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Abstract. SO2 and NO2 observations from the Ozone Map-
ping and Profiler Suite (OMPS) sensor are used for the first
time in conjunction with the GEOS-Chem adjoint model to
optimize both SO2 and NOx emission estimates over China
for October 2013. Separate and joint (simultaneous) opti-
mizations of SO2 and NO2 emissions are both conducted and
compared. Posterior emissions, compared to the prior, yield
improvements in simulating columnar SO2 and NO2, in com-
parison to measurements from the Ozone Monitoring Instru-
ment (OMI) and OMPS. The posterior SO2 and NOx emis-
sions from separate inversions are 748 Gg S and 672 Gg N,
which are 36 % and 6 % smaller than prior MIX emissions
(valid for 2010), respectively. In spite of the large reduction
of SO2 emissions over the North China Plain, the simulated
sulfate–nitrate–ammonium aerosol optical depth (AOD) only
decrease slightly, which can be attributed to (a) nitrate rather
than sulfate as the dominant contributor to AOD and (b) re-
placement of ammonium sulfate with ammonium nitrate as
SO2 emissions are reduced. For joint inversions, both data
quality control and the weight given to SO2 relative to NO2
observations can affect the spatial distributions of the pos-
terior emissions. When the latter is properly balanced, the
posterior emissions from assimilating OMPS SO2 and NO2
jointly yield a difference of −3 % to 15 % with respect to the
separate assimilations for total anthropogenic SO2 emissions

and ±2 % for total anthropogenic NOx emissions; but the
differences can be up to 100 % for SO2 and 40 % for NO2
in some grid cells. Improvements on SO2 and NO2 simu-
lations from the joint inversions are overall consistent with
those from separate inversions. Moreover, the joint assimi-
lations save ∼ 50 % of the computational time compared to
assimilating SO2 and NO2 separately in a sequential manner
of computation. The sensitivity analysis shows that a pertur-
bation of NH3 to 50 % (20 %) of the prior emission inventory
can (a) have a negligible impact on the separate SO2 inver-
sion but can lead to a decrease in posterior SO2 emissions
over China by −2.4 % (−7.0 %) in total and up to −9.0 %
(−27.7 %) in some grid cells in the joint inversion with NO2
and (b) yield posterior NOx emission decreases over China
by −0.7 % (−2.8 %) for the separate NO2 inversion and by
−2.7 % (−5.3 %) in total and up to −15.2 % (−29.4 %) in
some grid cells for the joint inversion. The large reduction of
SO2 between 2010 and 2013, however, only leads to ∼ 10 %
decrease in AOD regionally; reducing surface aerosol con-
centration requires the reduction of emissions of NH3 as
well.
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1 Introduction

Both SO2 and NO2 in the atmosphere have adverse impacts
on human health and can affect radiative forcing that leads
to climate change. Not only do they cause inflammation and
irritation of humans’ respiratory system, but they also react
with other species to form sulfate and nitrate aerosols (Se-
infeld and Pandis, 2016), which subsequently can lead to or
exacerbate respiratory and cardiovascular diseases (Lim et
al., 2012). Sulfate and nitrate account for the largest mass
of anthropogenic aerosols, which contributed to ∼ 3 mil-
lion premature deaths worldwide in 2010 (Lelieveld et al.,
2015). In addition to the health impacts, anthropogenic sul-
fate and nitrate particles are estimated to have caused −0.4
and−0.15 W m−2 radiative forcing, respectively, on a global
scale between 1750 and 2011 through the scattering of solar
radiation and the modification of cloud microphysical prop-
erties (Myhre et al., 2013).

Satellite-derived global distributions of SO2 and NO2 ver-
tical column densities (VCDs) have been used to study the
aforementioned impacts of SO2 and NO2 on atmospheric
composition, climate change, and human health. In partic-
ular, since SO2 and NO2 VCDs are, to a first order, linearly
related to SO2 and NOx emissions (Calkins et al., 2016), they
can be used to update bottom-up emission inventories that
have large uncertainties and a temporal lag often of at least
1 year (Liu et al., 2018). Of particular interest for this study
is China, which has large SO2 and NOx emissions from an-
thropogenic sources (coal-fired power plants, industry, trans-
portation, and residential activity). Moreover, China has seen
a 62 % reduction in anthropogenic SO2 emissions and a 17 %
reduction of anthropogenic NOx emissions on average from
2010 to 2017 (Zheng et al., 2018) due to the implementation
of emission control policies, and these changes vary by re-
gions, cities (Liu et al., 2016), and sectoral sources (Zheng et
al., 2018). The reduction of SO2 emissions mainly occurred
in the coal-fired power plants and industries, while the de-
crease in NOx emissions was largely ascribed to coal-fired
power plants (Zheng et al., 2018). Noticeable uncertainties
larger than 30 % for both anthropogenic SO2 and NOx in
2010 over China were documented (Li et al., 2017b) and can
be larger at the regional scale due to the uncertainty of ac-
tivity rates, emission factors, and spatial proxies, which are
used in the bottom-up approach (Janssens-Maenhout et al.,
2015). The uncertainty is large and can be compounded by
possible discrepancies caused by the temporal lag of bottom-
up emission inventories and the rapid changes in emissions
over time.

Several methods have been developed to update SO2 and
NOx emissions using satellite VCD retrievals of SO2 and
NO2, which have global coverage and allow near-real-time
access. The mass balance method, which scales prior emis-
sions by the ratios of observed VCDs to chemistry transport
model (CTM) counterparts, was applied to SO2 retrievals
from the SCanning Imaging Absorption spectroMeter for At-

mospheric CHartographY (SCIAMACHY) and Ozone Mon-
itoring Instrument (OMI) (Lee et al., 2011; Koukouli et al.,
2018) and to NO2 from the Global Ozone Monitoring Ex-
periment (GOME) and OMI (Martin et al., 2003; Lamsal et
al., 2010) to estimate SO2 and NOx emissions, respectively.
Lamsal et al. (2011) simulated the sensitivity of VCDs to
emissions (the finite-difference mass balance approach) us-
ing a CTM, which was applied to OMI NO2 retrievals to
estimate NOx emissions. SO2 VCD retrievals from GOME,
GOME-2, SCIAMACHY, and the Ozone Mapping and Pro-
filer Suite (OMPS) were used to estimate point sources
through linear regression between VCDs and emissions or
function fitting, although the method can only detect about
half of the total anthropogenic SO2 emissions (Li et al.,
2017a; Zhang et al., 2017; Fioletov et al., 2013, 2016). With
explicit considerations of chemistry, transport, and deposi-
tion, the four-dimension variational data assimilation (4D-
Var) approach was applied to estimate emissions using SO2
data from OMI (Wang et al., 2016; Qu et al., 2019a) and NO2
data from SCIAMACHY, GOME-2, and OMI (Kurokawa
et al., 2009; Qu et al., 2017; Kong et al., 2019). The 4D-
Var posterior has a smaller root mean square error than the
mass balance posterior, especially in the conditions when the
initial guess and true emissions have different spatial pat-
terns (Qu et al., 2017); this is because the spatial extent of
source influences on modeled column concentrations (Turner
et al., 2012) is only indirectly and partially accounted for in
the mass balance approach. Cooper et al. (2017), however,
showed that the iterative finite-difference mass balance ap-
proach has a similar normalized mean error value to the 4D-
Var approach for global-scale models with coarse resolution
when synthetic NO2 columns observations are used to con-
strain NOx emissions. To combine the strengths of the 4D-
Var and mass balance approaches, Qu et al. (2017) further
introduced a hybrid 4D-Var-mass-balance approach, which
can better capture trends and spatial variability of NOx emis-
sions than the mass balance approach and save significant
computational resources when applied to constrain monthly
NOx emissions for multiple years. Other data assimilation
approaches including the ensemble Kalman filter method
(Miyazaki et al., 2012, 2017) and the Daily Emission esti-
mates Constrained by Satellite Observation (DECSO) algo-
rithm (Mijling and van der A, 2012; Ding et al., 2015) have
also been used to constrain NOx emissions.

Here, we focus on the development and feasibility for joint
4D-Var assimilation of satellite-based SO2 and NO2 data to
optimize SO2 and NOx emission strengths simultaneously.
Specifically, this study aims to conduct 4D-Var assimilation
of VCDs of SO2 and NO2 from OMPS to constrain SO2 and
NOx emissions over China using the GEOS-Chem 4D-Var
inverse modeling framework. In our companion study (Wang
et al., 2020), we develop approaches to downscaling the opti-
mized emission inventories for improving air quality predic-
tions. Despite their numerous applications for top-down es-
timates of SO2 and NOx emissions in the past two decades,
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GOME and SCIAMACHY stopped providing data in 2004
and 2012, respectively, while OMI has been suffering from
a row anomaly that leads to much less spatial coverage and
larger data uncertainty (Schenkeveld et al., 2017). Hence, it
is important to study the potential of next-generation sensors
such as OMPS toward continuously monitoring the change in
SO2 and NOx emissions and their atmospheric loadings. Two
OMPS sensors on board the Suomi National Polar-orbiting
Partnership (Suomi NPP) and NOAA-20 were launched in
2011 and 2018, respectively, and the third one is expected to
be launched in 2020. As OMPS will continue to provide SO2
and NO2 retrievals in the next two decades, this study, for the
first time, seeks to provide a critical assessment of the extent
to which the OMPS observations improve emission estimates
and air quality forecast at the regional scale.

The novelty of this study lies not only in the first applica-
tion of OMPS SO2 and NO2 retrievals to constrain emissions
using the 4D-Var technique but also in the deployment of
OMI data to assess the GEOS-Chem simulation with poste-
rior emissions, thereby studying the degree to which OMPS
and OMI retrievals, despite their difference in sensor char-
acteristics and inversion techniques, can provide consistent
constraints for the model improvement. Qu et al. (2019a)
showed that posterior SO2 emissions derived from different
OMI SO2 products vary in strength and have consistent trend
signs. Our study here using OMPS thus examines an impor-
tant issue, which is whether or not there would be any arti-
ficial trends in our climate data record of atmospheric SO2
and NO2 due to the transition of satellite sensors (Wang and
Wang, 2020). Our study is also different from past studies
(Wang et al., 2016; Qu et al., 2017, 2019a, b) that have ap-
plied the 4D-Var technique to OMI data with the GEOS-
Chem adjoint model but did not include evaluation with in-
dependent satellite data. Qu et al. (2019b) showed joint in-
version using OMI SO2 and NO2 benefits from simultane-
ous adjustment of OH and O3 concentrations, which sup-
ports assimilating OMPS SO2 and NO2 observations simul-
taneously in this study. Additionally, considering that the un-
certainty of NH3 emission inventories is up to 153 % over
China (Kurokawa et al., 2013) and NH3 emissions are not
constrained in our inversions, we also explore issues related
to the covariation among species that appear to be indepen-
dent but indeed are connected through chemical processes
and analyze the differences in responses of emissions and
aerosols to NH3 emissions uncertainty between joint and
single-species assimilations. Finally, this paper also provides
the foundation for the Part 2 investigation (Wang et al., 2020)
in which we develop various downscaling methods to illus-
trate that optimized emission, albeit with coarse resolution
inherent from OMPS data, can be used to improve the air
quality forecast at a resolution much finer than OMPS pixel
size.

We describe OMPS and OMI data in Sect. 2. The GEOS-
Chem model and its adjoint as well as the design of numeri-
cal experiments are presented in Sect. 3. Results of case stud-

ies for October 2013 are provided in Sect. 4. Section 5 con-
sists of discussion and conclusions.

2 Data

2.1 OMPS data as constraints

We use OMPS level-2 SO2 and NO2 tropospheric VCDs
in October 2013 as constraints to optimize SO2 and NOx
emissions over China. The OMPS nadir mapper on board
the Suomi NPP satellite, launched in November 2011, ob-
serves hyperspectral solar irradiance and earthshine radiance
at 300–380 nm (Flynn et al., 2014). With 35 detectors of
50km× 50km nominal pixel size in the cross-track direc-
tion, OMPS has a swath of 2800 km flying across the Equator
at 13:30 local time ascending at the sunlit side of the Earth
surface and providing global coverage daily. Both SO2 and
NO2 are retrieved through the direct vertical column fitting
(DVCF) algorithm with SO2 and NO2 atmospheric profile
information from GEOS-Chem simulations and have a re-
trieval precision of 0.2 and 0.011 DU, respectively, which are
estimated from the standard background (a clean region that
is far from emission sources) retrievals (Yang et al., 2013,
2014). These precision values can be used as the observation
error in the cost function of data assimilation. However, we
should notice that the estimated observation (retrieval) errors
only represent the observation error distribution of the prod-
ucts as a whole; they cannot represent the observation error
distribution for every pixel, because the pixel-level error is
amenable to spatiotemporal change in cloud fraction, satel-
lite observation geometry, aerosol impacts, etc. In theory, if
the uncertainties could be analytically described at the pixel
level, they would be directly applied to improve the satellite
product in the first place.

Only pixels with both solar zenith angle (SZA) and view
zenith angle (VZA) less than 75◦ are used, as larger SZA or
VZA results in longer light path length and consequently less
information content and lower data quality for retrieving the
change in SO2 or NO2 loadings in the planetary boundary
layer (PBL) where the two trace gases from anthropogenic
sources mainly concentrate. We also remove the pixels with
radiative cloud fraction (RCF) larger than 0.2 for SO2 and
0.3 for NO2 as a trade-off between the data amount and cloud
impacts. Considering their large uncertainty, OMPS SO2 re-
trievals in the grid cell where the prior simulation is less than
0.1 DU will not be used, except in quality control (QC) sen-
sitivity analysis experiments.

2.2 OMI data for assessment

OMI level-3 SO2 and NO2 tropospheric VCDs at a spatial
resolution of 0.25◦× 0.25◦ from NASA are used for evalu-
ating the model results. OMI is a UV–visible hyperspectral
sensor that observes solar irradiance and earthshine radiance
at 300–500 nm. The swath of OMI is 2600 km, consisting of
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60 detectors with the nominal pixel size of 13km× 24km
at nadir. OMI flies across the Equator in the ascending node
at 13:45 local time, which is very close to the 13:30 local
time for OMPS. Due to row anomaly (Schenkeveld et al.,
2017), OMI takes more than 1 d to provide global coverage.
The level-3 product is derived from the level-2 product; the
latter is retrieved through the principal component analysis
(PCA) algorithm with a fixed air mass factor (AMF) assump-
tion for SO2 (Li et al., 2013) and variation of the differential
optical absorption spectroscopy (DOAS) algorithm for NO2
(Krotkov et al., 2017; Marchenko et al., 2015), with a pre-
cision of 0.5 DU (Li et al., 2013) and 0.017 DU (Krotkov et
al., 2017), respectively. In the level-3 product, pixels affected
by row anomaly are removed. For SO2, only the pixel with
the shortest light path, SZA less than 70◦ , RCF less than
0.2, and detector number in the range of 2 to 59 (numbering
sequences starting at 1) is retained in a 0.25◦× 0.25◦ grid
cell and then corrected with a new AMF based on GEOS-
Chem SO2 profile simulation (Leonard, 2017). For the OMI
level-2 NO2 product, the AMF calculation is based on Global
Modeling Initiative NO2 profile simulation (Krotkov et al.,
2017), and all pixels with SZA less than 85◦, terrain reflec-
tivity less than 0.3, and RCF less than 0.3 are averaged in a
0.25◦× 0.25◦ grid cell weighted by the overlapping area of
the grid cell and pixel to form the level-3 product (Bucsela
et al., 2016). In the assessments, OMI observations are aver-
aged in a 2◦× 2.5◦ model grid cell, and model simulations
are sampled by OMI observational time.

3 Method

3.1 GEOS-Chem and its adjoint

GEOS-Chem is a 3-D chemistry transport model driven by
emissions and GEOS-FP meteorological fields. The sec-
ondary sulfate–nitrate–ammonium aerosol formation in the
model is introduced by Park et al. (2004). Both aerosols and
gases are removed by wet deposition, including washout and
rainout from large-scale or convective precipitation (Liu et
al., 2001) and the dry deposition following a resistance-in-
series scheme with aerodynamic resistance and boundary re-
sistance calculated from GEOS-FP meteorological field and
surface resistances based largely on a canopy model (Wang
et al., 1998; Wesely, 1989). Anthropogenic SO2, NOx , and
NH3 emissions used over East Asia are the mosaic emission
inventory (MIX) (Li et al., 2017b) for year 2010. SO2 and
NO2 VCDs are simulated at 2◦×2.5◦ resolution with 47 ver-
tical layers using both the prior and posterior emission inven-
tories to compare with OMI retrievals.

The GEOS-Chem adjoint model is a tool for efficiently
calculating the sensitivity of a scalar cost function with re-
spect to large numbers of model parameters simultaneously
such as emissions (Henze et al., 2007). In this study, the cost
function is defined as Eq. (1).

J(σ )=γ
1
2

[
HSO2 (M(σ ))− cSO2

]T
S−1

SO2

[
HSO2 (M(σ ))− cSO2

]
+

1
2

[
HNO2 (M(σ ))− cNO2

]T
S−1

NO2

[
HNO2 (M(σ ))− cNO2

]
+

1
2

[σ − σ a]TS−1
a [σ − σ a] (1)

where σ is a state vector, consisting of ln(Ei/Ea,i), and Ei
and Ea,i are the ith element in E and Ea, respectively. E
is a vector in which SO2 and NOx emissions are ordered
by GEOS-Chem model grid cell and by species, and Ea is
a prior estimate of it. cSO2 and cNO2 are vectors of OMPS
SO2 and NO2 tropospheric VCDs, respectively. SSO2 and
SNO2 are observation error covariance matrixes for SO2 and
NO2 and are assumed to be diagonal, which means observa-
tional errors are uncorrelated. M is the GEOS-Chem model
that simulates the relationship between SO2 and NO2 con-
centrations in the atmosphere and the emission factors. HSO2

and HNO2 are observation operators which map GEOS-Chem
simulations of SO2 and NO2 to the observational space, re-
spectively. σ a is the prior estimate of σ , and Sa is the error
covariance matrix for σ a. Sa is assumed to be diagonal with
a relative error of 50 % for SO2 and 100 % for NOx as used
in Xu et al. (2013). γ is a parameter we introduce to balance
the importance of the SO2 observation term (first term on the
right side of Eq. 1) and NO2 observational term (second term
on the right side of Eq. 1), given both the different sizes and
observation errors of these two observation datasets.

OMPS SO2 and NO2 tropospheric VCDs are directly
compared to GEOS-Chem tropospheric VCDs of SO2
(HSO2 (M(σ )) in Eq. 1) and NO2 (HNO2 (M(σ )) in Eq. 1).
Retrieving SO2 and NO2 tropospheric VCDs from the satel-
lite requires assumptions regarding SO2 and NO2 vertical
profiles, as the sensitivity of the radiance observed by satel-
lite sensors to the changes in SO2 or NO2 loadings is a func-
tion of plume height. If the vertical profile assumptions in
the retrieval process are inconsistent with the GEOS-Chem
simulations, the inconsistency partly contributes to the dif-
ference between the GEOS-Chem simulations and the OMPS
retrievals (HSO2 (M(σ ))− cSO2 or HNO2 (M(σ ))− cNO2 ). In
this study, OMPS SO2 and NO2 tropospheric VCDs are re-
trieved using the shape of vertical profiles from GEOS-Chem
simulations (Yang et al., 2013, 2014), but the differences
in model version, simulation year, and emission inventory
still exist. These differences still can lead to the differences
in vertical profiles, hence partly contributing to the differ-
ence between the GEOS-Chem simulations and the OMPS
retrievals. The vertical profile differences can lead to a mean
bias of−6.8 % overall at the pixel level (Fig. S1) and−7.5 %
(Fig. S2) for OMPS SO2 and NO2 retrievals, respectively.
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Figure 1. Validation of adjoint model sensitivity through compari-
son to centered finite-difference results for a 3 d simulation. Shown
here is the sensitivity of the column cost function (penalty term is
not included, and horizontal transport is turned off) with respect
to the logarithm of anthropogenic SO2 (a) and NOx (b) emission
scale factors: the 1 : 1 line (dotted), number of grid columns (N ),
root mean squared error (RMSE), and correlation coefficient (R),
and means and standard deviations of finite-difference sensitivity
and adjoint sensitivity (x and y).

And we shall discuss the impacts of these biases on emission
inverse modeling in Sect. 4.1.1.

In the optimization formulation, the forward model er-
rors are also considered as part of the observation error
term. However, while several ways to construct model er-
ror covariance matrix exist, including the Hollingsworth–
Lönnberg (Hollingsworth and Lönnberg, 1986) and NMC
(Bannister, 2008) methods, their application for offline
CTM model error characterization deserves a separate study.
The Hollingsworth method extracts observation error vari-
ance (including forward model error) from (observation–
background) covariance statistics with the assumptions that
observation error is spatially uncorrelated, background error
is spatially correlated as a function of distance, and obser-
vation error and background error are uncorrelated. The as-
sumption that background error is spatially correlated as a
function of distance only is suitable for the meteorological
fields that vary smoothly, but for chemical species, emissions
also contribute significantly to model errors and emissions
may not be spatially correlated. The NMC method is nor-
mally applied to weather forecast models or online-coupled
weather–chemistry models (Benedetti and Fisher, 2007). Of-
fline CTMs such as GEOS-Chem use the meteorological re-
analysis, and therefore NMC is not applicable here to quan-
tify the CTM’s transport error. Consequently, the CTM’s
transport errors are neglected in the past emission optimiza-
tion work (Wang et al., 2016) and are adopted in this study.
Admittedly, this simplification should be studied in the future
together with the evaluation and developments of methods to
characterize offline CTM errors.

We developed the observation operators for OMPS SO2
and NO2, and the validations are shown in Fig. 1. The sen-
sitivities of the cost function with respect to anthropogenic
SO2 and NOx emissions from the adjoint model are con-
sistent with the sensitivities calculated through the finite-

difference approach. Hence, Fig. 1 confirms the correctness
of the new observation operators integrated into the GEOS-
Chem adjoint model.

To optimize the emission inventories, σ is adjusted iter-
atively until the cost function is minimized. The minimiza-
tion is conducted with the L-BFGS-B algorithm (Byrd et al.,
1995), which utilizes the sensitivity of the cost function with
respect to σ that is calculated by the GEOS-Chem adjoint
model. The minimization process halts when the difference
in the cost function between two consecutive iterations is less
than 3 %. This selection is to expedite the computation while
still maintaining the similar accuracy for the optimization;
further tests show that more iterations (after < 3 % reduction
of cost function) do not yield a discernible difference in the
cost function values (Fig. S3) and optimization results (Ta-
bles S1 and S2).

3.2 Experiment design

Several elements play a role in the inverse modeling of
emissions, including data quality control, balancing the spa-
tial distributions of observational frequencies for the same
species, balancing the observation contributions from differ-
ent species, and uncertainties in the NH3 emission inven-
tory (because NH3 has impacts on SO2 and NO2 lifetimes).
To investigate the impacts of these factors on the posterior
emissions, we design a set of experiments as summarized
in Tables 1 and 2. All these experiments use OMPS SO2
and NO2 retrievals to optimize corresponding emissions over
China in October 2013 at a horizontal resolution of 2◦×2.5◦.
Although finer-resolution options such as 0.5◦× 0.625◦ or
0.25◦× 0.3125◦ are available for China, the 2◦× 2.5◦ res-
olution is selected for two reasons: (1) it saves computa-
tional time and (2) the coarse resolution of OMPS retrievals
(50 km× 50 km at nadir and 190 km× 50 km at edges) has
no first-order information to resolve the emissions at a fine
resolution of 0.5◦× 0.625◦ or 0.25◦× 0.3125◦. In Part 2
(Wang et al., 2020) of this study, we develop downscaling
tools for regional air quality modeling. Indeed, one of the
goals of the two-part investigation is to illustrate how OMPS
data could be used to improve the air quality forecast at a
resolution much finer than OMPS pixel size.

3.2.1 Control experiments

The first control experiment is E−SO2 (Table 1), in which
only OMPS SO2 tropospheric VCDs are used to constrain
SO2 emissions by removing the second additive term on the
right side of Eq. (1). Consequently, γ is set to unity. If the
OMPS SO2 tropospheric VCD error is set to 0.2 DU (Yang
et al., 2013) for every pixel, the SO2 observational term in
the cost function (first term on the right side of Eq. 1) over
the North China Plain is much larger than that over south-
western China (Fig. 2b), which yields a high possibility of
overconstraining the former and underconstraining the latter.
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Table 1. Different experimental design for using OMPS SO2 and NO2 to constrain corresponding emissions over China for October 2013.

Namea Data SO2 errorb NO2 error γ c QC for SO2
d

E−SO2 SO2 0.2 DU×
√
N n/ae 1 Yes

E−NO2 NO2 n/a 0.011 DU n/a n/a
E-joint SO2 and NO2 0.2 DU×

√
N 0.011 DU 200 Yes

E−SO2-noQC-noBL SO2 0.2 DU n/a 1 No
E−SO2-noBL SO2 0.2 DU n/a 1 Yes
E-joint–dγ SO2 and NO2 0.2 DU×

√
N 0.011 DU 20 to 2000f Yes

a See description of these names in detail in Sect. 3.2. b N in this column is the number of OMPS overpasses that have SO2
observations in the 2× 2.5 GEOS-Chem grid cell. c γ is a parameter used to balance SO2 and NO2 observation terms in the cost
function. d OMPS SO2 retrievals in the 2× 2.5 grid cell where the prior GEOS-Chem simulation is less than 0.1 DU are removed.
e n/a stands for not applicable. f All of the following γ values are used: 20, 50, 100, 300, 500, 1000, 1500, and 2000.

Figure 2. Panels (a) and (b) show the numbers of the OMPS over-
pass time that provides SO2 VCD retrievals and the SO2 term in the
cost function at the first iteration, respectively, in October 2013.

The spatially unbalanced cost function is caused by cloud
screening, as the number of observations over southwestern
China is much lower than that over the North China Plain
(Fig. 2a). To balance the cost function by accounting for this
difference in the number of observations, the SO2 observa-
tion error is set to 0.2 DU multiplied by the square root of the
number of OMPS overpasses that have SO2 observation in
the 2◦× 2.5◦ GEOS-Chem grid cell. The balance approach
essentially normalizes observation terms in the cost function
by the observation counts, which has been used in our study
(Xu et al., 2015) to optimally invert aerosol optical properties
from the skylight polarization and intensity measurements by
the AErosol RObotic NETwork (AERONET).

In the second experiment, E−NO2, OMPS NO2 tropo-
spheric VCDs alone are used to constrain NOx emissions by
removing the first additive term on the right side of Eq. (1).
Due to cloud screening, much more OMPS NO2 observa-
tions exist over the North China Plain than over southwest-
ern China, which also could lead to a spatially unbalanced
cost function if the OMPS NO2 observation error is uniform.
The OMPS NO2 observation error is, however, assumed to
be 0.011 DU (Yang et al., 2014) for every pixel in this study,
regardless of location, because the NOx emissions adjust-
ments during the inverse modeling process are supposed to
be mainly over the North China Plain where prior NOx emis-
sions are much larger than those over southwestern China.

In this study, we optimize emission scale factors rather than
the emissions themselves. As a result, emissions are adjusted
mainly at locations where prior emissions are large and kept
as zero for those (2◦× 2.5◦) grid boxes of zero prior emis-
sions.

In the third experiment, E-joint, both the SO2 and NO2
from OMPS are used simultaneously for two reasons. Firstly,
SO2 and NO2 concentrations can affect each other through
several pathways. For example, Qu et al. (2019b) showed that
the change in SO2 or NOx emissions leads to the changes in
O3 and OH concentrations and hence the changes in SO2
and NO2 oxidations. Here, we will explore how the opti-
mization results may depend on the uncertainty of ammonia
emissions (as elaborated in Sect. 3.2.2). Secondly, the com-
putational time is reduced by∼ 50 % in the joint assimilation
as compared to separate assimilations when computational
resources are restricted to running individual inversions se-
quentially (as opposed to in parallel), and energy usage is
also saved; the latter requires the realization of GEOS-Chem
adjoint twice, while only once is needed by the former.

In the E-joint experiment, observational terms for SO2 and
NO2 in the cost function should be balanced through setting
γ in Eq. (1). When it is not balanced, SO2 observations have
very little impact on the inversion results as the optimiza-
tion algorithm will firstly minimize the observational term
for NO2 unless many more iterations than is computationally
feasible are performed, which is caused by the fact that the
observational error and valid number of NO2 observations
are respectively smaller and larger than the counterparts of
SO2. We thus subjectively derive γ in a nonarbitrary way in
order to focus equally on both species, thereby tackling the
imbalance in their observational constraints. In this manner,
the cost function is defined to serve the purpose of joint in-
version of SO2 and NO2 emissions. Initially, we set γ to be
the ratio of the number of NO2 observations to the number of
SO2 observations. This approach is not feasible here as the
SO2 observational error in E−SO2 is much larger than the
NO2 observational error in E−NO2; not only does the num-
ber of observations play a role, but the observation error also
has important impacts on balancing the cost function. If γ
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is simply set as unity, the NO2 observational term in Eq. (1)
is a factor of ∼ 200 larger than the SO2 observational term,
which can lead to OMPS SO2 in the E-joint experiment be-
ing negligible. Consequently, to balance the two terms, γ is
set as 200 (ratio of observational term in E−NO2 to that in
E−SO2) in E-joint, and sensitivity experiments using differ-
ent values of γ are conducted (see Sect. 3.2.2). A similar
balance approach that adjusts the contribution of observation
terms in the cost function has been used in previous work
that assimilates satellite trace gas retrievals to invert emis-
sions (Qu et al., 2019b) or invert the aerosol optical proper-
ties from skylight polarization measurements of AERONET
(Xu et al., 2015).

3.2.2 Sensitivity experiments

To investigate the impacts of data quality control and spa-
tially balancing the cost function on optimizing SO2 emis-
sions only, we design two sensitivity experiments. The first
is E−SO2-noQC-noBL, which is similar to E−SO2 except
that (1) OMPS SO2 retrievals in the 2◦×2.5◦ grid cell where
the prior GEOS-Chem simulation is less than 0.1 DU are also
assimilated, i.e., without QC; and (2) OMPS SO2 observation
error is set as 0.2 DU for every pixel, which means we do not
spatially balance the cost function. The second sensitivity ex-
periment is E−SO2-noBL, in which the cost function is not
spatially balanced, and it uses the same setting as E−SO2 ex-
cept for assuming an observation error of 0.2 DU uniformly.

To evaluate the effect of γ (of 200) in E-joint, we further
test γ values of 20, 50, 100, 300, 500, 1000, 1500, and 2000
in the joint inversions; hereafter these experiments are named
E-joint–dγ . Through these sensitivity experiments, we study
the proper γ range for jointly assimilating OMPS SO2 and
NO2. In future studies that may be conducted to jointly as-
similate OMPS SO2 and NO2 for other months to obtain
a long-term optimized emission inventory, setting proper γ
values for each month based on the range with easy adjust-
ment according to the numbers of OMPS SO2 and NO2 ob-
servations and their associated errors is proposed.

NH3 emissions are not optimized in our inverse mod-
eling and yet their uncertainty is up to 153 % over China
(Kurokawa et al., 2013). Thus, it is important to eval-
uate how this uncertainty may affect posterior SO2 and
NOx emissions. Wang et al. (2013) emphasized the impor-
tance of controlling NH3 to alleviate PM2.5 pollution over
China; however, it could worsen acid rain (Liu et al., 2019).
Changes in NH3 emissions are expected to change ammo-
nium and nitrate aerosol concentrations, or the aerosol sur-
face area for heterogeneous N2O5 chemistry, hence affect-
ing NO2 concentrations or posterior NOx emissions in the
inverse modeling. The change in posterior NOx emissions
is expected to lead to the change in posterior SO2 emis-
sions in the joint inverse modeling. Thus, we shall investi-
gate how the optimized SO2 and NO2 emission inventories
would change if NH3 emissions were reduced to 50 % and

Table 2. Different experimental design for assessing the impacts of
NH3 emission inventories on using OMPS SO2 and NO2 to con-
strain corresponding emissions over China for October 2013a.

Nameb Data γ c NH3 emissions

E−SO2−0.5NH3 SO2 n/ad 50 %
E−NO2−0.5NH3 NO2 n/a 50 %
E-joint–0.5NH3−γ 500 SO2 and 500 50 %

NO2
E−SO2−0.2NH3 SO2 n/a 20 %
E−NO2−0.2NH3 NO2 n/a 20 %
E-joint–0.2NH3−γ 500 SO2 and 500 20 %

NO2

a Data quality control and observation errors are the same as E-joint in Table 1.
b See description of these names in detail in Sect. 3.2. c γ is a parameter used to
balance SO2 and NO2 observation terms in the cost function. d n/a stands for not
applicable.

20 %. Correspondingly, all these experiments are summa-
rized in Table 2. E−SO2−0.5NH3, E−NO2−0.5NH3, and
E-joint–0.5NH3−γ 500 in Table 2 are similar to E−SO2,
E−NO2, and E-joint–dγ (γ = 500) in Table 1, respectively,
but NH3 emissions are set to 50 % of the original values.
Similarly, E−SO2−0.2NH3, E−NO2−0.2NH3, and E-joint–
0.2NH3−γ 500 are the scenarios in which NH3 emissions are
set to 20 % of the original values.

3.3 Evaluation statistics

We use the linear correlation coefficient (R), root mean
square error (RMSE), mean bias (MB), normalized mean
bias (NMB), normalized standard deviation (NSD), and nor-
malized centered root mean square error (NCRMSE) as mea-
sures to evaluate GEOS-Chem SO2 and NO2 VCD simula-
tions with satellite (OMPS and OMI) observations. NSD is
the ratio of the standard deviation of the simulation to the
standard deviation of the observation. NCRMSE is similar to
RMSE, but the impact of bias is removed. This is shown in
Eq. (2), where i is the ith grid cell, N is the total number of
grid cells,Mi andOi are the ith GEOS-Chem simulation and
satellite observation, respectively, andM andO are averages
of GEOS-Chem simulation and satellite observation, respec-
tively. A composite summary of these statistics is provided
by the Taylor diagram (Taylor, 2001), which is a quadrant
that summarizes R (shown as cosine of polar angle), NSD
(shown as radius from the quadrant center), and NCRMSE
(shown as radius from the observation which is located at the
point where R and NSD are unity).

NCRMSE=

√
1
N

∑N
i=1[

(
Mi −M

)
− (Oi −O)]2√

1
N

∑N
i=1(Oi −O)

2
(2)
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Figure 3. Comparisons of VCDs of SO2 and NO2 from the OMPS and the GEOS-Chem prior and posterior simulations in October 2013 over
China. The first row is SO2 VCDs from the OMPS (a), the prior simulation (b), the E−SO2 posterior simulation (c), and the E-joint posterior
simulation (d). The second row is NO2 tropospheric VCDs from the OMPS (e), the prior simulation (f), the E−NO2 posterior simulation
(g), and the E-joint posterior simulation (h). The third row is the SO2 VCD scatter plots of the GEOS-Chem prior (i), the E−SO2 posterior
(j), and the E-joint posterior (k) versus the OMPS, respectively. The last row is the NO2 tropospheric VCD scatter plots of the GEOS-Chem
prior (l), the E−NO2 posterior (m), and the E-joint posterior (n) versus the OMPS, respectively. The linear correlation coefficient (R), linear
regression equation, root mean squared error (RMSE), normalized mean bias (NMB), mean bias (MB), and number of observations (N ) are
shown over scatter plots.

4 Results

4.1 Separate and joint assimilations of SO2 and NO2

4.1.1 Self-consistency check

The cost functions are reduced by 41.6 %, 27.6 %, and 28.6 %
for E−SO2, E−NO2, and E-joint, respectively, and the re-
sults are shown in Fig. 3. Noticeably, hot spots of SO2
VCDs over the North China Plain and the Sichuan Basin are
shown in the OMPS observations (Fig. 3a), prior (Fig. 3b),
posterior E−SO2 (Fig. 3c), and posterior E-joint (Fig. 3d)
simulations; however, the prior simulation has an NMB of
106.5 % (Fig. 3i) when compared with OMPS. The SO2

NMB (106.5 %) between GOES-Chem prior simulation and
OMPS is much larger than the NMB (−6.8 %, Fig. S1)
caused by the difference in SO2 vertical profiles between the
OMPS SO2 retrieval algorithm and current prior simulation;
thus the averaging kernel is not considered in the OMPS SO2
observation operator. This large positive NMB decreases to
13.0 % and 38.3 % in the posterior E−SO2 (Fig. 3j) and E-
joint (Fig. 3k) simulations with an RMSE decreasing from
0.42 to 0.13 and 0.20 DU and R increasing from 0.62 to 0.72
and 0.64, respectively. Large NO2 values are found over the
North China Plain and eastern China with large NOx emis-
sions from the transportation sector (Fig. 3e–h). Comparing
with OMPS NO2, GEOS-Chem results have an RMSE of
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Figure 4. The top is anthropogenic SO2 emissions from prior MIX 2010 (a), posterior E−SO2 (b), posterior E-joint (c), the difference
between posterior E−SO2 and prior MIX 2010 (d), the difference between posterior E-joint and posterior E−SO2 (e), and the relative
difference between posterior E-joint and posterior E−SO2 (f) for October 2013. The bottom is similar to the top except that (1) it is for NOx
and (2) E−SO2 is replaced by E−NO2.

0.05 DU in the prior simulation (Fig. 3l) and reduce to 0.02
and 0.03 DU for E−NO2 (Fig. 3m) and E-joint (Fig. 3n), with
R increasing from 0.95 to 0.99 and 0.98, respectively.

Similarly, the averaging kernel is not considered in the
OMPS NO2 observation operator for optimization for the
following reasons. First, the OMPS NO2 retrieval differ-
ences due to the profile differences can lead to a NMB of
−7.5 % (Fig. S2), which is still smaller than the prior GEOS-
Chem simulation NMB (10.9 %, Fig. 3l). Second, a NMB of
10.9 % for the model NO2 VCD simulation is not a very large
value, as the difference between satellite NO2 VCD retrievals

and ground-based measurements could be comparable to this
value. For example, Krotkov et al. (2017) show that OMI
NO2 VCD retrievals, on average, are ∼ 10 % larger than the
ground-based Fourier-transform infrared (FTIR) spectrome-
ter. Thus, current research should mainly focus on the change
in the spatial distribution (such as linear correlation coeffi-
cient) rather than the bias of the prior and posterior GEOS-
Chem NO2 VCD simulation. Finally, given that the linear
correlation coefficient between OMPS retrievals and those
that are modified through integration of the averaging kernel
and NO2 vertical profile from this study is as large as 0.99,
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Figure 5. Comparisons of VCDs of SO2 and NO2 from the OMPS and the GEOS-Chem prior and posterior simulations with that from the
OMI in October 2013 over China. The first row is SO2 VCDs from the OMI (a), the prior simulation (b), the E−SO2 posterior simulation (c),
and the E-joint posterior simulation (d). The second row is NO2 tropospheric VCDs from the OMI (e), the prior simulation (f), the E−NO2
posterior simulation (g), and the E-joint posterior simulation (h). The third row is Taylor diagrams for comparing GEOS-Chem simulations
(squares for prior, triangles for posterior E−SO2 or E−NO2, and diamonds for E-joint) and OMPS observations (circles) with OMI SO2 (i)
and NO2 (j).

the averaging kernel is not dealt with in the development of
the OMPS NO2 observation operator. In general, the E−SO2
and E−NO2 posterior simulations show better results than
E-joint, which may be affected by the value of γ , which we
will discuss in Sect. 4.3.

4.1.2 Emissions

The anthropogenic SO2 and NOx prior MIX emissions
for October 2010 and posterior emissions from E−SO2,
E−NO2, and E-joint for October 2013 are shown in Fig. 4.
SO2 and NOx hot spots are found in the prior emissions
over both the North China Plain and eastern China, while
large SO2 emissions are also found in southwestern China.
Anthropogenic SO2 emissions over China are 1166 Gg S in
prior MIX for October 2010 (Fig. 4a), dropping 418 Gg S
(Fig. 4b) and 306 Gg S (Fig. 4c), or 35.8 % and 26.2 %, in
E−SO2 and E-joint, respectively, for October 2013. The dif-
ferences between the estimates of this study and the MIX
emission inventory, however, should not be considered as
trends, and they are derived from different approaches. Pos-

terior E-joint total anthropogenic SO2 emissions are 112 Gg,
or 15 % larger than E−SO2, over China (Fig. 4e). Region-
ally, positive differences between E-joint and E−SO2 anthro-
pogenic SO2 emissions are found over most areas of cen-
tral China and eastern China, and a relative difference of
up to 100 % is found over Shanxi Province (Fig. 4f). Grids
with large differences are generally in locations where prior
anthropogenic SO2 emissions are larger, which means the
pattern is affected by the fact that the algorithm optimizes
emission scale factors rather than emissions directly. Anthro-
pogenic NOx emissions over China are reduced by 5.8 %
and 6.5 %, from 714 Gg N in prior MIX for October 2010
(Fig. 4g) to 672 Gg N (Fig. 4h) in E−NO2 and 667 Gg N
(Fig. 4i) in E-joint for October 2013. Although the rela-
tive difference between E-joint and E−NO2 proved to be
less than 2 % in terms of total anthropogenic NOx emissions
over China (Fig. 4k), it is up to 40 % over Shanxi Province,
and both grids with large positive differences and grids with
large negative differences exist over the North China Plain
(Fig. 4l).
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Figure 6. Panels (a) and (b) show the difference between OMPS
and OMI SO2 and the scatter plot of OMPS versus OMI SO2. Pan-
els (c) and (d) are similar to (a) and (b) but for NO2. The linear
correlation coefficient (R), linear regression equation, root mean
squared error (RMSE), normalized mean bias (NMB), mean bias
(MB), and number of observations (N ) are shown over scatter plots.

4.1.3 Independent evaluation with OMI data

The optimized emission inventories are evaluated by com-
paring prior and posterior GEOS-Chem simulations of SO2
and NO2 with OMI VCDs as shown in Fig. 5. We only focus
on regions covered by OMPS observations, although smaller
changes in emissions exist in outskirt regions where OMPS
observations are not used. High SO2 levels are shown over
the North China Plain and the Sichuan Basin in both the
prior and posterior simulations, while OMI only observes hot
spots over the former region (Fig. 5a–d). When validating
with OMI SO2 VCDs, the NMB is ∼ 300 % in the prior sim-
ulation, and it reduces to∼ 100 % in E−SO2 and∼ 130 % in
E-joint (Fig. 5i). Not only is the NMB reduced, but the spatial
distributions are also improved, with the NCRMSE reducing
from ∼ 1.6 in the prior simulation to ∼ 0.7 in E−SO2 and
∼ 0.8 in E-joint, which is much closer to ∼ 0.6 when com-
paring OMPS observations with OMI observations (Fig. 5i).
For NO2, OMI observations and the prior and posterior simu-
lations show large NO2 concentrations over the North China
Plain and eastern China (Fig. 5e–h). The improvements for
E−NO2 and E-joint are reflected in terms of R when evalu-
ating with OMI tropospheric VCDs, although the two exper-
iments show a larger negative NMB than the prior simula-
tion (Fig. 5j). In all the evaluations, OMI SO2 and NO2 VCD
retrievals are not corrected by calculating new air mass fac-
tors that are derived from integrating scattering weights and
corresponding vertical profiles of GEOS-Chem simulations
of this study. However, Fig. S4 shows similar improvements

Figure 7. SO2 VCD in October 2013 from OMPS (a), prior GEOS-
Chem simulation (b), posterior GEOS-Chem simulation through
the use of all OMPS data in the red box (c), and posterior GEOS-
Chem simulation through the use of only OMPS data that are in the
grid cell where GEOS-Chem prior simulation of VCD is larger than
0.1 DU. For posterior simulation, we only plot SO2 VCD over grid
cells where OMPS data are used to constrain emissions. M and S
point to a grid cell in Inner Mongolia and the Sichuan Basin, re-
spectively.

if new air mass factors are applied, although statistic metric
values are slightly different.

Here, OMPS observations and GEOS-Chem simulations
are compared with OMI observations as an evaluation of pos-
terior emission inventories, but it is not assumed that OMI
provides the true status of SO2 and NO2 in the atmosphere.
OMI and OMPS observe the same trend direction of SO2
(NO2) over China, but the strengths of the trend are quite
different (Wang and Wang, 2020). The OMPS SO2 average
is ∼ 0.14 DU, or ∼ 95 % larger than OMI SO2, and the R of
the two products is 0.81 (Fig. 6b). Thus, it is reasonable that
posterior SO2 is larger than OMI observations by ∼ 100 %
in E−SO2 and ∼ 130 % in E-joint. OMPS NO2 is ∼ 24 %
smaller than OMI (Fig. 6d), which explains why the poste-
rior NO2 simulations have a larger negative NMB than the
prior simulation when compared with the OMI observations.
Our analysis also shows that the systematic difference among
various satellite products for the same species (such as SO2
or NO2) can lead to biases in constraining emissions, but the
posterior GEOS-Chem simulations still show better results in
terms of the spatial distribution of SO2 and NO2.

4.2 The impacts of QC and spatial balance

The results of E−SO2-noQC-noBL and E−SO2-noBL are
compared with E−SO2 to show the impacts of QC and spa-
tial balance. Both OMPS retrievals and the GEOS-Chem
prior simulations show that SO2 VCDs over Inner Mongo-
lia and the Sichuan Basin (grid cells M and S, respectively
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Figure 8. Taylor diagram comparing GEOS-Chem simulation with OMPS (a for SO2 and b for NO2) or OMI (c for SO2 and d for NO2)
in October 2013. Circles, squares, and triangles represent GEOS-Chem simulations using prior MIX 2010 emissions, posterior emissions
constrained by single species (E−SO2 for a and c, E−NO2 for b and d), and posterior emissions constrained through joint inversion (E-joint),
respectively. Different triangles labeled by numbers represent different γ values in Eq. (1), and 1 through 9 correspond to 20, 50, 100, 200,
300, 500, 1000, 1500, and 2000, respectively.

in Fig. 7) are smaller than those over the North China Plain;
this pattern reverses in the posterior E−SO2-noQC-noBL
simulation where SO2 over the North China Plain becomes
smaller than that over grid cells M and S. Grid cell M be-
comes more reasonable after conducting the data quality con-
trol by removing OMPS SO2 in any grid cells where prior
GEOS-Chem SO2 VCDs are less than 0.1 DU (e.g., as in
E−SO2-noBL, as shown in Fig. 7d). QC helps to improve
models over grid cell M , as the data removed are close to
Inner Mongolia and are generally less than 0.1 DU, which is
comparable to the retrieval error. SO2 over grid cell S from
E−SO2-noBL (Fig. 7d) is, however, still larger than that over

the North China Plain, compared with the better spatial pat-
tern from E−SO2 (Fig. 3c). Thus, QC and spatial balancing
of the cost function together improve the spatial pattern of
the posterior GEOS-Chem SO2 VCD simulation.

4.3 The impacts of γ on joint assimilations

In addition to setting γ as 200 in E-joint, we test the impacts
of using various γ values on joint assimilation in E-joint–dγ
for October 2013. All the SO2 and NO2 VCDs from prior and
posterior E-joint and E-joint–dγ simulations are compared
with OMPS counterparts (Fig. 8a, b). Regardless of the γ val-
ues used, all the posterior simulations of SO2 show smaller
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Table 3. Posterior anthropogenic emissions for October 2013 from E-joint, E-joint–dγ , E−SO2, and E−NO2.

Experiment name or γ 20 50 100 200 300 500 1000 1500 2000 E−SO2 or E−NO2

SO2 (Gg S) 1143 1110 1055 860 795 802 733 730 728 748
NOx (Gg N) 681 682 682 667 662 664 668 666 674 672

NMB and NCRMSE than the prior simulation when validat-
ing against OMPS counterparts, but the extents of improve-
ment vary. When γ is 20, 50, or 100, the SO2 terms are ob-
viously underconstrained, and GEOS-Chem SO2 NCRMSE,
evaluated with OMPS observations, changes from ∼ 1.8 in
the prior simulation to in the range of ∼ 1.4 to ∼ 1.7 in the
posterior E-joint–dγ simulations, which are much larger than
∼ 0.7 in E−SO2 (Fig. 8a). Similarly, when γ is no larger than
100, the bias of GEOS-Chem SO2, validated with OMPS ob-
servations, only reduces from ∼ 100 % to ∼ 75 %, compared
to ∼ 25 % in E−SO2 (Fig. 8a), and the posterior SO2 emis-
sions are in the range of 1055 to 1143 Gg S, which is much
larger than 748 Gg S from E−SO2 (Table 3). When γ is in the
range of 200 to 2000, the SO2 simulation results and emis-
sions from joint assimilations are more similar to those from
E−SO2 than those with γ no larger than 100 (Fig. 8a and
Table 3). Similar to SO2, the GEOS-Chem simulations of
NO2 in the sensitivity experiments improve in terms ofR and
NCRMSE in all joint assimilation tests, but the significance
of γ is less than that for SO2. NO2 NCRMSE is ∼ 0.4 in the
prior simulation when evaluating with OMPS counterparts,
compared to the range of ∼ 0.2 to ∼ 0.25 in E-joint, E-joint–
dγ , and E−NO2 (Fig. 8b). The posterior NOx emissions are
in the range of 662 to 682 Gg N, compared with 672 Gg N in
E−NO2 (Table 3).

The impacts of γ are also reflected when evaluating SO2
and NO2 simulations with OMI retrievals (Fig. 8c, d). Small
γ values of 20, 50, and 100 lead to a much larger bias and
NCRMSE for SO2 from E-joint–dγ than that from E−SO2.
For NO2, these small γ values make results from E-joint–dγ
very similar to that from E−NO2.

Considering all of the above analyses, the results with γ in
the range of 200 to 2000 are deemed acceptable. The E-joint–
dγ (200≤ γ ≤ 2000) emissions are within −3 % to 15 % of
E−SO2 for SO2 and±2 % of E−NO2 for NOx in terms of to-
tal anthropogenic SO2 and NOx emissions over China. When
evaluating with OMPS observations, the NCRMSE values
using the posterior emissions from the separate and joint
(200≤ γ ≤ 2000) inversions are ∼ 60 % and ∼ 45 %–60 %
smaller than those using the prior emissions for SO2, respec-
tively, and∼ 50 % and∼ 38 %–50 % smaller than those using
the prior emissions for NO2, respectively.

When evaluating with OMI retrievals, joint inversion
shows better results than separate inversion for SO2 or NO2,
but not both, depending on the value of γ . When γ is 20,
50, or 100, the NO2 NCRMSE for E-joint–dγ appears to be
smaller than that for E−NO2, but the SO2 NCRMSE for E-

Table 4. Posterior anthropogenic emissions for October 2013 under
different NH3 emission scenarios.

SO2 emissions NOx emission
Name (Gg S) (Gg N)

E−SO2 748 n/a∗

E−SO2−0.5NH3 747 n/a
E−SO2−0.2NH3 745 n/a
E−NO2 n/a 672
E−NO2−0.5NH3 n/a 667
E−NO2−0.2NH3 n/a 653
E-joint–dγ (γ = 500) 802 664
E-joint–0.5NH3−γ 500 783 646
E-joint–0.2NH3−γ 500 746 629

∗ n/a stands for not applicable.

joint–dγ is larger than that for E−SO2. Conversely, when
γ is 1000, 1500, or 2000, the SO2 NCRMSE for E-joint–
dγ is smaller than that for E−SO2, but the NO2 NCRMSE
for E-joint–dγ is larger than that for E−NO2. This is simi-
lar to the findings by Qu et al. (2019b) in which the months
when the joint inversion shows better results than the sepa-
rate inversion for SO2 (NO2) have a worse result for NO2
(SO2). The benefit of joint inversion for improving only one
species is similar to Qu et al. (2019b) and is likely due to the
complicated relationship between these two species through
different chemical pathways. For example, O3 and OH are
key species that connect the chemistry of SO2 and NO2, and
aerosols can affect the photolysis and heterogenous chem-
istry. Hence, while joint inversion to improve both species
cannot be demonstrated here, it should be reviewed as the
first step of simultaneously assimilating multiple species (in-
cluding AOD, NH3, and other trace gases) to optimize emis-
sions. Until then, the system is not ready to holistically eval-
uate the benefits of joint assimilation to improve the model in
a systematic manner. It is worth noting that Xu et al. (2013)
showed the feasibility of using MODIS cloud-free radiance
to optimize emissions of SO2 and NO2 at the same time. Fu-
ture research should add the aerosol optical depth or visible
reflectance (as well as tropospheric O3 if reliable) as con-
straints to further evaluate the benefits of joint assimilation
for improving model overall performance in a systematic
matter.

https://doi.org/10.5194/acp-20-6631-2020 Atmos. Chem. Phys., 20, 6631–6650, 2020



6644 Y. Wang et al.: Inverse modeling of SO2 and NOx emissions – Part 1

Figure 9. Relative changes in posterior SO2 (a–d) and NOx (e–h) emissions from the scenarios of perturbing NH3 emissions with respect to
that using the original NH3 emission inventory. Panels (a) and (b) show relative changes in posterior SO2 emissions from E−SO2−0.5NH3
and E−SO2−0.2NH3 with respect to that from E−SO2, respectively. Panels (c) and (d) show relative changes in posterior SO2 emissions
from E-joint–0.5NH3-γ 500 and E-joint–0.2NH3−γ 500 with respect to that from E-joint–dγ (γ = 500), respectively. Panels (e) and (f) show
relative changes in posterior NOx emissions from E−NO2−0.5NH3 and E−NO2−0.2NH3 with respect to that from E−NO2, respectively.
Panels (g) and (h) are similar to (c) and (d), respectively, but for posterior NOx emissions. Minimum and maximum are shown in brackets.

4.4 The impacts of NH3 emissions

In the single-species inversions, NH3 emission uncertainty
has weaker impacts on posterior SO2 emissions than NOx
emissions. Posterior SO2 emissions over China are 748 Gg S
in the 100 % NH3 emission scenario (E−SO2), and they only
slightly reduce to 747 and 745 Gg S when NH3 emissions
are 50 % (E−SO2−0.5NH3) and 20 % (E−SO2−0.2NH3)
of the original values, respectively (Table 4). The largest
relative changes at model-grid-cell scale are only −2.5 %
(Fig. 9a) for E−SO2−0.5NH3 and −4.7 % (Fig. 9b) for
E−SO2−0.2NH3. All these results can be explained by con-
sidering how changes in NH3 can potentially impact the life-
times of SO2 and NO2 and hence affect SO2 and NO2 VCD
simulations. When the NH3 emissions are perturbed to 50 %
and 20 % of the original values, GEOS-Chem SO2 VCDs
only increase up to 3.8 % and 6.1 %, respectively, in some
grid cells over the Sichuan Basin in the prior simulations,
and these changes are even much smaller over the North
China Plain (Fig. 10a, b), as NH3 has no direct impacts on the
life cycle of SO2. This is understandable because in GEOS-
Chem, once SO2 is oxidized to H2SO4, SO2−

4 remains as par-
ticulate sulfate regardless of whether it is neutralized by NH3
or not (Wang et al., 2008). Hence, the reduction of NH3 to
50 % and 20 % overall has minimal (negligible) impact on
SO2 amount in the prior simulation and the posterior sepa-
rate SO2 emission inversion.

Although the posterior NOx emissions in the scenarios
of 50 % (E−NO2−0.5NH3) and 20 % (E−NO2−0.2NH3)
NH3 emission experiments of the original values are 5 Gg N
(0.7 %) and 19 Gg N (2.8 %), respectively, smaller than
those when using the original (E−NO2) NH3 emissions
over China (Table 4), the reduction is up to −4.0 %
(Fig. 9e) for E−NO2−0.5NH3 and −9.1 % (Fig. 9f) for
E−NO2−0.2NH3 in individual grid cells. These decreases
are understood by simultaneous reduction of nitrate by

59.5 % (Fig. 12h vs. 12g) and 80.5 % (Fig. 12i vs. 12g)
and ammonium by 39.6 % (Fig. 12n vs. 12m) and 67.5 %
(Fig. 12o vs. 12m), which leads to large reduction of the hy-
drated aerosol surface area for heterogeneous N2O5 chem-
istry at night and hence overall NO2 lifetime (Fig. 10c, d).
N2O5 normally forms at night by reaction between NO2 and
NO3 and thermally decomposes back to NO2 and NO3 (Sein-
feld and Pandis, 2016), and hence the amount of N2O5, NO2,
and NO3 is in equilibrium through the reversible reaction.
Since the hydrolysis of N2O5 to form HNO3 mainly occurs
on hydrated aerosol particles (Seinfeld and Pandis, 2016), the
decrease in hydrated aerosol surface area (due to reduction
of NH3 emission) leads to less hydrolysis of N2O5 (an im-
portant sink for atmospheric NOx) and subsequently more
NO2 to be in equilibrium with N2O5 at night. As a result,
the reduction of NH3 emissions further increases the posi-
tive bias in the prior NO2 simulations when comparing with
OMPS observations, and to compensate for such a large posi-
tive bias, nonnegligible decreases in the posterior NOx emis-
sions are required (Fig. 9e and f). The reduction of nitrate
and ammonium aerosols can also increase sunlight reaching
the troposphere and hence photolysis of O3 and NO2. Fig-
ure S5 separates the impacts of the increase in photolysis of
O3 and NO2 and the decrease in heterogeneous N2O5 chem-
istry on NO2 lifetime and shows that the former is negligible
compared with the latter.

The decreases in posterior SO2 and NOx emissions in
the joint inversions caused by the reduction of NH3 emis-
sions are stronger than those in the separate inversions (Ta-
ble 4 and Fig. 9). Although the changes in NH3 emissions
only have slight impacts on the SO2 separate inversions
(E−SO2, E−SO2−0.5NH3, and E−SO2−0.2NH3), the pos-
terior SO2 emission is 802 Gg S in E-joint–dγ (γ = 500) and
down to 783 Gg S (decreasing by 2.4 %) and 746 Gg S (de-
creasing by 7.0 %) in E-joint–0.5NH3−γ 500 and E-joint–
0.2NH3−γ 500, respectively (Table 4); in some grid cells,
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Figure 10. Relative change in GEOS-Chem SO2 VCDs when NH3
emissions reduce to 50 % (a) and 20 % (b), respectively, at OMPS
overpassing time. Panels (c) and (d) are similar to (a) and (b), re-
spectively, but for NO2.

the relative reductions are up to −9.0 % (Fig. 9c) for E-
joint–0.5NH3−γ 500 and −27.7 % (Fig. 9d) for E-joint–
0.2NH3−γ 500. For posterior NOx emissions at the grid
cells, the relative changes are up to −15.2 % (Fig. 9g) for
E-joint–0.5NH3−γ 500 and −29.4 % (Fig. 9h) for E-joint–
0.2NH3−γ 500 with respect to E-joint–dγ (γ = 500).

4.5 Aerosol responses to emission changes

Although SO2 emissions over the North China Plain (E-
joint–dγ (γ = 500)) have decreased by more than 50 %,
and NOx emissions have also been reduced, reductions
of sulfate–nitrate–ammonium (SNA) aerosol optical depth
(AOD) over the same region are only up to 10 % (Fig. 11).
This is because the North China Plain is mainly polluted
by nitrate rather than sulfate (Fig. 12a–l), and the reduction
of SO2 emissions will increase nitrate loadings in the atmo-
sphere (Fig. 12g–l), which is also consistent with the research
of Kharol et al. (2013) that shows nitrate concentrations de-
crease as SO2 emissions increase; the reduction of SO2 emis-
sions leads to less H2SO4 reacting with NH3, which further
favors the reaction of HNO3 and NH3 to form nitrate. As
NH3 emission changes reduce by 50 % and 80 %, ammonium
column loadings decrease by ∼ 40 % and ∼ 70 % (Fig. 12g–
l), respectively, and nitrate column loadings even decrease by
∼ 70 % and ∼ 90 %, respectively (Fig. 12m–r).

5 Discussion and conclusions

We developed 4D-Var observation operators for assimilating
OMPS SO2 and NO2 VCDs to constrain SO2 and NOx emis-
sions through GEOS-Chem adjoint model. The approach

Figure 11. Sulfate–nitrate–ammonium aerosol optical depth in
prior (a) and posterior joint inversion (γ = 500) (b). Panel (c)
shows the difference between (b) and (a), and (d) shows the rel-
ative change in percentage.

is applied for a case study over China for October 2013
at 2◦× 2.5◦ resolution, and the MIX 2010 is used as the
prior emission inventory. Several experiments of assimilating
OMPS SO2 and NO2 separately and jointly are conducted,
and SO2 and NO2 VCDs from the GEOS-Chem prior and
posterior simulations are compared with counterparts from
OMPS and OMI.

OMPS SO2 and NO2 retrievals are separately and jointly
used to constrain their corresponding emissions. In the
single-species inversions, posterior anthropogenic SO2 and
NOx emissions are 748 Gg S and 672 Gg N for October 2013,
down from 1166 Gg S and 714 Gg N in the prior MIX for
October 2010, respectively. In the joint inversions of assim-
ilating OMPS SO2 and NO2 simultaneously, the cost func-
tion is balanced according to the values of observational
terms rather than the number of observations. When the cost
function is well balanced (γ in the range of 200 to 2000),
the results of the joint inversions are within −3 % to 15 %
of the single-species inversion for total anthropogenic SO2
emissions and ±2 % for total anthropogenic NOx emissions.
However, the differences between the separate and joint in-
versions are up to 100 % and 40 % in some model grid cells
for anthropogenic SO2 and NOx emissions, respectively. In
comparison to OMPS observations, NCRMSE from joint
inversions (γ in the range of 200 to 2000) is reduced by
∼ 45 %–∼ 60 % for SO2 and ∼ 38 %–∼ 50 % for NO2, re-
spectively, which is close to the ∼ 60 % reduction from the
SO2 inversion and the ∼ 50 % reduction from the separate
NO2 inversion. To obtain posterior emissions for both SO2
and NOx , the computational time for the joint inversion is
only about ∼ 50 % of the single-species inversions, when the
latter are computed sequentially. Moreover, posterior GEOS-
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Figure 12. Sulfate, nitrate, and ammonium column loadings in dif-
ferent scenarios. Panels (a)–(c) show prior sulfate at 100 %, 50 %,
and 20 % NH3 emissions, respectively. Panels (d)–(f) show pos-
terior sulfate from joint inversions (γ = 500) at 100 %, 50 %, and
20 % NH3 emissions, respectively. Panels (g–i) and (m–r) are sim-
ilar to (a–f) but for nitrate and ammonium, respectively.

Chem SO2 and NO2 show improvements in terms of R when
comparing against OMI observations, and the increase in
posterior GEOS-Chem NO2 negative NMB is ascribed to the
fact that the average of OMPS NO2 over China is smaller
than the OMI counterpart. Above all, the posterior emission
increases the GEOS-Chem simulated spatial distributions of
SO2 and NO2.

Both data quality control and spatially balancing the cost
function play an important role for constraining SO2 emis-
sions. OMPS SO2 retrievals over the regions where emis-
sions are small are removed as VCDs are comparable to re-
trieval errors. A sensitivity study shows that if these data are
included it will lead to artifacts in the posterior SO2 emis-
sion spatial distribution. Due to cloud screening, the num-
ber of OMPS SO2 retrievals over the Sichuan Basin is much

lower than that over the North China Plain, which will lead to
underconstraining over the Sichuan Basin if the observation
error is assumed spatially constant. When the observation er-
ror is set based on the number of observations, the artifacts
are avoided.

To investigate the impacts of the uncertainty of NH3 emis-
sions on posterior SO2 and NOx emissions, several inverse
modeling experiments are conducted by setting prior NH3
emissions to 50 % and 20 % of their original values. The
reduction of NH3 emissions can lead to a larger decrease
in posterior NOx emissions and a smaller decrease in SO2
emissions in separate assimilations, which is ascribed to the
fact that NO2 lifetime is more than the SO2 affected by the
change in NH3 emissions. The impacts of NH3 emissions un-
certainty on both posterior SO2 and NOx emissions in joint
assimilations are stronger than separate assimilations.

Large SO2 emissions are mainly produced over the
Sichuan Basin and the North China Plain, while AOD re-
sponses to the changes in SO2 emissions are quite different
over the two regions. The reduction in SO2 emissions can ef-
fectively decrease AOD over the Sichuan Basin, while AOD
declines only slightly over the North China Plain, which can
be ascribed to (1) nitrate rather than sulfate being domi-
nant over the North China Plain and (2) the reduction of
SO2 emissions facilitating the formation of additional nitrate.
AOD over the North China Plain is mainly determined by
NOx and NH3 emissions rather than SO2 emissions.

All emissions are constrained on the monthly scale and
at the coarse spatial resolution of 2◦× 2.5◦ in this study, as
OMPS observations are provided once per day at resolutions
as coarse as 50km× 50km at nadir and 50km× 190km at
edge and the 4D-Var data assimilation at finer spatial reso-
lution (on the order of 0.1◦) would be computationally pro-
hibitive. The approach, however, has the potential for opti-
mizing emissions at daily to weekly scale and in fine spatial
resolution (on order of ∼ 10 km) from future satellite obser-
vations at high spatial and temporal resolutions. In partic-
ular, TEMPO (monitoring North America), GEMS (moni-
toring East Asia), and Sentinel-4 (monitoring Europe) are to
be launched in the next several years, and all of these satel-
lites will provide hourly SO2 and NO2 observations during
the daytime with resolutions of 2.1km×4.4km, 7km×8km,
and 8.9km×11.7km, respectively. Furthermore, in Part 2 of
this work, we develop various downscale methods to apply
these coarser-resolution top-down estimates of emissions for
air quality forecasts and evaluate the forecasts with surface
measurements, both at the finer spatial scale (Wang et al.,
2020).

Data availability. OMPS SO2 data are available at
https://disc.gsfc.nasa.gov/datasets/OMPS_NPP_NMSO2_L2_
2/summary?keywords=ompsso2 (last access: 29 May 2020,
Yang, 2017a) . OMPS NO2 data are available at https://disc.gsfc.
nasa.gov/datasets/OMPS_NPP_NMNO2_L2_2/summary (last
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access: 29 May 2020, Yang, 2017b). OMI SO2 data are available
at https://disc.gsfc.nasa.gov/datasets/OMSO2e_003/summary?
keywords=omiso2 (last access: 29 May 2020, Krotkov et al.,
2015). OMI NO2 data are available at https://disc.gsfc.nasa.gov/
datasets/OMNO2d_003/summary?keywords=omino2 (last access:
29 May 2020, Krotkov et al., 2019).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-20-6631-2020-supplement.
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