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A B S T R A C T

An accurate estimation of biomass burning emissions is partially limited by the lack of knowledge of fire burning
phase (smoldering vs. flaming). In recent years, several fire detection products have been developed to provide
information of fire radiative power (FRP), location, size, and temperature of fire pixels, but no information
regarding fire burning phase is retrieved. The Day-Night band (DNB) aboard Visible Infrared Imaging
Radiometer Suite (VIIRS) is sensitive to visible light from flaming fires in nighttime scenes. In contrast, VIIRS
4 μm moderate resolution band #13 (M13), though capable of detecting fires at all phases, has no direct sen-
sitivity for discerning fire phase. However, the hybrid usage of VIIRS DNB and M-bands data is hampered by
their different scanning technology and spatial resolution. In this study, we present a novel method to rapidly
and accurately resample DNB pixel radiances to the footprint of M-band pixels, accounting for onboard detector
aggregation schemes and bowtie effect removals. The visible energy fraction (VEF) is subsequently introduced as
an indicator of fire burning phase. VEF is calculated as the ratio of visible light power (VLP) to FRP for each fire
pixel retrieved from the VIIRS 750m active fire product. A global distribution of VEF values is quantitatively
obtained, showing smaller VEF values in regions with mostly smoldering wildfires, such as peatland fires in
Indonesia, larger VEF values in regions with flaming wildfires over grasslands and savannas in the sub-Sahelian
region, and the largest VEF values associated with gas flaring in the Middle East. Mean VEF for different land
cover types or regions is highly correlated with modified combustion efficiency (MCE). These results, together
with a case study of the 2018 California Camp Fire, show that the VEF has the potential to be an indicator of fire
combustion phase for each fire pixel, appropriate for estimating emission factors at the satellite pixel level.

1. Introduction

Biomass burning has a significant role in Earth's atmosphere and
climate system. On average, 348Mha of land is burned by wildfires and
prescribed fires worldwide each year (Giglio et al., 2013). These fires
emit radiatively important greenhouse gases (including their pre-
cursors) into the atmosphere, such as carbon dioxide (CO2), carbon
monoxide (CO), nitrous oxide (N2O), and methane (CH4), along with
smoke particles with significant fractions of black carbon (BC) and or-
ganic carbon (OC) (Andreae and Merlet, 2001; Ichoku and Ellison,
2014; Ichoku and Kaufman, 2005). Such greenhouse gases and smoke

particles disturb atmospheric radiative balance by scattering and ab-
sorbing solar radiation, which can affect climate and air quality re-
gionally and globally (Kaufman et al., 1991; Penner et al., 1992;
Ramanathan and Carmichael, 2008; Wang et al., 2006). While green-
house gases have a positive radiative forcing effect from absorbing the
Earth's longwave radiation and emitting it back to the surface, smoke
aerosol particles can produce a radiative cooling effect by scattering
and absorbing incident solar radiation before it reaches the surface
(Wang and Christopher, 2006).
While qualitatively understood, the overall impact from biomass

burning on climate and air quality remains highly uncertain due to
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discrepancies in the estimation of biomass burning emission amount
and the OC/BC ratio that regulates the single scattering albedo of the
smoke particles. For example, Ge et al. (2014) conducted a WRF-Chem
simulation using different OC/BC ratios in smoke emissions, and
showed that the smoke direct radiative forcing increases by a factor of 2
as the OC/BC ratio changes from 10 to 3.5. Feng et al. (2014) showed
that the estimation for monthly-total smoke (OC + BC) emissions from
9 different inventories can differ by a factor of 12 over northern sub-
Saharan Africa (15°W–42°E, 13°S–17°N). These studies highlight the
importance of OC/BC ratio for both radiative forcing calculations and
for resolving (at least partially) the discrepancies of the total emission
of OC and BC in emission inventories.
Most emission inventories use constant emission factors (EF, grams

of greenhouse gas or particulate matter emitted per kilogram of burned
dry matter) for each vegetation type to estimate the emissions for any
wildfire. This formulation is an oversimplification because emission
factors are dependent on the fire combustion efficiency (CE, the ratio of
carbon emitted as CO2 to the total carbon emitted) that in turn varies
with fire combustion phase and can vary highly with space and time,
even in the same region for the same fuel type (Akagi et al., 2011; Reid
et al., 2005). A higher value of CE (e.g., 0.9) generally coincides with
the flaming phase, when the biomass fuel load burns with flames
emitting mostly CO2, H2O, and NOX. Flaming fires at high temperatures
can also produce BC. In contrast, lower values of CE (e.g., < 0.9) are
primarily due to the smoldering phase of fire, resulting in a decrease in
the emission of CO2 accompanied by an increase in the emission of CO
and OC aerosol (Ward and Hardy, 1991; Yokelson et al., 1996). It is
therefore important to develop techniques to characterize the spatio-
temporal variation of fire combustion phase from satellite sensors.
Global monitoring of fires became a reality with the advent of op-

erational polar-orbiting and geostationary weather satellites in the
1970s. A wide variety of sensors have been used to monitor fires, in-
cluding Advanced Very High Resolution Radiometer (AVHRR) (Dozier,
1981), the Defense Meteorological Satellite Program (DMSP) Opera-
tional Linescan System (Elvidge et al., 1996), the Along-Track Scanning
Radiometer (ATSR) (Mota et al., 2006), the Visible and Infrared
Scanner (VIRS) (Giglio et al., 2000), the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Kaufman et al., 1998), the Visible Infrared
Imaging Radiometer Suite (VIIRS) (Csiszar et al., 2014; Schroeder et al.,
2014), the Geostationary Operational Environmental Satellite (GOES)
Imager (Prins and Menzel, 1992, 1994) and the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) (Roberts et al., 2005; Roberts and
Wooster, 2008). By employing top-of-atmosphere radiances measured
in several wavelengths, many fire detection algorithms have been de-
veloped for these sensors to characterize wildfires. In the absence of
solar contamination during the night, specific algorithms for nighttime
fire detection using short-wave infrared band (SWIR) centered near
1.6 μm (Elvidge et al., 2013) and visible-light band centered near
0.7 μm (Polivka et al., 2016) were demonstrated for VIIRS onboard the
Suomi National Polar-orbiting Partnership (S-NPP) satellite. The de-
tailed specifications for each fire detection algorithm can be found in
Table 1. While significant progress has been made toward detecting and
characterizing active wildfires using remote sensing satellite data, there
is no quantitative characterization of fire combustion phase in these
satellite-based active fire products. The goal of this study is to develop a
technique that measures fire combustion phase from space using
nighttime satellite remote sensing data, thereby providing a potential
means to improve fire emission estimation, with a specific focus on
emission factors for each individual fire.
Fire combustion phase is dependent on fuel content, relative hu-

midity, and temperature, which define the nature of the combustion
reaction. If the reaction happens heterogeneously at the surface of solid
fuels (vegetation and wood), the combustion is without flames and
produces incompletely oxidized products (Ohlemiller, 1985; Rein,
2009). In contrast, when the oxidation happens between oxygen in the
air and gases released by pyrolysis, the combustion products are soot Ta
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and completely oxidized gases. These products absorb substantial en-
ergy during the combustion process, allowing them to emit visible ra-
diation as a flame (Rein, 2009; Sato et al., 1969). Combustion efficiency
is usually reported as modified combustion efficiency (MCE), which is
defined as the ratio of carbon emitted as CO2 to the total carbon emitted
as CO2 and CO. In fire emission inventory estimates, EF is normally
defined as a function of MCE. Although MCE can be identified through
lab or in-situ measurements (Akagi et al., 2011; Ferek et al., 1998; Ward
and Hardy, 1991), it is difficult to determine MCE, and therefore EF, on
a near real-time basis in an open environment, where both flaming and
smoldering occur simultaneously (van Leeuwen and van der Werf,
2011; Ward and Hardy, 1991). This results in a lack of availability of
MCE data for fires observed routinely and globally.
This study is the first attempt to use VIIRS observations for char-

acterizing the dominant fire combustion phase quantitatively and
globally, with a link to the fire CE, from which the emission factors for
BC and OC can be derived for a given surface type and an individual
fire. In section 2, we illustrate the VIIRS Day-Night band (DNB) and
moderate-resolution band (M-band) characteristics, and their spatial
mismatch problem at the pixel level. In section 3, we present the
methodology to efficiently collocate DNB pixel radiances to M-band
pixel resolution. This is required because DNB and M-bands have sig-
nificant differences in their sampling and scan geometry. Once DNB and
M-band data are homogenized, we describe a method to retrieve a
visible energy fraction (VEF) for each fire pixel, and link that VEF to the
emission factors that are used worldwide to initialize smoke transport
and air quality forecasts. Section 4 presents results for several fire
classifications based on their VEF values, including a global distribution
of fire combustion phase and the first global fire combustion efficiency
map for the year 2015. Section 5 concludes the paper.

2. VIIRS: M-band and DNB spatial mismatch and data used

VIIRS is a remote-sensing instrument flying on the S-NPP and
NOAA-20 (also referred to as JPSS-1) satellite platforms. NOAA-20 is
the first in a new series of polar-orbiting environmental satellites, called
the Joint Polar Satellite System or JPSS, created in partnership between
the National Oceanic and Atmospheric Administration (NOAA) and
National Aeronautics and Space Administration (NASA). VIIRS will be
flown onboard three more satellites (JPSS-2, JPSS-3, JPSS-4) to be
launched in the next 10–15 years (Goldberg et al., 2013).
VIIRS has 22 channels, with a nominal spatial resolution of 375m in

the five imagery bands (I-bands) and 750m in 16 moderate resolution
bands (M-bands), covering a spectral range from 0.412 μm to 12.01 μm
(Table S1). Also included on VIIRS is the unique DNB that measures
radiances over a broadband spectrum from 0.4 to 0.9 μm with a nom-
inal spatial resolution of 750 m (Cao et al., 2014; Wolfe et al., 2013).
DNB minimum detectable radiance (Lmin) is 3× 10-9W·cm-2·sr-1 during
the night, which coincides with a temperature near 630 K for a fire
occupying half of the pixel (Fig. 1a), to a maximum value of 0.02W·cm-
2·sr-1 in the presence of sunlight. Fig. 1a shows atmospherically cor-
rected DNB radiances for different fire temperatures and fractions. We
assumed the night to be moonless, and did not take into account any
lunar or other illumination in our simulation. The simulation was
conducted by the Unified Linearized Vector Radiative Transfer Model
(UNL-VRTM) (Wang et al., 2014) for each fire pixel with a surface
temperature of 300 K and a uniform background aerosol optical depth
near 0.1 (smoke particles, wavelength=0.75 μm). The black line re-
presents Lmin for the DNB. Furthermore, as Fig. 1b shows, DNB has a
broad spectral response with a high dynamic range, which is sensitive
to flaming fire temperatures exceeding 600 K. VIIRS DNB radiances
therefore contain strong unsaturated signal from fire flames during
nighttime, in the absence of significant background solar contamina-
tion.
The VIIRS 750m active fire (AF) product provides information on

active fires and FRP. The VIIRS AF algorithm almost exclusively builds

on the MODIS fire detection algorithm, which is based on multi-spectral
tests using the infrared channels (Giglio et al., 2016). Also, the VIIRS AF
algorithm derives FRP based on the VIIRS 4 μm moderate resolution
band #13 (M13) radiance using the method proposed by Wooster et al.
(2005). However, to obtain visible light information for a fire pixel
detected by infrared M-band, it is necessary to ensure that DNB pixels
are properly matched to the M-band pixels. This matching is compli-
cated by the fact that DNB and M-bands are completely different in
their mechanics and operations. Subsequent sections describe these
fundamental differences between DNB and M-bands in their operations
to carry the observation of the Earth and atmosphere and their proce-
dures for aggregating samples observed by individual detectors to form
pixels. This is followed by a description of DNB and M-band mismatch
and the data products used for this study.

2.1. M-band and DNB differences in onboard processing

Each M-band has 16 detectors, and consequently, each of the M-
band scans is comprised of 16 scan lines. Hereafter, the region con-
sisting of these detector lines in one M-band scan is referred to as one
scan zone. The M-bands use a whiskbroom procedure, scanning the
earth perpendicular to the track of the satellite (Cao et al., 2014;
Polivka et al. 2015, 2016; Wolfe et al., 2013). The whiskbroom scan-
ning causes the pixel size to grow as the scan angle increases, producing
the so-called “bowtie effect”. This pixel size growth occurs in both the
along-scan and along-track directions, but it is larger in the along-scan
direction. The bowtie effect causes some of the scan lines in two con-
secutive scan zones to overlap each other far from nadir, resulting in
redundant sampling. For example, for the M-band, the last 9 scan lines
in the first scan zone overlap with the first 9 scan lines in the next scan
zone, as shown in Fig. 2a. The resulting overlapped region is partially
flagged onboard and removed by trimming 4 overlapped scan lines (2
from each scan zone) at the edge of the scan zone (corresponding with a
scan angle around 56.28°). However, 5 additional scan lines not re-
moved by the onboard bowtie deletion remain overlapped near the
edge of each scan.
In addition to the bowtie effect, within each scan zone, there are

three symmetrical aggregation zones for M-bands on each side of the
scan zone (Table S2) (Polivka et al., 2015). Within the M-band field-of-
view, each scan line has 3200 pixels after aggregation of 6304 detector
pixels, and each M-band's detector samples a distance of 259m along
the scan and 742m across the scan at the nadir on the earth's surface.
The aggregation zones for the left side of the scan zone are denoted by
blue dashed lines in Fig. 3. In aggregation zone 3:1 (scan angles be-
tween 0˚and 31.59°), 3 consecutive samples (detector footprints) made
by individual detectors along the scan are aggregated to comprise one
pixel that has a size of 776 (259× 3) meters along the scan and 742m
across the scan at the nadir. In aggregation zone 2:1 (scan angles be-
tween 31.59° and 44.68°), two consecutive samples from each detector
along the scan line comprise one pixel. In aggregation zone 1:1 (scan
angles larger than 44.68°), no aggregation happens as the along-scan
growth in size makes each sample large enough as a square-like pixel.
Without aggregation, the ground footprint of the VIIRS detectors grows
by a factor of 6 from nadir to the edge of the scan. Because of the
detector aggregation scheme, pixel footprints grow by only a factor of 2
across the scan, and the width and length of the pixel are similar
throughout the scan zone.
While a similar aggregation strategy is applied, DNB uses charge-

coupled device (CCD) arrays with 672 detectors in the along-track di-
rection and a larger number in the along-scan direction (Liao et al.,
2013). This 2-D detector array permits aggregating samples retrieved
from detectors both along and across the scan. Contrary to M-band,
DNB has 32 symmetrical aggregation schemes on each side of the scan
(Table S3) , resulting in a similar pixel size (742m) throughout the
whole scan. In Fig. 3, the bumps in DNB lines indicate the start of a new
aggregation zone, which has a different number of aggregated samples
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in the across-scan direction than that of the adjacent aggregation zones.
The unique aggregating scheme in DNB also removes the bowtie effect
(or the pixel area overlap) completely. Consequently, DNB pixels have
approximately the same size throughout the whole scan, while M-band
pixels are affected by the bowtie effect.

2.2. M-band and DNB mismatch

As a result of the DNB and M-band on board processing and for-
mulation differences, two kinds of mismatch exist between VIIRS M-
band and DNB pixels, even though their respective scan zone covers the
same portion of the area in the VIIRS ground swath. The first type of
mismatch is due to the difference between the nominal spatial resolu-
tion of the DNB and M-band pixels at nadir. As Fig. 3a shows, M-band
and DNB nadir pixels match perfectly in the along-track direction (Y
direction), where the top and bottom sides of the pixels overlap each
other. The left and right sides of the pixels in the along-scan (X) di-
rection do not match exactly, rendering a small offset for the same nadir
location in the same scan line.

The second kind of mismatch between M-band and DNB pixel
footprints results from divergence in pixel size growth arising from the
different methodologies for treating the bowtie effect. This mismatch is
denoted by arrows (offset 1 and offset 2) for edge pixels in Fig. 3, where
only 8 scan lines (in the center) of the M-band scan zone are fully within
the DNB scan zone, and fully overlap with the 16 DNB scanlines in the
same DNB scan zone. The remaining 8M-band scan lines are completely
outside of the DNB scan zone at the edge, despite having full overlap
with those DNB scan lines at the nadir. Hence, an M-band pixel at the
scan edge can overlap with up to 12 DNB pixels spreading over four
adjacent DNB scan lines (Fig. 3b).
The DNB and M-band mismatch hinders the combined use of valu-

able DNB radiance with M-band radiances for fires that require precise
georeferencing for the exact same fire area. However, since both the
DNB and M-bands cover the same swath for the same scan zone at the
nadir, and their mismatch pattern is repeatable for each scan zone, it is
possible to collocate DNB to M-band for one scan zone, and save the
results to produce a look-up table that can be applied to any other scan
zone (as described in section 3).

Fig. 1. (a) Contour plot of simulated DNB radiance for different fire temperatures and fractions during nighttime (assuming no lunar or other illumination) using
Unified Linearized Vector Radiative Transfer Model. The black line shows the minimum radiance (Lmin) that DNB sensor can detect. The fires that fall into the left side
of the white line are not detectable by DNB sensor. (b) Plot of VIIRS Day-Night band (DNB) and 4 μm moderate-resolution band #13 (M13) spectral responses along
with different Plank curves for different temperatures. DNB is highly sensitive to high temperature (flaming) fires in the night while M13 is sensitive to all fire
temperatures.
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2.3. Data used

To implement DNB to M-band collocation, we obtained the VIIRS
Suomi NPP data including M-band geolocation product (VNP03MOD)
and DNB geolocation product (VNP03DNB) from the NASA level-1 and
atmosphere archive & distribution system (LAADS) (https://ladsweb.
modaps.eosdis.nasa.gov/). We also obtained the Level-1 B calibrated
DNB radiance product (VNP02DNB) and VIIRS 750m active fire (AF)
product (VNP14) (Csiszar et al., 2014) from LAADS for 2017 (only
nighttime). Fig. S1 in supplementary material shows the global dis-
tribution of nighttime fire pixels for 2017. We obtained dominant ve-
getation type information from the MODIS Land Cover Type Climate
Modeling Grid (0.05°) product (Short Name: MCD12C1) (Friedl et al.,
2010), which is obtained from the Land Processes Distributed Active
Archive Center (LP DAAC) (https://lpdaac.usgs.gov/). MCD12C1 uses
the International Geosphere-Biosphere Program (IGBP) classification

stratifying the earth's surface cover into 17 categories (Loveland and
Belward, 1997).
We obtained gas flare location data from the VIIRS Nightfire flares

only product (Elvidge et al., 2016), produced from image and data
processing by NOAA's national geophysical data center (https://ngdc.
noaa.gov/) to classify flare-type grids. Fig. S2 in supplementary mate-
rial shows the gas flare locations that are used in this study.
We use the global fire emissions database version 4 (GFED4)

(https://www.globalfiredata.org/) (van der Werf et al., 2017) data to
calculate MCE (= +

CO
CO CO

2
2

) for each GFED4 grid (0.25°). GFED4 reports
monthly emission estimation (grams) of different trace gases like CO
and CO2 for different vegetation types for the globe, based on emission
factors from Akagi et al. (2011). GFED4 also provides these estimations
for 14 basis regions. This dataset is used as an independent check of the
results from our algorithm (described in subsequent sections).

Fig. 2. View of 2 consecutive VIIRS scan zones (at
the edge) overpassing Bani River in Africa. (a) Before
the bowtie effect correction there are 9 overlapped
scan lines from which 4 are trimmed onboard, 2
bottommost Scan1 scan lines and 2 topmost Scan2
scan lines. The other redundant scan lines are de-
tected using respective DNB signals which results in
3 redundant scan lines from Scan2 and 2 from Scan1.
(b) Consecutive scan zones after the bowtie effect
correction.

Fig. 3. VIIRS M-band/DNB scan zone for the whole
swath projected on a flat plane. The DNB pixels keep
the same size throughout the whole scan while the
M-band pixel size grows as a function of scan angle.
Near the edge, there is an offset (Offset1 & Offset2)
of 8 scan lines between DNB and M-band. The bumps
in the DNB scan lines indicate beginning of a new
DNB aggregation zone with a different number of
across-scan aggregated samples than its adjacent
aggregation zones which constitutes a collocation
segment. Subset. a represents the zoom-in view of
the nadir M-band and DNB pixels in which the de-
noted along-scan empty space between M-band and
DNB pixels is due to their nominal spatial resolution
mismatch. Subset. b shows the zoom-in layout of the
edge M-band and DNB pixels. Each large near-edge
M-band pixel can overlap with up to 12 DNB pixels
from 4 different DNB scan lines. Note, the different
scales for X and Y axes makes the figure ex-
aggeratedly look curvy.
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2.4. Data processing

We extract FRP data from VIIRS AF for all detected nighttime fire
pixels (having a solar zenith angle greater than 85°) for 2015 and 2017
globally. When repeating the analysis including only fire pixels with a
confidence level exceeding 50%, the results are nearly identical.
Consequently, we include all detected fire pixels in our analysis. We
then use the collocation algorithm to obtain the collocated DNB ra-
diance and calculate VEF for each of those (M-band) fire pixels. We can
regrid the pixels into various grid resolutions, depending on the ap-
plication. For example, for characterizing VEF over different surface
cover types, we regrid VEF pixel data into MODIS land cover type grids
(0.05°). To compare VEF with MCE, we use GFED4 grids (0.25°). We
also regrid VEF pixel values into 1° grids to provide a global map. We
only use the grids with at least 5 fire pixels and report annual-averaged
VEF for each grid by averaging pixel VEF values in each grid.
We employ VEF to investigate nighttime fire combustion phase

based on the different MODIS IGBP land cover types (Fig. 9b, Table 2)
and gas flares (Fig. S2). Note, we consider MODIS savannas and woody
savannas as one land cover type (savannas), and open/closed shrub-
lands as general shrublands. Furthermore, we show the capability of
VEF to characterize fire combustion phase by correlating it to the MCE
values derived from GFED4 2015 emission data for 14 GFED4 basic
regions (Fig. 4a) as well as six GFED4 general biomes, plus the gas flares
(we assume gas flaring MCE to be 0.99 as the gas flares are mostly
comprised of flames). We reclassify the MODIS land cover types into the

broad vegetation types that are used by GFED4 for reporting emission
factors (Akagi et al., 2011) and dry matter emissions (Table 2). In this
way, we can compare and correlate VEF and MCE for the same biomes.
However, while peat is one of the biomes used by GFED4, the MODIS
land cover product does not provide peatland locations. We therefore
identify peatland grids by deriving the fraction of peat vegetation from
each GFED4 grid (0.25°); if more than 70% of a grid land cover is peat,
we classify it as peatlands, which are located at regions of Sumatra and
Kalimantan (Fig. 4b). In 2017 (primary analysis year), there were not
enough fire pixels in these peatland grids, resulting in inadequate VEF
information for peats. Consequently, we use the 2015 VIIRS AF data
because of a large peatland fire event observed in Indonesia (Huijnen
et al., 2016), providing a sufficient quantity of valid peatland grids to
retrieve a reliable VEF for the peat vegetation type. Finally, we illus-
trate how VEF can identify intensity changes during the lifetime of a
major wildfire by analyzing the 2018 Camp Fire in California.

3. Algorithm

3.1. Collocating DNB to M-band

The principle of collocation is to aggregate different DNB pixels into
the M-band resolution by assigning them different weights according to
their respective area and the corresponding M-band pixel area. We
collocate DNB to M-band for a scan using area-weighting, so the energy
is conserved in the collocation process. We choose a scan specifically
near the equator that has minimal curvature effect to reduce errors in
calculating areas of pixels. The collocation process is summarized as a
flow chart in Fig. 5.
The first step of the collocation algorithm splits one scan zone of

DNB in the along-scan direction (X-axis) into smaller segments called
collocation segments, allowing the collocation process to be im-
plemented separately for each of these small segments to reduce dis-
tortion errors. We use the DNB aggregation zones as our index for
collocation segments. If two consecutive aggregation zones utilize the
same number of detector samples in the track direction for aggregation
(as described in section 2.1), they will be assumed as a single collo-
cating segment because the pattern along the scan will remain con-
sistent (Fig. 3). There are 64 aggregation zones for one DNB scan zone
(32 on each side of nadir), which comprises 46 collocation segments (23
on each side). The details of the pixel ranges for each collocation seg-
ments are provided in Table S4.

Table 2
MODIS land covers reassigned to more general vegetation types as in GFED4.

MODIS Land Cover Type Clustered Vegetation Type

Evergreen needleleaf forest (ENF) Tropical, Temperate, Boreala

Evergreen broadleaf forest (EBF) Tropical, Temperate, Boreal
Deciduous needleleaf forest (DNF) Tropical, Temperate, Boreal
Deciduous broadleaf forest (DBF) Tropical, Temperate, Boreal
Mixed forest (MF) Tropical, Temperate, Boreal
Closed shrublands (Shrub) Savanna
Open shrublands (Shrub) Savanna
Woody savannas (Sava) Savanna
Savannas (Sava) Savanna
Grasslands (Grass) Savanna
Croplands (Crop) Agricultural

a If latitude between 30 N and 30 S: Tropical, if latitude between 30 N/S and
50 N/S: Temperate, and if latitude larger than 50 N: Boreal.

Fig. 4. (a) Map of 14 basic regions used by GFED. (b) Peatland locations in cyan-colored boxes used in this study. Each grid land cover is comprised mostly from peats
(70%). The background base map is from ESRI (Environmental Systems Research Institute) world imagery service.
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Second, for each collocation segment, pixels are projected onto the
Earth's surface and the projected pixels centroids are used to calculate
each pixel corners and area. The Albers equal area projection method is
used to project pixel lat/lon coordinates to a flat surface because it is
appropriate for satellite swath data as the distortion is minimal in east
to west direction in the scan zone (Yildirim and Kaya, 2008). This flat
surface is a two-dimensional coordinate system where the horizontal
axis (X-axis) corresponds with the projected longitude and the vertical
axis (Y-axis) represents the projected latitudes in meters. The origin
point (X=0, Y= 0) of the flat surface corresponds with the lower left
pixel in the collocating segment. Fig. S3 shows the projected DNB and
M-band pixels comprising collocation segment 7.
The third step of the algorithm identifies the overlapped DNB pixels

intersecting with each M-band pixel in the scan zone of DNB and cal-
culates their area weights. This step is applied to all M-band pixels in
each collocation segment. We denote the given M-band pixel as Mi j, ,
where the subscript i shows the scan line (from 1 to 16) and j is the
number of pixels along that scan line (from 1 at nadir to 3200 at edge).
Similarly, a DNB pixel is denoted as Dl k, where l is the scan line (from 1
to 16) and k is the pixel number (from 1 to 4064). As shown in Fig. 6,
xMLR and xDLR represent the pixel lower-right X coordinates of Mi j, and
Dl k, along the scan (in meters), while xMLL and xDLL are the lower-left X
coordinates along the scan. Similarly, y yandMUL DUL are the upper-left Y
coordinates (along Y axis) of Mi j, and Dl k, across the scan in meters,
while y yandMLL DLL are the lower-left coordinates of each pixel.
The Dl k, is intersected with Mi j, if:

= >X Min x x Max x x( , ) ( , ) 0MLR DLR MLL DLL (1)

= >Y Min y y Max y y( , ) ( , ) 0MUL DUL MLL DLL (2)

where the minimum of the two coordinates denotes the smaller co-
ordinate value, while the maximum means the larger coordinate value.
Once the intersection is detected, the ratio of the intersected area of
DNB pixel to M-band pixel area, which is the area weight, is calculated

as follows:

= = ×S x x y y( ) ( )i j
M

MLR MLL MUL MLL, (3)

= ×s D M X Y( , )l k i j, , (4)

=W D M
s D M

S
( , )

( , )
l k i k

l k i j

i j
M, ,

, ,

, (5)

where Si j
M
, is the Mi j, pixel area and s (Dl k, , Mi j, ) is the area that Dl k,

intersected with M .i j, The weight of Dl k, for Mi j, is denoted by W (Dl k, ,
Mi j, ). After we calculate the DNB area weights, the collocated DNB ra-
diance can be calculated as follows:

= ×R W D M R( , )M
D

l k l k i j l k
D

, , , ,i j, (6)

where RM
D

i j, is the DNB radiance for Mi j, and Rl k
D
, is the radiance retrieved

from the intersected DNB pixel (D )l k, . It should be noted that the sum of
the intersected DNB pixels weights will add up to 1
( =W D M( , ) 1)l k l k i j, , , for each Mi j, that is completely overlapped
with DNB pixels.
We store the index of each M-band pixel and its corresponding in-

tersected DNB pixels indices and weights as a collocation look-up table
(LUT). Also, we add the M-band pixel areas to the pixel-area LUT for
later use. The collocation LUT details are presented in Supplementary
Material Section 1. These LUTs can be applied to any other scan zone
because satellite scan zone characteristics, such as pixel areas or pixel
size growth pattern are inherent and do not change for different scan
zones. For example, a near-equator scan zone's pixel areas are nearly
identical for a scan zone in polar regions. Furthermore, the area-
weighted collocation method can be applied to any other data with
different spatial footprints that need to be resampled to each other. The
resampling process for an M-band granule (consists of 3232 scan lines)
by applying collocation LUT takes around 3 s (using an inexpensive
laptop), while it can take up to hours implementing the resampling
process without using LUT. The resampled DNB radiances for M-band
pixels provide the capability to characterize fire combustion efficiency
for each nighttime fire pixel.

Fig. 5. Flowchart demonstrating the collocation process.

Fig. 6. Detecting intersection area between M-band and DNB pixel. The two
pixels are overlapped if (x x )DLR MLL and (y y )DUL MLL are simultaneously
larger than zero. Subscripts of DLL, DLR, DUL, MLL, MLR, and MUL stand for
DNB lower left, DNB lower right, DNB upper left, M-band lower left, M-band
lower right, and M-band upper left respectively. The X axis corresponds to
projected longitudes while Y axes represent projected latitudes.
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3.2. M-band bowtie effect and pixel overlap removal

We detect M-band bowtie affected pixels that are overlapped on
each other from two consecutive scan zones using the same technique
described in Section 3.1. We use 50% as the threshold for detecting the
overlap; if the two M-band pixels overlap more than 50% of their area,
they are labeled as overlapped. However, it is not immediately clear
which of the two overlapped pixels is redundant. We therefore sum the
DNB weights for each overlapped M-band pixel and remove the M-band
pixels that have smaller weights from corresponding DNB pixels in the
same scan zone. For example, near the edge, we detect 9 scan lines that
overlap between two consecutive scans (Fig. 2a). According to the edge
offset (Offset1 & Offset2) of 8 scan lines between DNB and M-band, the
last 4 lines from scan zone 1 and the first 4 lines from the scan zone 2
have no DNB pixel overlap; hence they are labeled as redundant pixels
(Fig. 2a). Similarly, although the last overlapped line between two scan
zones has DNB signals from both scan zones, the DNB weights from the
first scan zone are larger than second scan zone, which results in la-
beling one more scan line from scan zone 2 as redundant. As a result,
we remove the 4 bottommost scan lines from scan zone 1 and the 5
topmost scan lines from scan zone 2 as the redundant pixels (Fig. 2b).
We detect all the overlapped pixels along the whole scan zone for two
consecutive scans, and store the results as a bowtie LUT.

3.3. Visible energy fraction (VEF)

Polivka et al. (2016) showed that VIIRS DNB radiance in the night
time can be an indicator of fire combustion phase of smoldering versus
flaming. However, no quantitative measurement was presented to
quantify the CE. The VIIRS AF product provides fire radiative power
(FRP) for each fire pixel, which is an estimate of instantaneous radiative
energy from actively burning fires (Csiszar et al., 2014; Kaufman et al.,
1998; Peterson et al., 2013; Wooster et al., 2005). We derive visible
energy fraction (VEF) to quantitatively measure the flaming/smol-
dering phase for each fire pixel, which is dependent on both FRP (M-
band, AF product) and visible light power (VLP, from DNB).
The VLP (in megawatts) for each fire pixel is calculated as follows:

= × × ×VLP L A 10visible pixel
6 (7)

where Lvisible (in W·cm-2·sr-1) is the collocated visible radiance from the
fire (R as in equation 6),M

D
i j, Apixel is the M-band pixel area (in cm2), π is

a mathematical constant that is approximately equal to 3.14 (in ster-
adians), and 10-6 is the unit conversion factor from Watts to megawatts.
It should be noted that Lvisible is not corrected for background con-
tamination (e.g. city lights) or moonlight. For example, the presence of
intensive city lights in a fire pixel can result in overestimation of fire
radiance. However, most of the wildfires happen in remote areas with
almost no background contamination (L 0)visible . Furthermore, the
algorithm for VIIRS AF product that is used in this study detects fire
pixels based on the thermal anomaly in the infrared channels, and
hence the active fire pixels are not affected by artificial/city light as
these light sources do not lead to infrared thermal anomaly (Csiszar
et al., 2014). Finally, the reflected radiance from a full moon does not
exceed 10 nW·cm-2·sr-1 (Román et al., 2018), which is comparable to
Lvisible of only around 3% of fire pixels detected in 2017 (if we assume
that all the fire pixels are under full moon condition).
Once the VLP is obtained for the pixel, VEF can be calculated as

follows:

=VEF VLP
FRP (8)

where FRP (in megawatts) is the fire radiative power for the fire pixel.
The major uncertainty source for VEF is heavy smoke plumes. Light is
more strongly scattered in the visible spectrum (e.g. 0.7 μm) than in the
infrared (e.g. 4 μm). Consequently, VLP is more affected than FRP,
which means the VEF ratio suffers from underestimation under heavy

smoke conditions. We simulate VEF using the UNified Linearized Vector
Radative Transfer Model (UNL-VTRM, Wang et al., 2014; Xu and Wang,
2019) for different fire temperatures (Table S5) and a smoke optical
depth around 0.1.
We compare the simulated VEF with the values obtained from fire

pixels in 2017 to determine the approximate dynamic range for VEF.
For example, the maximum VEF value ( 0.25) in our data belongs to
gas flare pixels which is close to the simulated VEF value ( 0.28) for a
temperature of 2400 K. Also, we find that the minimum VEF value
( 2.9 × 10-9) in the 2017 fire pixel dataset corresponds with a tem-
perature around 570 K in simulation. This temperature, though dif-
ferent, is somewhat lower than the minimum detectable fire tempera-
tures by DNB. Nevertheless, quantification of smoke effect on both DNB
and FRP should be conducted by future studies to evaluate sensitivities
to smoke particle size, index of refraction, particle loading, and vertical
profiles, which are beyond the scope of this study on initial algorithm
development.

4. Results

4.1. Resampling DNB radiance to M-band footprint

Fig. 7a and b show a case of resampling DNB radiances into the M-
band pixel resolution by applying the collocation LUT. Before the col-
location, the bright DNB radiances distinguishes them from the larger
M-band pixel footprint (red rectangles). These pixels were retrieved by
VIIRS on 12 December 2017 (10:24 am UTC) over Thomas Fire in Ca-
lifornia. After collocating the DNB radiances with the M-band pixel
footprint, the bright DNB pixels are smoothed over the M-band pixel
area, which indicates conservation of energy over the area as a result of
the area-weighting resampling (Fig. 7b).
We compare our collocation method results with the nearest-

neighbor method, which is commonly used for collocation processes in
satellite remote sensing data, by correlating collocated DNB radiances
to the brightness temperature values for 852 nighttime fire pixels
(Thomas fire) detected by VIIRS AF from 5 December to 12 January
2017 (note the data are at log scale). The corresponding thermal
emission (i.e., fire pixel energy) is calculated using the fourth power of
4 µm brightness temperature (BT4) values. Fig. 7c shows when the
collocation is only based on the nearest pixel method (i.e., the nearest
DNB pixels to an M-band pixel in the same scan line are remapped to M-
band footprint), the resampled radiances are poorly correlated
(R=0.21). When the collocation LUT method is applied, the collocated
radiances are more reliable and strongly correlated (R= 0.61) with the
M-band BT44 values (Fig. 7d).

4.2. Fire combustion phase based on the VEF

Each vegetation type follows a specific combustion phase (smol-
dering/flaming or a mixture of them) based on its chemical compound,
fuel content, relative humidity, and fire temperature. Fig. 8 shows that
while most fire types have a similar FRP range, their VEF ranges are
different from each other. FRP is not capable of detecting fire com-
bustion phase because it dependens on both the fire size and temper-
uate. FRP values can therefore be the same for a large smoldering fire
and a small intense flaming fire (Peterson et al., 2013). In contrast, VEF
is a ratio for each fire pixel, representing the portion of the fire radiative
energy in the visible spectrum. Therefore, VEF is a normalized quanity,
with a value in the range from 0 to 1, and its variation is less dependent
on fire size and FRP (Fig. S7), and has the potential to dynamically
characterize different fire combustion phases as shown in Fig. 8 (note
that each point VEF and FRP is an annual-averaged value for a 0.05°
grid for 2017, and the FRP for each fire pixel is based on VIIRS AF fire
product).
Fig. 8 shows that VEF values for gas flares are clustered on the top of

all other fire types, which is expected because they consist of pure
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flames. FRP alone cannot separate gas flares from other type of fires.
Furthermore, Fig. 8a shows that all the forest land cover types have
smaller VEF comparing to savanna, grassland and shrubland, indicating
that they have a smaller MCE, which is consistent with the literature
(Reid et al., 2005). In Fig. 8b, we show the VEF and FRP distributions
for only three fire types. This visualization illustrates that although each
of the gas flare, shrubland, and evergreen broadleaf forest fire types are
clustered in a specific range of VEF, they can still display significant
variation. Fire combustion phase can vary for the same vegetation type
due to differences in the fire temperature and relative humidity. These
results indicate that VEF has the potential to partially describe variation
of fire combustion phase at the level of individual fire pixels.
Fig. 8c shows the ln(VEF) probability density function (PDF) for

each of the fire types (Table 2). The results are almost identical when
plotting these data at the individual pixel level (not gridded) (Fig. S4).
Shrubland, grassland, and cropland are spread over a similar ln(VEF)
range. The average of VEF values for each MODIS land cover type are
shown in Table S6. Shrubland fire type, for example, has a higher
probability of flaming because its PDF peaks at a larger ln (VEF) than
the other two fire types. Savanna's PDF covers a wide ln (VEF) range,
with a peak around −7 (corresponds to a VEF value of 0.00091). It has
a longer tail on the left side of its peak, meaning that it has more fires in
the smoldering phase comparing to Shrubland. The forest fires PDFs
ranges are lower compared to other fire types, which is consistent with

the observation that forests generally burn with lower MCE compared
to shrublands or grasslands. Mixed forest fires have a larger peak
comparing to the other forest fires peaks. Also, mixed forest has a small
peak around −5 (corresponds to a VEF value of 0.0067), which is very
high and indicates a dominant flaming fire phase. Finally, gas flares are
primarily associated with the highest range of −5.5 to −3.5, which is
consistent with dominant flaming combustion.

4.3. VEF global distribution

Fig. 9a shows a global map of averaged nighttime VEF (1˚grids) for
2017. We also show the corresponding MODIS global landcover map to
better visualize the relationship between land cover types and VEF
(Fig. 9c). This display uses 1° grids for more sampling data points and
better visualization. However, we also produce these global maps at
0.25˚grid resolution, which yields similar results to maps at 1° resolu-
tion (Fig. S5). The VEF map shows that savanna regions in Middle
America (Consists of Mexico, Central America, Caribbean, Columbia,
and Venezuela) have lower VEF when compared to African savanna,
which means that they are included in the left tail of savanna's PDF
(Fig. 9c). Furthermore, open shrublands in Australia (Fig. 9a zoomed-in
subplot) burn mostly with a flaming phase because they have high VEF
values. This is a distinguishing characteristic from the evergreen nee-
dleleaf forest type in North America, which coincides with low VEF

Fig. 7. An example of resampling nighttime DNB pixels radiances to M-band pixels using collocation LUT method for Thomas wildfire on December 12, 2017. (a)
Zoom-in view of the original DNB radiances (bright squares) before the collocation. (b) The DNB radiances after collocation to the M-band footprint (red rectangles).
(c) Scatter plot of BT44 and collocated DNB radiances for VIIRS AF (nighttime) fire pixels (Thomas wildfire) during the December 5 to January 12, 2017 period when
only the nearest DNB pixels in each scan line are collocated to the M-band pixel footprint without considering the across-scan offset. The low correlation coefficient
indicates the low accuracy of the nearest-neighbor collocation method. (d) Same as Fig. 7c, but here the collocation LUT method results in a high correlation between
the collocated DNB radiances (both across and along the scan) and the corresponding M-band pixel BT44 values.
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Fig. 8. (a) Scatter plot of different fire types VEF and FRP values. The fire types are based on the different vegetation types (Table 2) plus gas flares. Each point on the
scatter plot represent a 0.05° grid average VEF (y-axis) and FRP (x-axis) values for 2017 (only nighttime). Different fire types are clustered by their VEF value ranges
while they have a similar FRP range. (b) Same as Fig. 9a, but here only three fire types are presented for better visualization. Gas flares have the highest VEF range
while EBF has the lowest VEF clustered under the shrublands. (c) The probability density functions (PDF) for different vegetation types showing their VEF dis-
tribution for the year 2017. Sava, shrub, grass, and crop ln(VEF) values are mostly distributed from −8 to −5 while different forest types are from −10 to −7 and
gas flares are mostly spread in the highest range from −6 to −3.

Fig. 9. (a) Global map of VEF for 2017. Each 1° grid
represents the average VEF value for the year 2017.
The VEF map shows the transition from forest land
cover type in North America (lower VEF) to shrub-
lands in Australia (higher VEF). The red grids
(highest VEF) are mostly corresponding to the gas
flares while the lowest VEF (blue color) are where
the evergreen forests are. There are no detected
nighttime fire pixels in polar regions including
Greenland and Alaska due to the long day length
(more than 20 h) during their fire seasons in summer.
(b) Global map of FRP for 2017. Each 1° grid re-
presents the average nighttime FRP value for the
year 2017. The FRP map is not capturing the fire
combustion phase differences based on the land
cover type as the FRP spread for shrubland and forest
are similar. (c) Global landcover map generated
based on the MODIS Land Cover Type Climate
Modeling Grid for the year 2017. The land cover
categories are according to IGBP scheme.
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values, indicating the smoldering type. In general, the forest land cover,
regardless of specific type, has a lower VEF in comparison to savannas,
shrublands, grasslands, and croplands. For example, in South America,
the VEF changes from high values to smaller values as biomes transit
from grasslands and savannas to evergreen broadleaf forests. The same
scenario is seen in Australia, North America, and Africa. Also, the grids
with the highest VEF (red shading) mostly correspond with gas flares in
Middle East, North Africa, Russia, and Mexico.
In contrast to the VEF, the global map of nighttime averaged FRP

(1˚grids) (Fig. 9b) does not distinguish the transitions between different
fire types. For example, gas flares are not distinguishable because their
FRP range is similar to the other fire types. The FRP spread is similar for
shrublands in Australia and evergreen needleleaf forest in North
America, while the two land cover types are very different (see zoomed-
in subplots). This indicates that, as expected, the main driver of the
mean-state VEF for each grid is VLP (as shown in Fig. S6). However,
zoomed-in subplots in Fig. S6 show that gas flares are better separated
from shrublands in the VEF map because unlike VLP, VEF is not driven
by the fire size. For example, Fig. S7 in supplementary material shows
cases of fire pixels with large VEF values (e.g., more than 0.2), but not
large VLP values. These fire pixels coincide with gas flares in Venezuela,
indicating that VEF can rigorously distinguish between small fires with
intense flaming combustion phase and large fires with smoldering
combustion phase.

4.4. VEF comparison with MCE

Although VEF is available for each individual nighttime fire pixel,
in-situ measurement data coinciding with the VIIRS nighttime overpass
are limited for direct comparison with MCE. As a result, we use GFED4
data, which provides emission estimations of CO and CO2 at a resolu-
tion of 0.25°. However, the GFED grid-based MCE is derived based on
both day and night fire data, which requires an annual-averaged VEF
and MCE to obtain a mean-state of each land cover type/region. We

calculated annual-averaged VEF for different surface types for 2015,
and compared with their MCE values derived from GFED4. We show
that ln(VEF) is highly correlated (R=0.89) with MCE for different
biomes (Fig. 10a). Furthermore, Fig. 10b shows that the regional
averaged VEF and MCE are correlated with each other confirming the
strength of VEF in capturing the fire combustion phase. These results
suggest that VEF is a strong indicator for fire MCE based on the fire type
and combustion conditions (e.g. relative humidity). In other words,
GFED-based MCE can be estimated for each nighttime fire pixel on a
near real-time basis by taking advantage of its linear relationship with
VEF:

= × +MCE 0.016 ln(VEF) 0.061 (9)

However, it should be noted that the MCE calculated from equation
(9) includes errors and uncertainties from both GFED and VEF sources,
and it is simply an initial step toward improving emission estimations
on a near real-time basis. Furthermore, in terms of the best fit equation,
the MCE-VEF relationship derived based on biome types (Fig. 10a and
equation (9)) is similar to that derived based on the regional averages
(Fig. 10b, MCE = 0.018 × ln(VEF) + 1.077), suggesting this re-
lationship is statistically robust.
Fig. 11 shows the global map of MCE for 2017. Each grid value is

computed from the pixel VEF values linked to the MCE by equation (9).
As expected, gas flares have the highest MCE while the peatlands have
the lowest values. Our result (Fig. 11) is consistent with the MCE map
presented by van Leeuwen and van der Werf (2011) (Fig. S8), which is
based on a multivariate regression equation that incorporates different
environmental variables (e.g. fraction tree cover, precipitation, and
temperature) to better capture the spatiotemporal variability in GFED
based MCE. For example, both maps show that tropical forests corre-
spond with lower MCE values when compared to savannas and shrub-
lands. Also, the transition from African grasslands to savannas shows a
decrease in MCE in both maps. The same approach (equation (9)) can
be applied to each pixel VEF. After calculating MCE for each fire, it can

Fig. 10. (a) Scatter plot of annual-averaged (2017)
GFED4 MCE and ln(VEF) for different biomes.
Correlation coefficient is 0.92 indicating VEF is a
successful indicator of fire combustion phase for
different biomes. (b) Scatter plot representing the
regional MCE and VEF relationship. Each point re-
presents GFED4 MCE (y-axis) and the natural loga-
rithm of VEF (x-axis) averaged for a GFED4 basic
region during 2015.
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be applied to correct emission factors for each pixel. For example, the
CO2 emission factor for a specific biome can be adjusted based on its
MCE, as higher MCE (VEF) indicates an increase in CO2 emission factor
as the fire burns in flaming phase, emitting larger amounts of CO2. VEF
is advantageous because it is retrieved from satellite data while the fire
is active, appropriate for improving emissions estimations.

4.5. Camp Fire

On 08 November 2018, the Camp Fire ignited in Butte County,
Northern California. It is currently the deadliest (86 fatalities) and most
destructive (US$ 16.5 billion damage) wildfire in California history.
According to the California department of forestry and fire protection
reports, the Camp Fire burned an area of around 153,336 acres before it
was fully contained on 25 November, with the help of rain. We show
the fire growth over time using all the nighttime fire pixels in Fig. S9.
The most intense phase of the fire occurred during the first four days,
when strong wind speeds facilitated rapid fire growth, resulting in a fire
that burned more than 60,000 hectares and destroyed the town of
Paradise (www.fire.ca.govhttps://inciweb.nwcg.gov/incident/6250/).
The Camp Fire therefore provides an ideal case study for investigating
VEF, and its capability of capturing the variation in wildfire intensity
throughout its lifetime.
As Fig. 12a shows, the VEF (daily-averaged for nighttime fire pixels)

was largest (highly flaming) during the first 4 nights of the fire and then
started to reduce. This is consistent with the fact that fire was most
destructive during the first four days. Fig. S10 shows both VLP and FRP
have strong effects on VEF for the fire pixels. Note that the fire ignited
on 08 November around 6.33 am local time, so the first satellite
nighttime observation was on 09 November. This precludes analysis of
the daytime period on 08 November, when some of the most extreme
fire spread was observed. The VEF (nighttime) increased from lower
values (10 November) to higher values (11 November) for fire pixels in
the same areas on the ground (Fig. 12 c, d), which is consistent with
daily-averaged observations of relative humidity and wind speed
(Fig. 12b). We obtained these data from Openshaw station (shown as
white star in Fig. S9), located within 12 miles of the fire. This station is
part of the Wildland Fire Remote Automated Weather Stations (RAWS)
network provided by Western Regional Climate Center (https://raws.
dri.edu/). These ground observations show that wind speed increased
from 3m s-1 to 7m s-1 and relative humidity decreased from 50% to
25% from 10 to 11 November. The dry air and high wind speeds on 11
November provided favorable conditions for a flaming fire, which ex-
plains why VEF increased by a factor of 4 and was the largest on 11
November. Interestingly, FRP on November 11 was only the second
largest. Overall, during 09–12 November, both meteorological data
(Fig. 12b) and VEF (Fig. 12 a, c, and d) indicate that the fire grew to a

more flaming phase during 11 November, which is not observable in
the FRP time series (Fig. 12a), highlighting the limited capability of FRP
to capture meaningful changes in fire behavior through its lifetime.
The dry conditions and strong wind speeds observed on 11

November were driven by a northeasterly shift in low-level wind di-
rection, which initiated a downslope wind event from the Sierra Nevada
Mountains into the Central Valley of California. These winds (locally
referred to as “Diablo Winds”) compress, dry, and warm the air mass as
it flows downhill, supporting extreme fire behavior. Figure S11 pro-
vides 700 hPa synoptic chart charts at 18 UTC (10 AM local time) for 08
to 11 November, highlighting the wind shift to northeasterly downslope
flow between 10 (Fig. S11b) and 11 (Fig. S11c) November. Similar
meteorology supported ignition and the initial period of extreme fire
spread on 08 November. After 11 November, the synoptic wind flow
shifted to a more typical westerly or northwesterly direction, resulting
in increased relative humidity and light winds (Fig. 10b), which do not
support extreme fire behavior.

5. Discussion and conclusions

VIIRS DNB provides broadband visible radiance for each pixel.
When there is a fire present in the pixel during the night, this radiance
contains information and signal from the flames of the fire (assuming
no background contamination). The VIIRS fire product is based on the
M-band (or I-band), which has a different pixel footprint from DNB.
This means that the DNB radiance cannot be applied directly to the
VIIRS fire pixels. This study developed an algorithm for collocating
VIIRS DNB radiances to the M-band pixel footprint, which employs the
hybrid use of all available data from DNB and M-bands. The collocated
visible radiance facilitated the development of a ratio representing the
visible fraction of the fire energy, which provides a quantitative mea-
sure of fire combustion phase.
The collocation algorithm is based on an efficient area-weighting

method. By taking advantage of the fixed alignment between DNB and
M-band pixels in every VIIRS scan, our LUT-based approach can be
applied to any VIIRS granule across the globe. This methodology also
provides a reliable criterion to determine whether to keep or exclude an
M-band pixel in the case of the redundant M-band pixels, which are
overlapped from two consecutive scans due to along-scan pixel growth
size. Results show that our collocation method is more reliable than the
nearest-neighbor method, producing a much stronger correlation be-
tween the collocated DNB radiances and the corresponding M-band
pixel BT44 (the fire pixel energy) values for 852 nighttime VIIRS fire
pixels detected during the California Thomas Fire.
We used the resampled DNB radiance to develop a parameter for

visible light power (VLP), which approximates the energy from fire
flames for each pixel during nighttime observations. Its ratio with FRP

Fig. 11. Global map of MCE for each 1° grid which are calculated based on their VEF values for2015. The Australia shrublands have a high MCE while the forest land
cover type areas represent low MCE. The gas flares have the highest MCE.
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yields the visible energy fraction (VEF) of the pixel. VEF theoretically
should be able to provide a quantitative measure of the fire combustion
phase (smoldering and flaming). Sources of uncertainty for VEF include
background contamination (e.g. lunar effects and city lights) and light
attenuation by thick smoke plumes. Although the lunar effect is small,
intense city lights and thick smoke plumes can result in overestimation
and underestimation of VEF, respectively.
Our results show that VEF successfully characterizes mean-state

(annual-averaged) combustion phase of fires based on their fuel (ve-
getation) type at a pixel and grid level. For example, VEF values for gas
flares are distributed in a higher range when compared to other land
cover types. In contrast, FRP values for all land cover types (including
gas flares) are similarly distributed. An initial assessment of VEF
showed that annual-averaged values are strongly correlated to the
mean-state modified combustion efficiency (MCE, derived from GFED
data) for the general biomes used by GFED. This suggests that VEF can
be used to predict the GFED-based MCE, which is a key step toward
improved emission estimation in future for individual fires based on
specific fire characteristics. For example, we applied VEF to calculate
GFED-based MCE for an extreme wildfire event (2018 Camp Fire) at the
individual pixel level, and the prelimary results appear to be in good
agreement qualitatively with expectations based on meteorology.
Overall, this study has demonstrated the theoretical development of

VEF and its potential to measure fire combustion phase. The results of
this work motivate future research focused on the application of VEF to
improve emission factors for individual pixels. For example, in situ MCE
obtained from field observations can be linked to VEF calculated for
VIIRS pixels if the measurements are coincident with the VIIRS

nighttime overpass. Additional in situ observations of MCE from
nighttime fires are essential for quantifying the uncertainty associated
with linking VEF to MCE.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rse.2019.111466.

Fig. 12. (a) Time series of FRP (black solid line), VEF (red dashed line), and MCE (blue dashed line), which was calculated based on equation (9), for the nighttime
fire pixels. November 11, 2018 is the peak in the VEF indicating of highly flaming fire phase. (b) Time series of wind speed (red solid line) and relative humidity
(black dashed line) during Camp Fire. These data are obtained from Openshaw station from Raws network. (c) Observation of Camp Fire intensity on November 10,
2018 when most the fire pixels are in an early stage of their lifetime. (d) Fire intensity increases comparing to the previous day as the fire reaches to a flaming phase
on November 11, 2018. Note, the fire pixels for these two days are extracted only from one satellite orbit observation in that day. The background base map is from
ESRI (Environmental Systems Research Institute) world imagery service.
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