wang, Aegerter, et al., 2016). KF is run for
each hour of the day so that the bias at a certain hour will depend on the bias at the same hour from the pre-
vious day. Here, the KF is initialized on June 4 for UTC hour = 0,…, 23 for all ground sites, with the same KF
parameters as used by Delle Monache, Nipen, et al. (2006). Data from 4 and 5 June are used for training the
Kalman filter parameters. On 6 June, the updated KF parameters and the model forecast of hourly PM2.5

together with surface measurements are used to generate the KF‐corrected model forecast of PM2.5. The
KF parameters generated at each hour of each day at each site are saved. The KF continues by reading
the KF parameters from the previous day, the hourly observation and model forecast from the prior as well
as training itself. For sites that have a missing observational value for an hour, the last known bias at the
same hour at the current site is used to fill in the gap.

3.2. Ensemble Technique and its Combination With KF

Here, we consider two types of ensembles: an equally weighted and an optimized ensemble. In the equally
weighted ensemble technique, we assign the three models (ensembles) with equal weights and the resultant
arithmetic mean (AM) yields the final results (hereafter AME). For the optimized ensemble (hereafter OPE),
the model ensemble is represented by the following equation:

f OPE;h ¼ f Thωh ¼ ∑M
m¼1 f m;h · ωm;h (8)

where fOPE,h is the optimized model ensemble forecast of surface PM2.5 for hour h and is a scalar. M is
the number of ensemble models and in this work is 3; m represents the index of any model ensemble
member. fh is the M × 1 vector consisting of forecasted hourly surface PM2.5 for hour h from model m
(fm,h). The superscript T denotes the operation of transpose of the vector. ωh is the M × 1 vector of the
weights for hour h, and its element ωm,h represents the optimized weight for the corresponding ensem-
ble member, model m.

Equation 8 is established for each site for a given hour h by using (historic) forecast and observational data in
past several days, and for simplicity, we neglect the subscript h in the equations below. Unless stated other-
wise, optimization ofω is conducted for each observational site for a given hour of the next 24 hr as described
in section 3.1. The optimization is realized by solving the following least squares problems:

arg
ω
min∥ f s − f o∥ (9)

where

f s ¼ FTω ¼ f 1 … f L
� �Tω (10)

Here fo is a L × 1 vector representing the measured hourly surface PM2.5 concentration in the past L days,
and fs is the model simulated counterpart after conducting the summation of weighted ensemble
(e.g., Equation 8). F isM× Lmatrix, consisting of L columns of f l, where l is the index of past days and ranges
from 1 to L; f l is a row vector consisting of PM2.5 values from M models (ensembles) on the past day of l.

Since there are two different (e.g., AME and OPE) ensemble techniques, and KF can be applied either before
or after the ensemble analysis, the KF and ensemble combination, the so‐called ensemble KF approach, can
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have four types: (a) AME‐KF, (b) OPE‐KF, (c) KF‐AME, and (d) KF‐OPE. For (a) and (b), ensembles are
constructed first and then followed by KF correction. For (c) and (d), KF are applied first and then
followed by the ensemble. The inputs for all four methods are the raw model outputs.

In the actual implementation, there are different numerical techniques to solve the least squares problems,
as shown in Equations 9 and 10. Here, we choose to use the Broden‐Fletcher‐Goldfarb‐Shanno (BFGS) (Byrd
et al., 1995) method. The reason we use BFGS is because it is a generic algorithm for optimization and can be
used with minimal revision in the near future whenmore models are available for being ensemble members.
Given we only have three ensembles in this study, the optimization in Equation 9 in theory only needs data
in 3 days to define weight (ω) for each ensemble. However, 3 days might be insufficient to characterize the
error of the ensemble. Therefore, for OPE, we experiment different length of time window (e.g., L values)
with the BFGS method. Figure 2 shows the values of RMSE and mean bias (MB) of (OPE‐estimated)
PM2.5, averaged over about 500 ground sites, as a function of the length of a moving time window, L, ranging
from 3 to 24 days. It reveals that the RMSE reaches the minimum when using a moving window of less than
7 days for both OPE and KF‐OPE. Meanwhile, the MB stays almost constant when the moving window var-
ies from 3 to 7 days and after that, the MB starts to increase for both OPE and KF‐OPE models.
Consequently, we choose a moving window L of 5 days unless noted otherwise.

3.3. Bias Propagation With a SCM and its Application

After correcting the model forecasts of PM2.5 at each ground site using the KF technique, we expand the bias
correction information to other model grid points where observations are not available. First, we estimate a
radius of influence which determines the maximum distance for bias propagation. We calculate the autocor-
relation for measured hourly PM2.5 mass concentration among all the EPA ground sites as a function of their
spatial distances. As shown in Figure 3, we find a correlation length of about 300 km when the correlation
falls to e−1. This finding is comparable to the results of Anderson et al. (2003), which suggests that the coher-
ent spatial scales for aerosol concentration in the lower troposphere are less than 200 km for an autocorrela-
tion of 0.8, through examining the variation of aerosol optical properties using different datasets (surface
observation, aircraft and spaceborne).

Lee et al. (2012) evaluated the performance of estimated surface PM2.5 across the continental United
States, derived from a geostatistical kriging technique versus satellite AOD. It was found that the kriging
technique resulted in more accurate estimates of surface PM2.5 for locations that were within ~100 km of
a ground monitoring site, while the AOD‐derived PM2.5 shows better performance when the distance is
greater than ~100 km. Following this approach, we perform bias correction within a radius of 125 km

Figure 2. Root‐mean‐square error (RMSE) and mean bias as a function of moving window length in the Broden‐Fletcher‐Goldfarb‐Shanno (BFGS) optimization
for the optimized ensemble (OPE, blue line) and KF‐OPE (red line). The optimization was performed at each ground observational site for each moving window
length. Then, the RMSE and mean bias were averaged over about 500 ground sites for each moving window length.
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through Successive Correction Method (SCM) (Kalnay, 2003). For any model grids located between 125
and 300 km away from the ground sites, AOD is used to spread the bias information, which is the focus
of the companion paper.

Following the technique used by Djalalova et al. (2015) and Glahn et al. (2012), the estimates of true bias at
each grid (here use x) are calculated using an iterative objective analysis scheme:

xnþ1
ij ¼ xnij þ

∑K
k¼1W

n
ijk bx 0

k − xnij
� �
K

(11)

where the superscript n denotes the iteration number. The subscripts ij and k represent the model grid

point and the observational site, respectively. The bx 0
k is the estimated bias from the KF technique at each

ground observational site. K is the total number of observational sites.Wn
ijk is the weight for each observa-

tion site k to the grid point ij and is calculated as follows:

Wn
ijk ¼

R2
n − r2ijk

R2
n þ r2ijk

; (12)

where rijk is the distance between each observational site k and grid point ij. Rn is the radius of influence,

which is updated at each iteration by R2
nþ1¼αR2

n. Hence, the total number of observational sites K at each

iteration might change with the changing Rn. The iterative process begins by proving initial values of Rn,
α, and xnij for n = 0. The initial bias of xnij at each grid point is assumed to be 0. The initial value of Rn and α

are given 125 km and 0.25 respectively. Thus, the iterative process works from a large scale to a smaller
scale up to 50 km, which is comparable to the model grid size of GEOS‐Chem. The iterative process stops
when there are no observational sites available within the distance of Rn.

3.4. Implementation for Bias Correction

The bias correction techniques were implemented here as if they were in a forecasting mode. As shown in
Figure 4, for the KF technique, we used both the model outputs and observational data from the past
24 hr to correct model forecast bias for the future 24 hr; assuming the observational data and forecast data
are readily available at the time slightly passing the last hour (23:00) of the last forecast cycle (say 23:15),
and the bias correction can be made between this time (23:15) and first valid hour (0:00) of the present

Figure 3. Correlations calculated from measured hourly PM2.5 mass concentration for any two of the 508 EPA AQS sites
as a function of the corresponding distance between the two sites. Also shown on the scatter plot is the density of the
points (the color bar). In addition, the distance is binned by a size of 10 km and the mean (green line) and median
(red line) correlations are shown respectively. The fitted line for the mean correlations as a function of the distance is
shown as the black line with R¼e−

Δx
lxð Þ where lx = 310 km.
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forecast (for tomorrow). In this manner, our bias correction technique is
designed to effectively improve the daily forecast on the rolling basis of
every 24 hr.

For the optimized ensemble, the weights for each site at each hour are
trained using the historical hourly surface PM2.5 for the past 5 days. Our
implementation of the bias correction only provides baseline results
regarding how much the forecast can be improved, as in real‐time fore-
casts, the model output may have larger or smaller errors. For a CTM
model, its errors from meteorology and chemistry can either resonate
or cancel each other in varying degrees depending on the specifics of
time, location, and model parameterization scheme. Therefore, a CTM
hindcast with reanalysis meteorology may often (but not necessarily
always) have larger errors than that of the real‐time forecast results.
Nevertheless, building upon this study, future studies can further assess
the impact of many other factors (such as the forecast cycle, the time
window of the bias correction, and the temporal latency of observational
data) on the actual implementation of the bias correction in real‐time
forecasting settings.

4. Results

Several statistics are used to evaluate the model performances: linear cor-
relation (denoted as R), RMSE, and mean bias (MB). In addition, the
Taylor Diagram (Taylor, 2001) is used to summarize the model evaluation
results. This diagram (see Figure 9) provides a summary of the correlation
(R, the cosine of the polar angle), normalized standard deviation (NSD)
shown in x and y axis, normalized mean bias (NMB, the color bar) and
normalized centered RMS difference (NRMSD), shown as the radius from
the expected point, at which R and NSD are unity. Formulas about these
statistics can be found in Zhang et al. (2019). When comparing model
simulated surface PM2.5 with ground observations, each of the ground
sites is paired with the nearest model grid and no interpolation is used.
If several ground sites fall into the same model grid, they are compared
with the model outputs separately.

Figure 4. Scheduling chart for Kalman filter and ensemble bias correction techniques. First, Kalman filter is applied to
each model using the bias from the past 24 hr to correct the future 24 hr's output. Specifically, the bias at hour t − 24 + h
(h = 0, …, 23) is used to correct forecast bias at hour t + h. Then ensemble is formulated to generate the single best
forecast.

Figure 5. Monthly mean PM2.5 concentration from each model overlaid
with 508 ground observational sites for June 2012: (a) GEOS‐Chem, (b)
WRF‐Chem, and (c) CMAQ.
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4.1. Priori Ensemble Statistics of Modeled PM2.5

Figure 5 shows the spatial distribution of monthly mean PM2.5 concentration from eachmodel overlaid with
ground observational data. The ground observations show higher PM2.5 concentration in the eastern United
States and lower concentration in most of the central and western United States except for Southern
California and a small part of the Rocky Mountains. All three models can capture this spatial variation to
some extent with R values of 0.61, 0.55, and 0.58 for GEOS‐Chem, WRF‐Chem, and CMAQ respectively.
However, all three models underestimate monthly mean PM2.5 concentration compared with ground obser-
vations, with MB values of −2.1, −4.2, and −1.8 μg m−3 and NMB values of −24%, −48%, and −20% for
GEOS‐Chem, WRF‐Chem, and CMAQ, respectively. The daily mean PM2.5 concentration comparisons
are similar (Figure 6).

Underestimates of total PM2.5 concentration in summertime in atmospheric chemical models or operational
forecast models have been a common problem. For example, by compiling 69 peer‐reviewed articles span-
ning 2006 to 2012, Simon et al. (2012) presented a summary of various atmospheric photochemical model
performances that focused on the United States or Canada. Most of the modeling work involved CMAQ
and several WRF‐Chem studies. It was found that model evaluation results show more negative than posi-
tive biases for PM2.5 species and total PM2.5 mass concentration. McKeen et al. (2007) compared real‐time
forecasts of surface PM2.5 concentrations from seven air quality forecasting models (including several
WRF‐Chem models with different configurations) with ground observations in the northeastern United
States and southeastern Canada during the summer of 2004 and found that, in general, the surface PM2.5

concentrations were underpredicted across the regional scale. Other past work (Fast et al., 2014; Misenis
& Zhang, 2010; Wu et al., 2017) have also found underestimates of surface PM2.5 in WRF‐Chem simulations
over different parts of the United States. PM2.5 is generally underestimated in CMAQmodels in the summer-
time shown by previous work (Appel et al., 2017; Yu et al., 2008).

4.2. Kalman Filter for Each Model Output

As shown in Figure 6, the KF technique improves each individual model performance with increased R
values and decreased RMSE and MB. The R value increases systematically from the range of 0.39–0.65 for

Figure 6. Scatter plots of daily PM2.5 concentration between model (y axis) and ground observation (x axis) at 508 sites. (a–c) The evaluation for each raw
model; (d–g) the evaluation for the corresponding KF‐corrected model results. (d) represents the evaluation results of the optimized ensemble (OPE) of
raw GEOS‐Chem, WRF‐Chem, and CMAQ models, and (h) shows the evaluation of the combination of the OPE and KF techniques. Also shown on the
scatter plot is the correlation coefficient (R), the root‐mean‐square error (RMSE), the mean ± standard deviation for the ground observation (x) and model (y),
the number of collocated data points (N), the density of points (the color bar), the best fit linear regression (the dashed black line), and the 1:1 line (the solid
black line).
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the raw model to 0.68–0.82 for the KF‐corrected models. The RMSE decreases by 29%, 41%, and 33% for
GEOS‐Chem, WRF‐Chem and CMAQ, respectively. The MB decreases from 2.2–4.5 to 0.1–0.9 μg m−3,
which indicates the successful removal of systematic bias in the models. Figure 7 shows the time‐series of
the bias of raw models and KF‐corrected models. Again, all three raw models in general underestimate
PM2.5 concentrations compared to ground observations from the beginning of June to the end of the
month. Overall, the KF technique can adjust the model results and reduce the model bias. Of the
three models, the KF‐corrected CMAQ shows the best performance mainly because the raw CMAQ
captures the magnitude and variation of the surface PM2.5 better than the other two models. The ground

Figure 7. (a) Time series of daily mean PM2.5 concentration averaged over 508 ground sites from 6 to 30 June for the
KF‐corrected models and EPA in situ observation. (b–d) The time series of the bias between each model and
measured daily mean PM2.5 concentration averaged over the ground sites, respectively.

Figure 8. Mean bias between model simulated and measured PM2.5 at 508 ground sites. (a–c) The mean bias for the raw models; (d–f) the mean bias for the
corresponding KF‐corrected models.
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observations of surface PM2.5 averaged across the sites shows 3 peaks dur-
ing the month (10, 21, and 29 June). For the second peak around 21 June,
both WRF‐Chem and GEOS‐Chem show larger biases than on previous
days. As a result, the KF slowly responds to the change because the KF
failed to anticipate a larger bias when the biases in the past few days are
relatively constant and smaller.

Figure 8 shows the spatial distribution of the model mean biases. Again,
negative biases are dominant at most of the sites for all three of the mod-
els, especially for WRF‐Chem. For GEOS‐Chem and CMAQ, most sites
with negative biases are located in the eastern and central United States
as well as a part of California. The implementation of the KF technique
brings the model bias within 2 μg m−3 for all three of the models.
Similar results are also found in the work of Kang et al. (2010a), who
implemented the KF technique with the CMAQmodel to improve surface
PM2.5 forecasts in the continental United States. This finding further con-
firms the effectiveness of the Kalman filter in reducing model bias and
thereby improve model forecasting performance.

4.3. AME and OPE

The equally weighted ensemble of raw models (AME) has some skill in
enhancing the correlation with respect to the raw models (Figure 9).
Using the AME resulted in an RMSE decrease of ~29% compared with
raw WRF‐Chem model output, but there was insignificant change in
CMAQ and GEOS‐Chem model outputs. As anticipated, the ensemble
could reduce some of the unsystematic error. The optimized ensemble
(OPE) is found to perform better than the AME in terms of MB, RMSE,
and R (Table 2). Additionally, using the OPE results in less variation
between model output and observations than using the AME (Figure 9).

Our work reveals that weighted ensemble modeling has the potential to improve model forecasting skills
compared with raw models, especially when some of the raw models in the ensemble group present some
deficiency (Pagowski et al., 2005).

4.4. Ensemble Comparison and Combination With KF

Figure 9 summarizes the performance of individual models, KF‐corrected models and ensemble models.
Again, the KF‐corrected models show improved performance compared with their respective raw models.
The ensembles (AME or OPE) without any KF bias correction could both improve raw model performance
by decreasing biases and increasing correlations.

The statistics of the different ensemble techniques are presented in Table 2. The combination of
ensemble‐KF or KF‐ensemble shows better performance than the OPE ensemble alone, also shown in
Figure 6, reflecting the effectiveness of the KF bias correction technique. KF‐AME and AME‐KF show simi-
lar results in terms of MB, RMSE, and R. Using OPE with KF (either OPE‐KF or KF‐OPE) is found to have
smaller MBs compared with using AME with KF. This result agrees with findings of Djalalova et al. (2010),
who showed that the Singular Value Decomposition (SVD) ensemble of KF‐corrected model performance

for surface PM2.5 is slightly better than the equally weighted ensemble
of KF‐corrected models. Djalalova et al. (2010) focused on surface PM2.5

in the state of Texas and optimized the weights across the whole domain.

Overall, the KF‐OPE technique shows the best performance, slightly
better than OPE‐KF. Since the errors of each model, especially error
covariance among different models, cannot be fully characterized, our
ensemble technique more or less can be viewed as empirically based.
Therefore, caution needs to be exercised to interpret the results, especially
the relative performance of each techniques. Nevertheless, it appears that
KF is shown to be effective for the correction of systematic errors of a

Figure 9. Taylor diagram of evaluating modeled daily mean PM2.5
concentration against ground observations at 508 sites. The circles
represent each raw model comparison with ground observations, while the
triangles represent the comparisons of KF‐corrected model daily PM2.5
concentration and ground observation. The hexagons represent the
evaluation of the ensembles (AME and OPE). The squares and diamonds
show the comparison of KF‐ensembles and ensembles‐KF, respectively.
The color bar denotes the normalized mean bias (NMB, %).

Table 2
Summary Statistics for the Ensemble Technique

MB (μg m−3) NMB (%) RMSE (μg m−3) R

AME −3.47 −34.8 5.61 0.71
OPE −0.66 −6.6 3.69 0.82
KF‐AME −0.46 −4.6 3.37 0.84
KF‐OPE 0.10 1.08 3.52 0.82
AME‐KF −0.43 −4.3 3.37 0.84
OPE‐KF −0.13 −1.3 3.62 0.83
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single model (often with underlying assumption that the model
errors are Gaussian and is applied here with statistics in a moving
time window of 1 day). In comparison, the OPE process in this work
can be somehow viewed as a linear regression. Such linear regression
(Equations 8–10) includes three weights and does not include a con-
stant term. As a result, the OPE here could not remove the systematic
bias more effectively compared with the KF technique but may han-
dle some unsystematic bias. This conjecture helps to elucidate that
KF‐OPE might be more effective than OPE‐KF. Again, the bias cor-
rection method in this study, by design, is empirical, and further
study from the theoretical point of view is needed.

4.5. SCM Results

Figure 10 shows the spread of KF‐generated bias for surface PM2.5

in the CMAQ model using SCM. As seen in the figure, CMAQ
model grid points that have EPA sites within a distance of 125 km
show smoothly corrected biases. Similar smoothness is found in
GEOS‐Chem andWRF‐Chemmodel corrected bias (not shown here).
The uneven spatial distribution of surface PM2.5 monitoring sites

leads to more model grid points in the eastern and western U.S. being corrected and most model grid points
in the central Great Plains and the Rocky Mountains are left out.

To evaluate the performance of the SCM correction, we randomly select ~10% of the total 508 sites shown in
Figure 10 as validation sites. These sites will not be used for KF bias correction. Figure 11 shows the perfor-
mance of the rawmodel and SCM‐corrected surface PM2.5 at these evaluation sites. For all of the three mod-
els, SCM correction could augment model performance, andWRF‐Chem shows greater improvement. Mean
Bias decreases from 1.3 to 0.2 μg m−3 for GEOS‐Chem, from 4.4 to 2.1 μgm−3 forWRF‐Chem and from 1.2 to

Figure 10. Map of SCM‐corrected CMAQ model mean bias of surface PM2.5 at
UTC hour 23 on 20 June. The circles represent EPA sites where KF bias
correction is applied and subsequently used by SCM for model bias correction in
the nearby (within 125 km radius) area. The triangles are sites used for SCM
evaluation. Gray areas in the map are model grids that are not corrected by SCM.

Figure 11. Scatter plots of daily PM2.5 concentration between model and ground observation for SCM evaluation sites. (a–c) The raw model PM2.5 from all the
SCM evaluation sites (triangles in Figure 10); (e–g) the corresponding SCM‐corrected module simulated PM2.5. (d and h) The ensemble of raw GEOS‐Chem,
WRF‐Chem, and CMAQ models and SCM‐corrected models, respectively. Also shown on the scatter plot is the correlation coefficient (R), the root‐mean‐square
error (RMSE), the number of collocated data points (N), the density of points (the color bar), the best fit linear regress line (the dashed black line), and the 1:1 line
(the solid black line).
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0.4 μg m−3 for CMAQ. The RMSE decreases from 5.3 to 5.0 μg m−3, 6.8 to 5.2 μg m−3, and 4.4 to 4.1 μg m−3.
The R values increases from 0.59 to 0.64, 0.41 to 0.55, and 0.71 to 0.74, respectively. The equally weighted
ensemble of the three SCM‐corrected models showed improved estimates of surface PM2.5 than the equally
weighted ensemble of the raw models, SCM‐corrected GEOS‐Chem and SCM‐corrected WRF‐Chem alone
but only slightly improve the performance of SCM‐corrected CMAQ.

5. Conclusions and Discussion

As the first of a two‐part study, we focused on improving surface PM2.5 forecasting in non‐rural areas of the
continental United States using model predictions and ground observational data. We applied a multimodel
approach together with bias correction techniques including Kalman filter application and ensemble mod-
eling. In addition, a successive correction technique was used to spread the previous bias information to
areas where ground observations were not available. Model ensemble members included three of the widely
used atmospheric chemical transport models: GEOS‐Chem, WRF‐Chem, and WRF‐CMAQ. Hourly model
output of surface PM2.5 mass concentration and ground observations from about 500 EPA AQS sites for
the month of June 2012 were used. All three models could generally capture the spatial variation of surface
PM2.5 revealed by ground observations, with higher concentrations in the eastern U.S. and lower concentra-
tions in the central and western United States except for southern California. However, all three models
underestimated PM2.5 concentrations compared to ground observations, with MB of −2.8, −4.5, and
−2.2 μg m−3 and RMSE of 5.8, 7.9, and 5.5 μg m−3 for GEOS‐Chem, WRF‐Chem, and CMAQ, respectively.
Overall, CMAQ performed the best and WRF‐Chem performed the worst. Additional model sensitivity stu-
dies would be necessary to understand the causes.

The KF bias correction technique resulted in increased correlation, decreased RMSE andMB, when compar-
ing each model output with ground observations. Spatially, the MB values decreased to within 2 μg m−3 for
most of the sites. Our results are consistent with previous work of Kang et al. (2010a), which confirms the
robustness and efficiency of the KF technique in improving model forecasts by reducing systematic errors.
Several combinations of ensembles were then created. An equally weighted ensemble (AME) and optimized
ensemble (OPE) were used. The AME performed better than each raw model alone in terms of correlation
but did not reduce the RMSE significantly compared with CMAQ and GEOS‐Chem, mainly because of large
underestimates by the WRF‐Chem model. In contrast, the OPE resulted in greater improvement than the
AME, with increased correlation and decreased biases. Next, two types of ensemble and KF combination
were tested: KF‐AME/OPE (KF first followed by ensemble) and vice versa. The ensemble with the KF cor-
rection technique performed better than the OPE ensemble alone, which demonstrates that applying the
KF is effective especially when raw model skills are low. Overall, the KF‐OPE showed the best results with
the RMSE decreasing from 5.61 to 3.52 μg m−3 (37%), the MB changing from−3.47 to 0.10 μg m−3, and the R
value increasing from 0.71 to 0.82 (15%) compared with the AME. We understand that our ensemble mem-
bers include fewer models compared with previous work (Djalalova et al., 2010; McKeen et al., 2007), but
these models incorporate different meteorology fields and chemical mechanism and can still be useful to
demonstrate the impacts of ensemble modeling.

A correlation length of 300 km was found from the autocorrelation of measured hourly surface PM2.5

mass concentration over about 500 ground sites. We used this radius as the limit distance to correct
any model estimates at grid points neighboring ground observational sites. SCM was used within the
125 km distance radius. Corrections for GEOS‐Chem, WRF‐Chem, and CMAQ were conducted respec-
tively and all showed increased R values, decreased RMSE and MB. The equally weighted ensemble of
the three SCM‐corrected models showed improved results than the SCM‐corrected GEOS‐Chem and
WRF‐Chem alone but did not show significant improvements than the SCM‐corrected CMAQ.
Therefore, we recommend using the optimized ensemble (OPE) combined with the Kalman filter for
regions with available ground observations followed by the equally weighted ensemble of the SCM correc-
tion for the nearby regions, 125 km away from the ground observations. For regions that do not have
ground observations in the vicinity of 125 km, satellite remote sensing data will be used to correct model
bias, which will be the focus of part two of our work.

Finally, we note that our modeling results only focus on 1 month of June 2012 and future work could be
expanded to other seasons to provide a complete picture. Since the bias correction methods developed
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here are based on model hindcast results, future work is needed to apply and assess the efficacy of this bias
correction system in operational air quality forecasting; the cofounding issues related to the time window of
the bias correction, the temporal latency of observational data, and the real‐time forecast scheduling (Kang
et al., 2010b; Ma et al., 2018) deserve dedicated investigation.

Disclaimer

The research described in this article has been reviewed by the U.S. Environmental Protection Agency (EPA)
and approved for publication. Approval does not signify that the contents necessarily reflect the views and
the policies of the agency nor does mention of trade names or commercial products constitute endorsement
or recommendation for use.

Data Availability Statement

GEOS‐Chem is an open‐access model that can be downloaded online (http://acmg.seas.harvard.edu/geos/).
WRF‐Chem is also an open‐access model that can be acquired online (https://www2.mmm.ucar.edu/wrf/
users/downloads.html). CMAQ model outputs can be obtained online (https://www.epa.gov/hesc/remote-
sensing-information-gateway). The results used in this work are available online (https://doi.org/
10.25820/data.006123).
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