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• Most numerical models generally un-
derestimate sulfate but overestimate ni-
trate in PM2.5.

• Uncertainties in cloud water content
can contribute to model biases in simu-
lating sulfate, nitrate and ammonium
(SNA).

• The model bias in simulating SNA
can be reduced by constraining the
modelled cloud water with the satel-
lite observations.
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High concentrations of PM2.5 in China have caused severe visibility degradation and health problems. However, it
is still challenging to accurately predict PM2.5 and its chemical components in numericalmodels. In this study, we
compared the inorganic aerosol components of PM2.5 (sulfate, nitrate, and ammonium (SNA)) simulated by the
Weather Research and Forecastingmodel fully coupledwith chemistry (WRF-Chem)modelwith in-situ data in a
heavy haze-fog event during November 2018 in Nanjing, China. Comparisons show that the model underesti-
mates sulfate concentrations by 81% and fails to reproduce the significant increase of sulfate from early morning
to noon,which corresponds to the timing of fog dissipation that suggests themodel underestimates the aqueous-
phase formation of sulfate in clouds. In addition, the model overestimates both nitrate and ammonium concen-
trations by 184% and 57%, respectively. These overestimates contribute to the simulated SNA being 77.2% higher
than observed. However, cloudwater content is also underestimatedwhich is a pathway for important aqueous-
phase reactions. Therefore, we constrained the simulated cloud water content based on theModerate Resolution
Imaging Spectroradiometer (MODIS) Liquid Water Path observations. Results show that the simulation with
MODIS-corrected cloud water content increases the sulfate by a factor of 3, decreases the Normalized Mean
Bias (NMB) by 53.5%, and reproduces its diurnal cycle with the peak concentration occurring at noon. The im-
proved sulfate simulation also improves the simulation of nitrate, which decreases the simulated nitrate bias
by 134%. Although the simulated ammonium is still higher than the observations, corrected cloud water content
leads to a decrease of the modelled bias in SNA from 77.2% to 14.1%. The strong sensitivity of simulated SNA
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concentration to the cloud water content provides an explanation for the simulated SNA bias. Hence,
uncertainties in cloud water content can contribute to model biases in simulating SNA which are less frequently
explored from a process-level perspective and can be reduced by constraining the model with satellite
observations.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Severe and persistent haze pollution with daily concentrations of
PM2.5 exceeding the Chinese standard of 75 μg m−3, occurs frequently
in China during recent decades, which has aroused wide public atten-
tion due to its adverse impact on air quality, regional and global climate,
and human health (Huang et al., 2014). According to previous studies
(Liu et al., 2020a; Wu et al., 2019), some of the main factors leading to
these haze episodes include, for example, stagnant meteorological con-
ditions with high atmospheric relative humidity and low boundary
layer height, high emissions of primary air pollutants, and the rapid for-
mation of secondary inorganic aerosols, consisting of sulfate, nitrate,
and ammonium, together named as SNA. Earlier studies showed that
the contribution of SNA to total PM2.5 mass concentration was over
50% during severe haze events (Cheng et al., 2016; Wang et al., 2019;
Xu et al., 2017).

Chemical transport models (CTMs) are often used to predict PM2.5

pollution and evaluate emission control strategies. Most models show
reasonable performance on simulating surface PM2.5 concentrations in
China but performpoorly simulating the proportion of chemical compo-
nents in PM2.5, especially during severe haze periods (Chen et al., 2019;
Gao et al., 2018). Many recent studies have concluded that CTMs
generally underestimate sulfate concentrations but overestimate
nitrate concentrations (Chen et al., 2016; Cheng et al., 2016; Chen
et al., 2019; Fu et al., 2016; Gao et al., 2016; Li et al., 2018; Sha et al.,
2019a; Wang et al., 2013b; Wang et al., 2014; Zheng et al., 2015a).
Uncertainties in meteorological fields (Li et al., 2017c; Su et al., 2018),
emission inventories (Ma et al., 2018; Qu et al., 2019; Zhang et al.,
2018), and parameterizations of physical and chemical processes in
the model (Alexander et al., 2020; Gao et al., 2018; Luo et al., 2019),
can contribute to the discrepancies of SNA and PM2.5 between models
and observations.

Our previous work indicated that different emission inventories
(“bottom-up” and “top-down” SO2 and NOx emission estimates)
result in a deviation of 4 μg m−3 and 8 μg m−3 for the simulated
sulfate and nitrate during a haze event in Shanghai, but the
simulated sulfate (nitrate) using both inventories are much lower
(higher) than the observations (Sha et al., 2019b). Therefore, the
incomplete and/or inaccurate chemical mechanism in the model
might be another main reason for the underestimation of sulfate
and overestimation of nitrate. Generally, sulfate is formed
through the gas-phase oxidation of SO2 by OH radicals, and
aqueous-phase oxidation of S(IV) (= SO2 · H2O + HSO3

− + SO3
2−)

by various oxidants (e.g., H2O2, O3, NO2, and O2 (transition-metal-
ion (TMI) catalysis)) in cloud droplets and on the surface of and/or
within the bulk preexisting aerosols (the latter multiphase
reactions often called heterogeneous reactions) (Liu et al., 2020a; Shao
et al., 2019). The nitrate formation includes gas-phase oxidation of
NOx (NOx = NO + NO2) by OH radicals and O3, and hydrolysis of
nitrogen pentoxide (N2O5) in the preexisting aerosols (Fan et al.,
2020a). The aqueous-phase oxidation of NOx in cloud droplets is much
less important than the above two pathways (Jacob, 2000). For
ammonium, its formation is mainly from the neutralization/
condensation of H2SO4 and HNO3 with NH3 to form ammonium
sulfate ((NH4)2SO4) or ammonium bisulfate (NH4HSO4) and
ammonium nitrate (NH4NO3), respectively. As H2SO4 is nonvolatile,
NH3 prefers to react with H2SO4 first especially under warm
conditions, while under cooler temperatures, NH4NO3 is formed
2

favorably given sufficient NH3 although the sulfate is not fully
neutralized (Kong et al., 2014). Therefore, the competition between
H2SO4 and HNO3 for available NH3 to form sulfate and ammonium can
lead to an underestimation of sulfate in the model that is usually
accompanied by an overestimation of nitrate.

In most numerical models, such as the WRF-Chem, the chemical
mechanisms of sulfate formation only include the gas-phase and
aqueous-phase oxidations of SO2, but do not include SO2 heterogeneous
reactions (the main formation mechanisms of sulfate in the standard
model are shown in Table S2). Our recent work indicated that tripling
the gas-phase oxidation rate of SO2 by OH in the WRF-Chem model
only enhances sulfate by 72% during winter in Nanjing, still 73% lower
than the observations, implying gas-phase oxidation is possibly not the
major cause for the underestimations in the model (Sha et al., 2019a).
Current studies generally believed that the sulfate underestimation
might be attributed to the lack of heterogeneous production in the
model. The proposed sulfate heterogeneous formation mechanisms in-
clude the SO2 oxidation by NO2 (Cheng et al., 2016; Wang et al., 2016a),
by O2 via TMI catalysis (Li et al., 2017a) or radical chain reactions (Hung
and Hoffmann, 2015; Hung et al., 2018), and by H2O2 (Ye et al., 2018).
Due to the aerosol water is acidic with the pH value of 3.0–4.9 in China
(Ding et al., 2019; Guo et al., 2017), TMI-catalyzed oxidation of SO2

perhaps dominates the sulfate formation during the haze periods,
which is also verified by the observations of sulfate oxygen isotopes (Fan
et al., 2020b). However, since the observations of concentration,
complexation, and solubility of TMIs, as well as aerosol pH and water
content, are not available, the mechanism of sulfate heterogeneous
reactions remains unclear (Wang et al., 2020). Therefore, to tackle the
underestimation of sulfate, the heterogeneous formation of sulfate was
simply parameterized in the model as a reactive uptake process
and assuming to be irreversible (Chen et al., 2016; Feng et al., 2018; Li
et al., 2017a; Li et al., 2018; Shao et al., 2019; Tian et al., 2021;
Wang et al., 2014; Zheng et al., 2015b). Although the implementation
of SO2 heterogeneous reactions in the model achieves an agreement
of simulated and observed sulfate concentrations, the model still
underestimates sulfate (Huang et al., 2019; Sha et al., 2019a).

In-cloud sulfate formation is known as the major source of global
sulfate because aqueous-phase oxidation of S(IV) by H2O2 and O3

occurs much more rapidly than gas-phase oxidation by OH (Barth
et al., 2000; Ervens, 2015). Many studies showed that sulfate concentra-
tions are enhanced by the occurrence of cloud and fog compared to
cloud-free conditions (Crahan et al., 2004; Ervens et al., 2018;
Sorooshian et al., 2006, 2007; Wonaschuetz et al., 2012). Previous
modeling studies concluded that a major fraction of sulfate (60–90%)
is formed via in-cloud aqueous chemistry globally (Dovrou et al.,
2019; Ervens, 2018; Harris et al., 2013; Ma and Salzen, 2006). The rate
of in-cloud dissolution and subsequent aqueous-phase reactions of
SO2 depend not only upon chemical parameters such as the
availability of oxidants and cloud water pH but also upon cloud
microphysical parameters such as the liquid water content (LWC),
droplet size distribution and lifetime of cloud droplets (Ervens, 2015).
It is noted that the kinetic and mechanistic parameters for the
oxidation of S(IV) are relatively well constrained in the model, thus
the largest uncertainties in predicting in-cloud sulfate formation origi-
nate from the prediction of cloud microphysical parameters (Rasch
et al., 2000). Among them, cloudwater content is a key parameter to de-
scribe the characteristics of cloud fields in themodel, which is predicted
by themicrophysical scheme and then passed to the chemistry module.
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Changes in cloud water can affect the dissolved amount of water-
soluble atmospheric trace gases such as HNO3, HCl, SO2, and NH3, and
thus induces changes in the cloud water pH, which in turn impact the
sulfate production (Shah et al., 2020). Therefore, uncertainties in cloud
properties due to parameterizations in the model translate into
uncertainties in predicting concentrations of sulfate and other
chemical species (Barth et al., 2007; Berg et al., 2015; Koch et al.,
2003). A previous study found that the simulated sulfate concentrations
significantly increase after correcting the underestimation of model
cloud fraction (Mueller et al., 2006). Xie et al. (2019) showed that the
improvement in cloud fields in Modern Era Retrospective Analysis for
Research and Applications, Version 2 (MERRA-2) can eliminate approx-
imately half of the bias in surface sulfate concentrations during sum-
mertime relative to the MERRA. However, only a few studies focused
on the sulfate underestimation caused by the uncertainties of simulated
cloud fields during haze episodes. Therefore, a better understanding of
the sensitivity of sulfate formation to cloud water content is needed to
improve the model performance on predicting SNA and PM2.5.

A persistent high PM2.5 level accompanying the fog event (short for
haze-fog event) occurred in the Yangtze River Delta (YRD) region, China
from26November to 2December 2018.We choose this period to inves-
tigate the impact of cloud/fog water content on simulating SNA using
the WRF-Chem model. The paper is organized as below. Section 2 de-
scribes theWRF-Chemmodel and observation data, as well as presents
themeteorology evaluation. The evaluation of simulated chemical fields
and cloudwater content with observations, and sensitivity experiments
to study the impacts of corrected cloudwater content on simulated SNA
are presented in Section 3. Section 4 is a summary.

2. Model configurations, data description, and model evaluation

2.1. Model configurations

TheWRF-Chemmodel version 3.9.1 (Grell et al., 2005) is used in this
study. The model is configured using two nested domains with grid
spacings of 27 km and 9 km, respectively. The coarser grids cover east-
ern China, and the finer grids cover the YRD (Fig. S1). Both domains
have 42 vertical levels, with 24 levels below the boundary layer
(about 1500 m) and the lowest level about 21 m. Physical schemes in-
clude Linmicrophysical scheme (Chen and Sun, 2002), Grell 3-D cumu-
lus scheme (Grell and Dezső, 2002), RRTM (Mlawer et al., 1997) for
longwave radiation and Goddard scheme for shortwave radiation
(Chou and Suarez, 1994), Yonsei University planetary boundary layer
scheme (Hong et al., 2006), QNSE surface layer scheme (Sukoriansky
et al., 2005) and Noah land surface model (Tewari et al., 2004). The se-
lection of these configurations is based on our prior sensitivity studies in
which this combination yielded the best performance for simulating the
haze-fog event in the YRD. The embedded objective analysis programs
(OBSGRID) are also used to constrain the ambientmeteorology in all ex-
periments, including pressure, air temperature, dew point temperature,
wind direction and speed. The U.S. National Center for Environmental
Prediction (NCEP) ADP Global Surface Observational Weather Data
(https://rda.ucar.edu/datasets/ds461.0/) are chosen as the input obser-
vation data in OBSGRID to nudge the initial and boundary meteorologi-
cal conditions and provide surface fields for the surface-analysis-
nudging four dimensional data assimilation (FDDA).

The Carbon Bond Mechanism (CBMZ) for gas-phase chemistry
(Zaveri and Peters, 1999) and theModel for Simulating Aerosol Interac-
tions and Chemistry (MOSAIC) aerosolmodulewith four sectional aero-
sol bins and aqueous reactions (Zaveri et al., 2008) are used. MOSAIC
predicts all major aerosol species, including sulfate, nitrate, ammonium,
BC, primary organicmass, chloride, sodium, other inorganicmass (OIN),
and liquid water. The aqueous-phase production is predicted through a
bulk cloudwater approach (MOSAIC) and subsequently partitioned into
the four cloud water bins which connect to the four aerosol size bins.
The Fahey and Pandis (2001) aqueous-phase chemistry scheme is
3

implemented and calculates sulfate formation as well as formaldehyde
oxidation and nonreactive uptake of HNO3, HCl, NH3, and other trace
gases. The main aqueous-phase formation mechanisms of sulfate in
the current model are summarized in Table S2.

The 0.25° × 0.25° NCEP Final Analysis (FNL) dataset (http://rda.ucar.
edu/datasets/ds083.2/) provides meteorological initial and boundary
conditions. Anthropogenic emissions with a spatial resolution of
0.25° × 0.25° are taken from Multi-resolution Emission Inventory for
China (MEIC: http://www.meicmodel.org/) for the year 2016 (Li et al.,
2017b). The simulation starts on 24 November and ends on 2 December
2018, with the first 48 h used as a spin-up period.

2.2. Observational data

Meteorological variables are measured every three hours from 51
weather stations located in Nanjing and its surrounding cities. These
data are obtained from the Meteorological Information Comprehensive
Analysis and Process System (MICAPS) (green dots in Fig. 1), which are
used to evaluate the model performance on simulating meteorological
fields. The data include air temperature, relative humidity at 2 m (T2,
RH2), wind speed and direction at 10 m (WS10, WD10), visibility
(VIS), and accumulated precipitation (PRE) (the sample frequency of
precipitation is 6 hourly).

For evaluating the simulated surface air pollutants, two data sets are
used: (1) hourly SO2, NH3, HNO3, HONO, and inorganic chemical compo-
nents in PM2.5 (sulfate, nitrate, and ammonium) concentrations
measured by the In-situ Gas and Aerosol Compositions monitor (IGAC)
(Zhan et al., 2021) at Nanjing University of Information Science & Tech-
nology (NUIST) (32.2° N, 118.7° E; 22 m above sea level) (the blue circle
in Fig. 1); (2) routinely measurements of hourly SO2, NO2, and PM2.5

concentrations at 50 monitoring sites from the China National Environ-
mentalMonitoringCenter (CNEMC), includingNanjing-Maigaoqiaomon-
itoring site (32.1°N, 118.8° E) and 49 sites located in Shanghai, Hangzhou,
Hefei, Xuzhou, Heze, Linyi, and Lianyungang (the red circles in Fig. 1).
Since the NUIST site did not observe NO2 and PM2.5 simultaneously, the
observedNO2 andPM2.5 from theMaigaoqiao site close toNUIST are used.

The Advanced Himawari Imager (AHI) data from the Himawari-8
satellite are used to represent the fog area (https://www.eorc.jaxa.jp/
ptree/index.html). The AHI has 16 channels with central wavelengths
ranging from 0.47 μm to 13.3 μm. The spatial resolution of the AHI
pixel is 0.5 km for band 3; 1 km for bands 1, 2, and 4; and 2 km for
the other bands. Fog area is indicated by the albedo at three visible
bands, i.e., red (band 3, 0.64 μm), green (band 2, 0.51 μm), and blue
(band 1, 0.47 μm) (Yan et al., 2020). Finally, the daily liquid water
path (LWP) observations from Moderate Resolution Imaging
Spectroradiometer (MODIS) Aqua Collection 6 Level-3 production
with a spatial grid spacing of 1° are used to evaluate the model perfor-
mance on simulating cloud water content. The confidence quality as-
sessment in MODIS Collection 6 is set to 3 (i.e., high confidence) for all
successful retrievals so that quality control is no longer required when
we use the dataset (Platnick et al., 2014). Additionally, due to the differ-
ence in the spatial resolution betweenMODIS and simulations, the sim-
ulated LWPwas oversampled to theMODIS grid cells (1° × 1°) using the
nearest neighbor resampling to match the spatial resolution of MODIS
LWP.

2.3. Model evaluation

From 26 November to 2 December 2018, the YRD region experi-
enced a severe haze-fog event for seven days (fog areas are shown in
Fig. S2). The daily average relative humidity and PM2.5 in many cities
exceed 85% and 75 μg m−3, respectively, and the visibility was less
than 50 m in some areas. Such a severe pollution process provides a
good opportunity to investigate the aqueous-phase chemistry.

As the large-scale meteorological fields can contribute to the occur-
rence of fog and cloudswhich are reactors for aqueous-phase chemistry,

https://rda.ucar.edu/datasets/ds461.0/
http://rda.ucar.edu/datasets/ds083.2/
http://rda.ucar.edu/datasets/ds083.2/
http://www.meicmodel.org/
https://www.eorc.jaxa.jp/ptree/index.html
https://www.eorc.jaxa.jp/ptree/index.html


Fig. 1. The performance of simulated hourlymeteorological parameters (2m temperature (T2), 2m relative humidity (RH2), 10mwind speed (WS10), 10mwind direction (WD10), and
6 h accumulation precipitation (PRE)) in 8 typical cities in the YRD, including Nanjing, Hangzhou, Shanghai, Lianyungang, Linyi, Heze, Xuzhou, and Hefei, which all experienced the haze-
fog event. Open circles and solid lines (or columns) represent observations and simulations, respectively. Themap shows the location of siteswith in-situmeasurements ofmeteorological
variables and air pollutants (Green dots, red and blue circles denote the routine meteorological stations, air quality monitoring sites, and Nanjing University of Information Science &
Technology (NUIST), respectively). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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it is necessary to evaluate the model performance on simulated meteo-
rological parameters over a large region. We compare the simulated
meteorologywith the observations in 8 typical cities in the YRD, includ-
ing Nanjing, Hangzhou, Shanghai, Lianyungang, Linyi, Heze, Xuzhou,
and Hefei (Fig. 1), which all experienced the haze-fog event. The
model can reproduce the temporal variation of observedmeteorological
variables in all cities, such as T2, RH,WS10, andWD10, with correlation
coefficients all larger than 0.85, 0.68, 0.45, and 0.40. The mean biases
(MBs) and root-mean-square errors (RMSEs) of hourly T2, RH2,
WS10, and WD10 are also small, with the absolute MBs all lower than
1.0 °C, 6.0%, 0.8 m s−1, 36.1° (except WD10 in Shanghai), and RMSEs
all lower than 2.2 °C, 10.8%, 1.1 m s−1, 110.7° (Table S3). There was al-
most no precipitation during this period. Similarly, the simulated
4

precipitation is also quite limited except on 2 December. Overall, the
simulated meteorological fields are reasonable in the YRD.

3. Results and discussions

3.1. Chemical simulations

We compare the spatial distribution of observed and simulated daily
SO2, NO2, and PM2.5 concentrations, the simulated wind speed and
direction at 10 m from 26 November to 2 December in the YRD are
also shown in Fig. S3. The model can reproduce the characteristics of
the spatial distribution of observed air pollutants concentrations over
time. The simulated wind speed at 10 m (WS10) is lower than
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2m s−1 in the YRD, and such a lowwind speedmay not be conducive to
the advection and diffusion of air pollutants. The easterly wind brings
humid air over the ocean to the YRD, resulting inwater vapor saturation
and high RH. Therefore, high RH promoted the rapid formation of sec-
ondary aerosols is the main cause for this large-scale haze-fog event.

Fig. 2 compares the simulated surface routine air pollutants (SO2, NO2,
and PM2.5) concentrations with ground observations in 8 typical cities in
the YRD, including Nanjing, Hangzhou, Shanghai, Lianyungang, Linyi,
Heze, Xuzhou, and Hefei. We find that themodel can reproduce themag-
nitude of observed daily air pollutants concentrations, and the correlation
coefficients for SO2, NO2, and PM2.5 are 0.3, 0.7, and 0.5, respectively.
However, the model overestimates both SO2 and PM2.5 concentrations
by about 80%. One possible reason is that anthropogenic emissions used
in this study are for the year 2016 rather than the simulation year, thus
resulting in an overestimation of SO2 and primary particulate mass
emissions. Studies showed that the “bottom-up” approach analyzes and
integrates air pollutant-related activity data (such as coal power plants,
industry, and residential combustion) with emission factors from various
agencies and sources to estimate emissions, and it thus has limitations in
that it usually has a temporal lag of 2 to 3 years and can quickly become
outdated (Wang et al., 2016b). In addition, the low conversion rate of
SO2 to sulfate in the current model is considered to be the main cause
for the overestimation of SO2 (Li et al., 2017a; Sha et al., 2019a; Song
et al., 2019). It is worth noting that the simulated SO2 is higher than the
observations in most areas of YRD, while SO2 concentrations in
Lianyungang, a coastal city of YRD, are underestimated. Clean and
humid air from the southeast of the ocean prevailed in Lianyungang dur-
ing this event, thus overestimating wind speed (the simulated and ob-
served wind speed are 1.8 m s−1 and 1.5 m s−1, respectively) may lead
to the underestimation of SO2. The simulated NO2 bias is much lower
Fig. 2. Scatter plots of daily mean SO2, NO2, and PM2.5 concentrations from observations (x-a
including Nanjing, Hangzhou, Shanghai, Lianyungang, Linyi, Heze, Xuzhou, and Hefei, which
line (dash), correlation coefficient (R), and normalized mean bias (NMB).
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with the Normalized Mean Bias (NMB) of 7%. Overall, the spatial
distribution and magnitude of simulated total PM2.5 in the YRD are rea-
sonable. Since the chemical components of aerosols were observed in
Nanjing, the followingwill focus on the impact of cloudwater on SNA for-
mation by comparing the differences between the simulated and ob-
served SNA.

According to the observed RH2 and VIS in Nanjing, we divide the
haze-fog event into two stages, the formation and development of fog
(RH2 ≥ 90% and VIS ≤ 1 km), and the dissipation of fog (RH2 < 90%
and VIS> 1 km) (Fig. S4) (Liu et al., 2018). The observed sulfate, nitrate,
ammonium, and PM2.5 concentrations all increase when fog dissipates,
which are 23%, 24%, 14%, and 17% higher than the concentrations in
the formation and development of fog. These results are similar to Zou
et al. (2020), indicating that the wet deposition effect of fog on aerosol
is negligible if the fog cannot form precipitation, and the aerosols can
return to the atmosphere from the fog droplets when fog dissipates,
i.e., fog facilitates the increase of inorganic aerosol concentrations by
aqueous-phase chemistry and plays an important role in the occurrence
of haze event in moist areas.

The hourly and diurnal variations of simulated and observed SO2,
NO2, NH3, HNO3, HONO, SNA, and PM2.5 concentrations in Nanjing are
shown in Figs. 3 and 4. The temporal variations of air pollutants from
the simulations and observations are generally consistent. However,
the model overestimates SO2 by 114% and underestimates sulfate by
over 80%, and thus underestimates the sulfur oxidation ratio (SOR) by
81%. A low oxidation rate of SO2 to sulfate in the model has been
found in previous studies (Gao et al., 2018). Possible explanations are
associated with unclear or incomplete chemical mechanisms of sulfate
formation in the models (Moch et al., 2018; Shao et al., 2019).
Additionally, the observed sulfate concentration has an obvious
xis) versus simulations (y-axis) during the haze-fog event in 8 typical cities in the YRD,
all experienced the haze-fog event. Also shown on the scatter plots are 1:1, 1:2, and 2:1



Fig. 3. Time series of the simulated and observed hourly gas precursors concentrations: (a) SO2, (c) NO2, (e) NH3, (g) HONO, (h) HNO3, inorganic aerosol concentrations: (b) sulfate,
(d) nitrate and (f) ammonium, and the stacked diagram of hourly SNA and PM2.5 concentrations from (i) observations and (j) simulations during the haze-fog event in Nanjing.
Statistics in each panel are the mean value of observation (Obs) and model simulation (Mod), mean bias (MB), and normalized mean bias (NMB).
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diurnal cycle with the peak occurring at noon, corresponding to the
timing of fog dissipation. Sulfate concentrations remain at a relatively
high level in fog water during the night and early morning due to the
contribution from aqueous-phase chemistry, inducing a significant in-
crease of sulfate when fog droplets evaporate at noon (Xue et al., 2016).
However, the simulated sulfate shows a flat diurnal cycle, with a much
smaller concentration enhancement rate (0.45 μg m−3 h−1) from
early morning to noon compared to the observations (2.3 μg m−3 h−1),
suggesting that model possibly underestimates the formation of sulfate
via aqueous-phase chemistry in clouds.

Globally, aqueous sulfate formation ismainly from the oxidation of S
(IV) by H2O2 and O3, and almost 50% from the oxidation by H2O2.
Previous studies indicated that the heavy pollution in China is usually
associated with weak photochemical activity, impacting photolysis
driven atmospheric oxidant species (e.g., OH, H2O2, and O3), which
could suppress the formation of sulfate via the oxidation of S(IV) by
H2O2 and O3 during haze-fog events (Li et al., 2017a; Liu et al., 2020b;
Wang et al., 2020; Xue et al., 2016). Therefore, the aqueous-phase oxi-
dations of S(IV) by NO2 and O2 (TMI-catalyzed) could play an
important role in sulfate formation. It is noted that the observed
HONO concentrations rise remarkably at noon, which is consistent
with the diurnal cycle of sulfate (Fig. 4(b, g)). Additionally, most of the
HONO is produced via SO2 oxidation by NO2 in the aqueous-phase ac-
cording to previous studies (Liu et al., 2019). It is therefore suggested
that the aqueous-phase oxidation of S(IV) by NO2 is possibly the main
pathway of sulfate formation during this haze-fog event. However, the
simulated HONO is almost an order of magnitude lower than the obser-
vations and has no obvious diurnal variations as shown in the observa-
tions, indicating that the model may underestimate this oxidation
pathway of sulfate.

Although the diurnal pattern of NO2 is consistent in the model and
observations, and the averaged NMB is only 12%, the simulated nitrate
concentrations are 184% higher than the observations, especially at
6

night, suggesting that the model overestimates the nitrate nocturnal
formation pathway, that is, the N2O5 heterogeneous hydrolysis uptake
on the surfaces of deliquescence aerosols (Brown et al., 2016; Chang
et al., 2016; Lowe et al., 2015). The relatively high N2O5 uptake
coefficient (γN2O5) and the missing heterogeneous production of nitryl
chloride (ClNO2) from the N2O5 uptake on chloride aerosols in the
model (the parameterization of γN2O5 is detailed in Supplementary
Materials), can both lead to the overestimation of simulated nitrate
(McDuffie et al., 2018; Sarwar et al., 2012, 2014). In addition,
overestimations of HNO3 and nitrate (i.e., TNO3 = HNO3 + NO3

−) in
the model are also attributed to the insufficient removal of TNO3

(Miao et al., 2020). Therefore, too much TNO3 may consume a large
amount of NH3 to a certain extent, further inhibiting sulfate formation.

The molar concentrations of total ammonium (TNH4 = NH3 +NH4
+)

are generally consistent in the simulations (2.1 mol m−3) and
observations (2.5 mol m−3), but the simulated NH3 is 91% lower and
ammonium is 57% higher than the observations (Fig. 3(e, f)). This is
partly due to the overestimation of TNO3 in the model (Wang et al.,
2013b). On the other hand, aerosol acidity is a key factor driving the
semi-volatile partitioning of aerosol species, and lower aerosol water pH
is conducive to ammonium in the particle phase. We compare the simu-
lated and observed PM2.5 pH calculated offline using the same
thermodynamic model, ISORROPIA II (Fountoukis and Nenes, 2007).
The calculation of PM2.5 pH is dependent on the concentrations of
aerosol components (i.e., Na+, SO4

2−, NH3
+, NO3

−, Cl−, Ca2+, K+, Mg2+)
and meteorological variables (i.e., RH and temperature). As shown in
Fig. S5, the model underestimates PM2.5 pH by 0.8, contributing to the
discrepancies of TNH4 gas-particle partitioning.

The simulated PM2.5 concentrations are significantly higher than the
observations by a factor of 1.3. As CBMZ-MOSAIC only predicts primary
organic species but does not consider the formation of secondary or-
ganic aerosol, the organic mass concentration must assumedly be
underestimated in the model. Therefore, the overestimation of PM2.5



Fig. 4.Diurnal cycles of the simulated and observedmass concentrations of gas precursors: (a) SO2, (c) NO2, (e) NH3, (g) HONO, (i) HNO3, and inorganic aerosol concentrations: (b) sulfate,
(d) nitrate, (f) ammonium and (h) PM2.5, averaged during the haze-fog event in Nanjing.
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is mainly due to the overestimation of SNA, namely nitrate and ammo-
nium. Additionally, the overestimation of primary inorganic aerosols
concentrations in the model can also lead to a positive bias of PM2.5.

3.2. Cloud water content

Based on the above analysis, we speculate that the underestimation
of sulfate in themodel is due to the insufficient in-cloud aqueous-phase
formation and/or missingmechanisms in themodel. The cloud water is
themost uncertain factor to modulate in-cloud aqueous-phase chemis-
try (Ervens, 2015; Xie et al., 2019). Therefore, it is necessary to evaluate
the simulated cloud water content in the model.

The spatial distribution of simulated LWP from 26 November to 2
December in the YRD is shown in Fig. S6. Any model grids with LWC
larger than 0.01 g kg−1 are defined as fog pixels (Zhou and Du, 2010),
and below 1500 m are integrated to calculate the simulated LWP, and
LWP larger than 2 g m−2 is identified as the fog area (Jia et al., 2019).
The model can generally reproduce the distribution characteristics of
the fog area observed at 08:00 every day during this period, except on
27 November (the observed fog areas are shown in Fig. S2).
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The LWC at the lowest level in themodel has an important impact on
the SNA formation at the surface. LWCwas not observed simultaneously
during this period, so visibility (VIS) is usually used to assess the simu-
lated LWC as it is a function of LWC and cloud droplet number (Nc)
(Eq. (1); Gultepe et al., 2006).

VIS m½ � ¼ 1002= LWC g cm−3� �� Nc cm−3� �� �0:6473 ð1Þ

We compare the spatial distribution of VIS from simulations and ob-
servations (threshold of VIS <1000m) (Fig. S7), and find that the simu-
lated VIS has a similar spatial pattern with the observed VIS. Although
the visibility is underestimated in some areas, the statistics of average
visibility over the region where the fog occurred show that the model
generally overestimates VIS during the haze-fog event, except on 26
and 29 November. This overestimation is likely caused by the underes-
timation of LWC in the model. The underestimation of LWC during this
periodmay also be related to the bulkmicrophysical schemeused in the
model (Jia et al., 2019; Khain et al., 2009).

To quantitatively evaluate the modelled cloud water content, we
compare the simulated LWP with the MODIS observations. The model
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can reproduce the spatial distribution of observed LWP but underesti-
mates LWP in some areas, e.g., Jiangsu Province (Fig. S8). Comparisons
of the cumulative probability distribution of the simulated andobserved
LWP are shown in Fig. 5. The probability distribution of simulated LWP
is mainly concentrated in lower LWP, e.g., the probability of simulated
LWP less than 20 g m−2 is ~80%, while the observed one is only 30%
(Table S4). The modelled probabilities are 49% lower than the observed
ones for larger LWP (>20 g m−2). The underestimation of LWP in the
model is consistent with previous studies (Kay et al., 2012; Mueller
et al., 2006; Sha et al., 2019a; Wang et al., 2013a).

As stated above, the model underestimates the sulfate concentra-
tions and cloud water content simultaneously during the haze-fog
event. The underestimation of cloud water content possibly leads to
the insufficient contribution of in-cloud aqueous-phase chemistry to
sulfate formation, which could explain the underestimation of sulfate
during the haze episode, but has been overlooked by most previous
studies. Therefore, in the next section we use the observed LWP from
MODIS to constrain the simulations and explore the impact of cloud
water on SNA simulations.

3.3. Sensitivity experiments

3.3.1. Constraining cloud water content in the model
A logarithmic function is used to fit the cumulative density function

(CDF) for both observed and simulated LWP values (Fig. 5). The fitting
equations are:

Fo ¼ −6:4þ 16:5 ln xþ 1:0ð Þ 0≤ x ≤500 g m−2� � ð2Þ

Fm ¼ 59:1þ 6:7 ln xþ 5:8ð Þ 0≤ x ≤500 g m−2� � ð3Þ

where subscripts o and m represent the observation and model, and F
and x represent the CDF and LWP, respectively. To update themodelled
LWP with satellite observations, we use the histogram matching
method (Richards, 2013), so that the CDF function of the simulated
LWP after constraining is the same as the observations, i.e., Fmc = Fo.
Consequently, the equation for transforming the modelled LWP is:

xc ¼ 0 x ¼ 0 g m−2� �
53:0� xþ 5:8ð Þ0:4−1 0< x ≤500 g m−2� �

(
ð4Þ
Fig. 5. The cumulative probability distribution of LWP between the MODIS observations
and simulations shown as circles. Results are based on statistics of the observed and
simulated daily LWP during the haze-fog event over YRD. The lines are the fitting
functions.
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where c represents the correction with MODIS observations. Note that
for the grid with the observed LWP is equal to 0 g m−2, that is, there
is no fog occurred, then the modelled LWP is corrected to 0 g m−2.

We apply Eq. (4) to modify the cloud water content in the aqueous-
phase chemistrymodule only and keep the cloudwater amount in other
modules (i.e., microphysics, cumulus parameterization, dry deposition,
wet scavenging, photolysis rates, and radiative transfer modules) un-
changed to ensure that other physical and chemical processes are self-
consistent between the control and sensitivity model simulations. This
is the first sensitivity experiment we conducted, denoted as Sen_c. Con-
sequently, the changes do not affect the cloud properties used in the ra-
diative transfer calculations, and dry/wet deposition, etc. However,
cloud-induced changes in aqueous-phase production do alter the
mixing ratios of SO2 and other oxidants (e.g., OH and H2O2), which
could in turn affect the rate of gas phase oxidation. In addition, the
increase of cloud water content can draw more water-soluble atmo-
spheric trace gases such as HNO3, HCl, SO2, and NH3 into the solution.
Compared to SO2, HNO3 is one of major strong acids in the
atmosphere and thus could dissociate completely in cloud water
(Table S5), which in turn increase the cloud water acidity when
atmospheric ammonia is not sufficient to neutralize hydrogen ions
(H+) in the solution (Shah et al., 2020). This indicates that the
amount of HNO3 dissolved in cloud water may mainly determine the
changes in cloud water pH. From Fig. S9, we find that the aqueous-
phase fraction of NO3

− (calculated as the ratio of aqueous-phase concen-
trations of NO3

− in clouds and the overall multiphase concentrations,
i.e., the sum of in gas and aqueous phase, including undissociated and
dissociated forms of NO3

−) increases with LWP and is correlated with
lower cloud water pH in both Control run and Sen_c sensitivity experi-
ment. Therefore, constraining the simulated cloud water content alone
results in a decrease in cloud water pH (4.9 to 2.5) during this period
(Fig. S9). According to previous studies, the observed cloud water pH
in Nanjing during late autumn and winter ranges from 4.3 to 7.6
(Table S6), thus the cloud water pH in the model may be
underestimated. To make the cloud water pH in the sensitivity experi-
ment be the same as that of the Control run and as close as possible to
the observed pH value, we increase the cloud water pH by 2 units,
i.e., decrease the concentrations of hydrogen ion (i.e., [H+]) by a factor
of 100 in another sensitivity experiment (Sen_c_pH). The descriptions
of all the experiments are summarized in Table 1.

3.3.2. Impact of cloud constraint on SNA
The differences in the spatial distribution of simulated SNA by the

two experiments (Control and Sen_c_pH) are shown in Fig. S11. We
find that the simulated sulfate concentration in Sen_c_pH is 6 μg m−3

larger than the Control over the entire YRD, with the biggest difference
in the south of Jiangsu and the east of Anhui province, corresponding to
the areamost affected by this haze-fog event. The corrected cloudwater
content increases the contribution of aqueous-phase chemistry to the
sulfate formation, thereby reducing the negative bias of simulated sul-
fate. The formation of sulfate greatly limits the nitrate production, so
the simulated nitrate in Sen_c_pH is decreased by 35 μg m−3 compared
to the Control over the entire YRD. However, the ammonium simulated
by Sen_c_pH is larger than the results of Control run in most areas of
Table 1
Descriptions of the model simulations.

Experiment
name

Description

Control Control simulation.
Sen_c Only constrain the simulated LWP according to Eq. (4) in the

aqueous-phase chemistry.
Sen_c_pH Constrain the simulated LWP according to Eq. (4) in the

aqueous-phase chemistry and increase the cloud water pH by
2 units.
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YRD, with the average difference of 9 μg m−3. As the inorganic aerosol
system is essentially an acid-base titration, an increase in S(VI) concen-
tration can neutralize more NH3 to form ammonium sulfate ((NH4)
2SO4) or ammonium bisulfate (NH4HSO4), leading to an increase of
simulated ammonium concentrations.

As shown in Fig. 6, the Sen_c_pH significantly improves the simula-
tion of sulfate in Nanjing. It increases the sulfate concentration by
11.8 μg m−3 (295%) and decreases the NMB by 53.5%. Also, the
Sen_c_pH simulation using corrected cloud water content can repro-
duce the diurnal cycle and capture the peak concentration of sulfate at
noon, with the concentration increasing at a rate of 1.8 μg m−3 h−1

from early morning to noon, which is not seen in the Control run. Addi-
tionally, the Sen_c_pH improves the simulated gaseous SO2 and O3, and
the NMB of SO2 and O3 decreases by 20% and 48%, respectively,
indicating that both sulfate and gaseous SO2 and O3 can be better
reproduced by improving cloud water content in the model (Fig. S12).
Meanwhile, the Sen_c_pH decreases the absolute bias of simulated
nitrate from 184.0% to 50.1% compared with the Control run. It greatly
reduces the nitrate concentration at night and thus predicts a better
diurnal cycle. However, the Sen_c_pH simulation leads to a minor
increase in the ammonium concentration. The underestimation of
nitrate and overestimation of ammonium in Sen_c_pH could be
ascribed to the underestimation of aerosol water pH in the model. The
hydrogen ion activity in aerosol water can affect the partitioning of
TNO3 and TNH4 between the gas and aerosol phase. Lower aerosol
water pH favors partitioning of TNO3 toward gaseous HNO3 rather
than the aerosol nitrate. In contrast, TNH4 partitions toward gaseous
NH3 at higher aerosol water pH (Weber et al., 2016). The simulated
Fig. 6. Thehourly anddiurnal variations of simulated (Control and Sen_c_pH) and observed (a, b
SNA concentrations from (g) observations, (h) Control run, and (i) Sen_c_pH simulations during
(Obs) and model simulation (Mod), and NMB.
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PM2.5 pH in Sen_c_pH is lower than the observations (Fig. S5), which
is conducive to the existence of HNO3 and aerosol ammonium.

Overall, the simulation with MODIS-corrected cloud water content
can decrease the model bias of SNA from 77.2% (Control) to 14.1%
(Sen_c_pH) (Fig. 7(a)). The proportion of sulfate in SNA also signifi-
cantly increases from 2.5% (Control) to 20.2% (Sen_c_pH), which is
closer to the observation (23.9%) (Fig. 7(b)), but the Sen_c_pH still un-
derestimates the sulfate concentration by 6 μgm−3 compared to the ob-
servations. A few possibilities can explain the discrepancies. The model
possibly underestimates the cloud water pH, with a value of 3.3 in
Sen_c_pH (Fig. S13), which is lower than the global typical cloud/fog
water pH of 3–6 and the mean value of 4–6 suggested by Pye et al.
(2020). The observed fog water pH in Nanjing from previous studies
(Hong et al., 2019; Li et al., 2008; Lu et al., 2010; Qin et al., 2011; Yan
et al., 2013; Yang et al., 2009; Zhu et al., 2020) are summarized in
Table S6, suggesting that the fog water pH during late autumn and win-
ter in Nanjing is generally between 4.3 and 7.6. Therefore, the lower fog
water pH simulated by the model could limit the aqueous-phase
formation of sulfate to some extent. Note that the aqueous-phase oxida-
tion of S(IV) byNO2 requires a cloudwater pH of about 6, thus themore
acidic cloud water in the model is not conducive to this reaction.
Consequently, the simulated NO2 concentrations in Sen_c_pH
only change slightly (Fig. S12). Moreover, the model lacks SO2

heterogeneous reactions on the surface of and/or within the bulk
preexisting aerosols (Li et al., 2017a; Shao et al., 2019) and other
aqueous-phase reactions in clouds, such as the aqueous oxidation of S
(IV) by HCHO and hydroxyl hydroperoxide (ISOPOOH) to form
hydroxy-methane sulfonate (HMS) and sulfate (Dovrou et al., 2019;
) sulfate, (c, d) nitrate, and (e, f) ammonium concentrations. The stackeddiagramof hourly
the haze-fog event inNanjing. Statistics in panel (a, c, e) are themean value of observation



Fig. 7. (a) The average mass concentrations and (b) proportion of the observed and
simulated (Control and Sen_c_pH) SNA during the haze-fog event in Nanjing.
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Moch et al., 2018),which could also explain the sulfate underestimation
even though the cloud water content has already been corrected. In ad-
dition, field measurements of aerosols use the method of ion chroma-
tography, such as the IGAC sampling instrument, which easily
misinterpret organosulfur (mainly in the presence of HMS) as inorganic
sulfate.Moch et al. (2020) suggested that HMS accounts for 25% ormore
of particulate sulfate in polluted regions of China, which is relatively
high on cloudy days. Aerosol mass spectrometry (AMS) measurements
in Beijing also showed the presence of HMS up to 30% of particulate sul-
fur concentrations during winter haze events (Song et al., 2019). There-
fore, the presence of HMS can lead to a positive deviation in observed
inorganic sulfate. Cloud constraints are based on the MODIS LWP,
which has a reported uncertainty range of ±30% (Dong et al., 2008;
Khanal and Wang, 2018; Min et al., 2012).

4. Conclusions

In this study, we evaluated theWRF-Chem performance on simulat-
ing inorganic aerosol components of PM2.5 during a haze-fog event in
Nanjing, China, and investigated the model bias caused by the uncer-
tainties of in-cloud aqueous-phase chemistry on simulating SNA.

Our results show that WRF-Chem simulations overestimate SO2

concentration by 114%, underestimate sulfate concentration by
81%, and fail to reproduce the diurnal cycle of sulfate, which peaks
at noon, corresponding to the timing of fog dissipation. In contrast,
the model bias of NO2 is much smaller (NMB = 12%), but the
nitrate concentration is overestimated by 184%, especially its
nocturnal concentration. Although the molar concentrations of
total ammonium are generally consistent between the simulations
and observations, the model underestimates NH3 concentration by
91% and overestimates ammonium concentration by 57%.

Aqueous-phase formation is an important pathway in which dis-
solved SO2 in cloud/fog droplets reacts with oxidants to form sulfate.
The underestimated cloud water content in the model is constrained
by using the MODIS LWP, and sensitivity experiments are also con-
ducted to explore the impact of corrected cloud water content on SNA
10
simulation. Compared with the Control run, the simulation with
MODIS-corrected cloud water content significantly improves the simu-
lation of sulfate by increasing the concentration nearly 3 times, de-
creases NMB by 53.5%, and reproduces the diurnal peak. Improved
sulfate treatment improves the nitrate simulations by altering the sensi-
tivity of nitrate formation to HNO3 and NH3, thus the simulated nitrate
bias is decreased by 134%, and diurnal cycle representation is also
improved. Although the simulated ammonium is higher than the
Control run and observation, correcting the cloud water decreases the
overall model bias of SNA from 77.2% (Control) to 14.1%.

However, even after the MODIS-based adjustment of cloud water
content, the simulated sulfate is still 27.5% lower than the observations.
It is found that the model possibly underestimates the cloud water pH
(value of 3.3),which is not conducive to the in-cloud aqueous-phase ox-
idation of S(IV) byNO2.Missing SO2 heterogeneous reactions on aerosol
water (e.g., TMI-catalyzed oxidation) and other in-cloud aqueous-phase
reactions (e.g., S(IV) oxidation byHCHOand ISOPOOH) in themodel can
also contribute to underestimating the sulfate concentration. In addi-
tion, the aerosol measurements and MODIS observations themselves
are subject to uncertainties.

Our results emphasize the critical role of cloudwater content in sim-
ulating SNA, and provide a new perspective on the causes of sulfate un-
derestimation discussed by previous studies. Therefore, we recommend
that chemical transport models need to better represent the temporal
and spatial distribution ofmodelled cloudfields to improve haze predic-
tion in the future. This can be achieved by using data assimilation to
constrain the ambient meteorology, directly assimilating cloud-related
satellite observations into the model, and optimizing the microphysical
scheme in the model.
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