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Abstract
EPA reports a steady decline of US anthropogenic NOx emissions in 2005–2019 summers, while
NO2 vertical column densities (VCDs) from the OMI satellite over large spatial domains have
flattened since 2009. To better understand the contributing factors to a flattening of the OMI NO2

trends, we investigate the role of soil and lightning NOx emissions on this apparent disagreement.
We improve soil NOx emissions estimates using a new observation-based temperature response,
which increases the linear correlation coefficient between GEOS-Chem simulated and OMI NO2

VCDs by 0.05–0.2 over the Central US. Multivariate trend analysis reveals that soil and lightning
NOx combined emissions trends change from−3.95% a−1 during 2005–2009 to 0.60% a−1 from
2009 to 2019, thereby rendering the abrupt slowdown of total NOx emissions reduction.
Non-linear inter-annual variations explain 6.6% of the variance of total NOx emissions. As
background emissions become relatively larger with uncertain inter-annual variations, the NO2

VCDs alone at the national scale, especially in the regions with vast rural areas, will be insufficient
to discern the trend of anthropogenic emissions.

1. Introduction

NOx (NO + NO2) emitted mainly from anthropo-
genic sources, wild fires, lightning, and soil plays a
significant role in catalysing tropospheric ozone pro-
duction and destruction and forming nitrate aerosols
(Schindlbacher et al 2004, Seinfeld and Pandis 2016).
National Emissions Inventory (NEI) reports a steady
decrease of anthropogenic NOx emissions during
2005–2019 summers at a mean rate of −4.12% a−1

over the contiguous US. Ozone Monitoring Instru-
ment (OMI) tropospheric vertical column densities
(VCDs), however, show a consistent decline until
2009, and a flattened trend afterwards up to 2015
(Jiang et al 2018). Silvern et al (2019) shows that the
inconsistence between NEI and VCD trends during

2009–2017 reflect the variation of background emis-
sions (soil and lightning sources). To date, the impact
of soil NOx emissions on the observational NO2

trends remains quantitively elusive.
Soil NOx emissions are an important source dur-

ing summer (Vinken et al 2014,Huber et al 2020), and
their strength ismainly influenced by fertilizer applic-
ation, soil moisture, and soil temperature. Unusu-
ally high soil NOx emissions are observed over high-
temperature agricultural regions in California where
fertilized soil is a major source of NOx pollution
(Oikawa et al 2015, Almaraz et al 2018). Moreover,
nearly half of the enhancement of O3 production that
is related to rising temperature over the southeast US
can be caused by the rising soil NOx emissions due to
the increase of soil temperature (Romer et al 2018).
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Here, we use satellite observations and a chem-
istry transport model (CTM) to improve estim-
ates of soil NOx emissions, and subsequently, to
quantify the impact of soil NOx on the slowdown
of observed NO2 VCD reduction and examine the
sources for inter-annual variation of total NOx emis-
sions beyond the trend analysis. In various CTMs,
soil NOx emission estimates are often parameter-
ized as a function of biome types, soil moisture
and temperature, N-pulsing, N-deposition, and fer-
tilizer maps (Yienger and Levy 1995, Steinkamp and
Lawrence 2011, Hudman et al 2012, Rasool et al
2016, 2019). Two of uncertainties are the depend-
ence of soil NOx emissions on soil temperatures espe-
cially in high temperature conditions and the sim-
plification for soil temperature estimations. Notably,
the emissions response to soil temperature in these
CTMs is assumed to be flat after soil temperature
is above 30 ◦C. Berkeley-Dalhousie Soil NOx Para-
meterization (BDSNP) is the state-of-the-art scheme,
which is implemented in GEOS-Chem, a widely used
CTM; we will improve it using a new observation-
based relationship between soil surface NOx flux and
soil temperature from Oikawa et al (2015) over the
US in high temperature (above 30 ◦C) conditions.
Furthermore, in existing GEOS-Chem, soil temper-
ature as a key input variable to BDSNP is derived
from 2 m air temperature through linear and empir-
ical relationships that vary only with soil and canopy
types (Yienger and Levy 1995). Hence, the soil tem-
perature in the Modern-Era Retrospective analysis
for Research and Applications, Version 2 (MERRA-2)
dataset is used here directly to further refine BDSNP,
thereby collectively formulating a new scheme, here-
after BDISNP, in which ‘I’ stands for Iowa.

Finally, the inconsistency between the trends of
satellite-observedNO2 and anthropogenicNOx emis-
sions is investigated. With the improved soil emis-
sions scheme, we quantitively attribute the slowdown
of satellite-observed NO2 decreasing trend to differ-
ent sectors and suggest that it is partly due to the
co-variations of natural emissions and the trends
thereafter among different sectors (such as soil and
lightning).

2. GEOS-Chemmodelling

2.1. BDISNP scheme with new function for high
temperature
GEOS-Chem is a 3D chemistry transport model
that is driven by meteorological re-analysis fields
(GEOS-FP or MERRA-2). In its BDSNP scheme
(Hudman et al 2012, Vinken et al 2014), the soil
temperature response is identical to the exponen-
tial function (f(T) = e0.103T) for wet soil in YL95
(Yienger and Levy 1995) for temperature between
0 ◦C and 30 ◦C, and is constant once soil tem-
perature is above 30 ◦C (blue line, figure 1). This
study replace the old temperature function with a

newobservation-based temperature function (orange
line, figure 1) from Oikawa et al (2015), and
the rest parameterizations are unchanged. In the
range of 20 ◦C–40 ◦C, it is a cubic function
of soil temperature (f(T) =−0.009T3 + 0.837T2 −
22.527T+ 196.149). The value of the cubic function
is close to the YL95 function in the range of 20 ◦C–
23 ◦C, and it becomes larger than the exponential
function as soil temperature increases from 23 ◦C to
40 ◦C. The cubic function is a factor of 1.4 and 2.7 lar-
ger than the exponential function at 30 ◦C and 40 ◦C,
respectively. When soil temperature is above 40 ◦C,
temperature function is set as the value of the cubic
function at 40 ◦C. The YL95 exponential function
is now used for soil temperature between 0 ◦C and
20 ◦C.

2.2. Experimental design
We use version 12.7.2 GEOS-Chem driven by
MERRA-2 meteorological fields to simulate soil NOx

emissions and atmospheric NO2 concentrations over
the US, with a spatial resolution of 0.5◦× 0.625◦

and 47 vertical layers from surface to stratopause in
summer (June, July and August) during 2005–2019.
The boundary conditions required by the nested sim-
ulations are provided by global 2◦× 2.5◦ simula-
tions (Wang et al 2004). Anthropogenic emissions
are distributed using the NEI2011 inventory scaling
to different years according to national annual totals
(EPA 2021). Open fire emissions are from the fourth-
generation Global Fire Emission Database (GFED4)
daily emission inventory (Giglio et al 2013). Light-
ning NOx emissions are calculated using the light-
ning flash densities and convective-cloud depths that
are derived from the MERRA-2 data and distrib-
uted following the monthly redistribution factors
generated using the Lightning Imaging Sensor and
Optical Transient Detector (LIS/OTS) high resolu-
tion monthly climatology (Murray et al 2012).

Three sensitivity experiments with different treat-
ments of soil NOx emissions are used to explore
the impacts of the updated scheme (BDISNP) on
soil NOx emissions and atmospheric NO2 concen-
trations. The Control and Tnew runs use BDSNP
and BDISNP, respectively, while soil NOx emissions
are turned off in the NO_SOIL experiment. Follow-
ing Silvern et al (2019), the soil NOx emissions are
reduced by 50% for the control and Tnew runs, based
on the previous comparison between GEOS-Chem
simulations andOMINO2 VCDs showing the overes-
timation of soil NOx emissions using BDSNP (Vinken
et al 2014).

3. OMI and surface NO2 and GEOS-Chem
data processing

Tropospheric NO2 VCDs from the version 4.0 NASA
OMI NO2 L2 standard product (OMINO2) (Lamsal
et al 2021) at a spatial resolution of 13 × 24 km2
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Figure 1. Default (blue line) and revised observation-based (orange line, this study) temperature-dependent soil NOx emissions
functions in GEOS-Chem. Note, the two functions only differ at temperature above 20 ◦C.

at nadir are used to evaluate the GEOS-Chem sim-
ulations. The product has a swath of 2600 km and
an equator-crossing time at 13:45, hence providing
contiguous global coverage daily (Levelt et al 2006).
Retrievals are error prone to large Solar Zenith Angles
(SZA) and large View Zenith Angles (VZA), high
cloud contamination, and snow cover; thus only data
with SZA < 75◦, VZA < 65◦, effective cloud frac-
tion < 0.3, terrain reflectivity < 0.3 are used (Wang
et al 2020a). Moreover, the pixels that are affected by
row anomaly (Schenkeveld et al 2017) or not flagged
as high quality are removed.

In situ surface NO2 measurements during
2005–2019 are available at EPA Air Quality System
(AQS), and most of these observational sites are loc-
ated in urban regions. Despite of systematic positive
bias due to the measuring method (Steinbacher et al
2007), the measurement are still useful for model
evaluations (Wang et al 2020b).

For proper comparison, GEOS-Chem NO2 sim-
ulations are sampled according to OMI observing
time and converted to the tropospheric VCDs using
the scattering weights, tropospheric air mass factors
(AMFs), and tropopause pressure from the OMINO2
product (Wang et al 2020a). Comparison of GEOS-
Chem surface NO2 with surface in situ data from
EPA is spatially and temporally paired, following the
method in Wang et al (2020b).

4. Approaches for trend analysis

A statistical framework with treatment of covariance
of emissions in each sector is conceived for the trend
analysis and attribution, and to quantitively link the
linear trend and inter-annual non-linear variation of
NOx emissions from these sectors to the variance

of total NOx emissions, hence explaining the atmo-
spheric NO2 trend observed by satellite. Firstly, total
NOx emissions consist of the trend parts and inter-
annual variability parts of each sectors shown as:

Eti =
N∑
j=1

Etri,j +
N∑
j=1

Evri,j =
N∑
j=1

cj +
N∑
j=1

bj · i+
N∑
j=1

Evri,j

(1)

where E represents NOx emissions, t, tr, and vr
are short for total, trend, inter-annual variability,
respectively, i and j are indexes of year and sector,
respectively, N is total number of sectors including
anthropogenic, soil, lightning, and fires, c and b are
intercept and slope (trend) of Etr, respectively, which
are derived through linear regression.

Following past studies, the relative trends of total
(brel,t) and sectoral (brelj )NOx emissions since 2005 are
the focus of this study; their relationship is shown as:

bt =
N∑
j=1

bj

(bt ÷ Et2005) · Et2005 =
N∑
j=1

(
bj ÷ E2005,j

)
· E2005,j

brel,t · Et2005 =
N∑
j=1

brelj · E2005,j

brel,t =
N∑
j=1

brelj ·
E2005,j
Et2005

(2)

Furthermore, we show that the variance of total
NOx emission can be divided into: (a) the cov-
ariances between sectoral trend parts and total
NOx emissions and, (b) the covariances between
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sectoral inter-annual variability parts and total NOx

emissions:

Var
(
Et
)
= Var

 N∑
j=1

Ej

= Var

 N∑
j=1

Etrj +
N∑
j=1

Evrj


= Cov

Et,
N∑
j=1

Etrj

+Cov

Et,
N∑
j=1

Evrj


=

N∑
j=1

Cov
(
Etrj ,E

t
)
+

N∑
j=1

Cov
(
Evrj ,E

t
)

(3)

where Var and Cov represent variance and covari-
ance operator, respectively, E is a data vector con-
sisting time series of the NOx emissions data. Hence,
the contribution of sectoral linear trend to the vari-
ance of total NOx emissions can be computed as

Cov
(
Etrj ,E

t
)
/Var(Et), while Cov

(
Evrj ,E

t
)
/Var(Et)

is the part of total emission variance explained by
the non-linear sectoral inter-annual variability. Sub-
sequently, the trend part of the variance of total NOx

emissions, Var(Etr,t), is essentially the sum of covari-
ances between sectoral emission trend (Etrj ) and total
emission trend (Etr,t):

Var
(
Etr,t

)
= Var

 N∑
j=1

Etrj

= Cov

Etr,t,
N∑
j=1

Etrj


=

N∑
j=1

Cov
(
Etrj ,E

tr,t
)

(4)

Hence, for each sector j, its contribution to the lin-
ear trend of total emissions can be computed as

Cov
(
Etrj ,E

tr,t
)
/Var(Etr,t).

5. Results

5.1. Evaluation of BDISNP
Tnew produces soil NOx emissions of
201 Gg N summer−1 over the US, which is 18.2%
higher than that from Control. Moreover, during
the hot days when daily mean soil temperatures are
greater than 30 ◦C, Tnew has 32.6% more soil NOx

emissions than Control. Large soil NOx emissions
from Control (figure 2(a)) are mainly over Cent-
ral US and California, where agricultural activity is
intense. Compared with Control, Tnew simulates the
increase of soil NOx emissions up to 120% mainly in
south of 40◦N (figure 2(c)) where soil temperature is
high and consequently, the new temperature response
function is important. In north of 40◦N, up to 47%
decrease of soil NOx emissions exists (figure 2(c)),
which is caused by that MERRA-2 soil temperature
(Tnew) is lower than that calculated from 2m temper-
ature using linear and empirical approach (Control)
in these regions.

Evaluation ofGEOS-Chem simulationswithOMI
tropospheric VCDs mainly focuses on temporal lin-
ear correlation coefficients between them, which are
highly relevant to the linear trend analysis. Com-
pared with the Control run (figure 3(a)), Tnew shows
the increase of linear correlation coefficient (R) in
the range of ∼0.05 to ∼0.2 over the Central US
(black box in figure 3(b)), where fertilizer activities
are intense and soil NOx emissions play a significant
role. The small decrease (usually less than 0.04) of R
is also found over the North Dakota, northern Min-
nesota, and central Texas. Overall, BDISNP improves
on BDSNP in terms of R values over the US when
evaluating with OMI tropospheric NO2 VCDs.

The improvement of R over the Central US is
caused by the better simulations of tropospheric
NO2 VCDs over high soil temperature conditions
(>30 ◦C). Figure 3(c) show the changes of tropo-
spheric NO2 VCDs from OMI and the GEOS-Chem
simulations as soil temperature increases over the
Central US.When soil temperature is less than 30 ◦C,
the difference between Control and Tnew is negligible
(results not shown). In the soil temperature range of
30 ◦C to 40 ◦C, the tropospheric NO2 VCD fromTnew

is larger than Control, and the difference increases
as soil temperature rises (figure 3(c)). Tnew has lar-
ger positive bias than the Control (figure 3(c)), but
the positive bias is not caused by the parameteriza-
tion for emissions dependence on temperature; even
if soil NOx emissions are excluded in the GEOS-
Chem simulation (NO_SOIL), modeled NO2 VCD is
still larger than OMI observation (figure 3(c)). The
positive bias likely originates from the overestima-
tion of other terms in NOx emission schemes (that
this study does not revise) or other error sources in
GEOS-Chem. Furthermore, the uncertainties from
NO2 slant column fitting, tropospheric-stratospheric
separation (with year to year variability and is most
relevant for rural studies), and air mass factor cal-
culation (Bucsela et al 2013) all contribute to the
uncertainty of OMI tropospheric NO2 VCD, which
is estimated as 35% (Lamsal et al 2021), and all
the bias in Tnew is within the uncertainty envelope
(shaded area in figure 3(c)) of OMI observational
error (Lamsal et al 2021). We assume that NO2 VCD
difference between OMI and the GEOS-Chem sim-
ulations are independent of soil temperature, cor-
recting the GEOS-Chem systematic bias by subtract-
ing the difference for all conditions with soil tem-
perature above 30 ◦C. With this non-temperature
dependent bias correction (figure 3(c)), Tnew well
captures the increase of OMI tropospheric NO2 VCD
observations as a function of soil temperature, while
both Control and NO_SOIL underestimate the char-
acteristics (figure 3(d)); the Normalized Centered
Root Mean Square Error (NCRMSE) (Wang et al
2020a) is 0.089 for Tnew, which is much smaller
than 0.266 and 0.421 for Control and NO_SOIL,
respectively (figure 3(d)). As to the decrease of
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Figure 2. Soil NOx emissions during 2005–2019 summers from Control (a), Tnew (b), their relative difference (c),
and difference (d).

Figure 3. The map of the linear correlation coefficients (R) between OMI and Control tropospheric NO2 VCDs (OMI-control)
(a), and the difference of R values between OMI-Tnew and OMI-Control (b) is during 2005–2019 summers. (c) Shows the changes
of tropospheric NO2 VCDs from OMI (black), Control (blue), Tnew (orange), and NO_SOIL (green) as a function of soil
temperature over the Central US (black box in (b)). Each point represents the average of tropospheric NO2 VCDs for the OMI
overpass time soil temperatures between 30 ◦C and 40 ◦C at an interval of 2 ◦C. Shaded area in grey denotes the envelope of
uncertainty of OMI tropospheric NO2 VCD. Numbers in the legend of (c) are linear correlation coefficients. (d) Is similar to (c)
except that the results from GEOS-Chem simulation are subtracted by their corresponding biases at soil temperature of 30 ◦C in
reference to the OMI VCD. Numbers in the legend of (d) are normalized centered root mean square error.
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Figure 4. Evaluation of surface NO2 concentrations from the Control (blue) and Tnew (orange) runs with EPA in situ observations
in term of linear correlation coefficient (a), normalized centered root mean square (NCRMSE) (b), and Normalized Mean Square
Error (NMSE) (c). Only sites where the ratio of soil to total NOx emissions is greater than 0.2 are used for evaluation.

R over North Dakota/Minnesota (orange box in
figure 3(b)) and Texas (green box in figure 3(b)),
figure S1 (available online at stacks.iop.org/ERL/16/
084061/mmedia) shows that OMI NO2 VCDs are
almost constant in temperature ranges of 20 ◦C–
30 ◦C and 30 ◦C–38 ◦C for North Dakota/Minnesota
and Texas, respectively, while all GOES-Chem sim-
ulations (Control, Tnew, and NO_SOIL) show NO2

VCDs increase as soil temperature rises. As GEOS-
Chem cannot properly simulateNO2 VCDs in the two
regions, the new scheme even renders a decrease of R.

GEOS-Chem surface NO2 concentrations from
Control and Tnew are also evaluated with EPA in situ
observations. Surface NOx concentrations between
Tnew and EPA have R values ∼0.02–0.03 larger
than of that from the Control almost each summer
(figure 4(a)), while NCRMSE and normalized mean
square error (NMSE) decrease in the range of 2.0%–
5.3% (figure 4(b)) and 11.1%–17.9% (figure 4(c)),
respectively, each summer.

5.2. Quantifying background contributions to NOx
variations
Figures 5(a) and (b) show the relative trends (brel)
since 2005 of NOx emissions from Tnew and tro-
pospheric NO2 VCDs from OMI and the GEOS-
Chem simulations in contagious US, respectively.
Total NOx emissions show a steady decline dur-
ing 2005–2019, primarily reflecting the trend of its
dominant source—the anthropogenicNOx emissions
(figure 5(a)). Starting from2009, however, the decline
trend of total NOx emissions becomes less than half
of that during 2005–2009 (figure 5(a)). OMI tro-
pospheric NO2 VCDs observe a steady decline from
2005 to 2009 and a flattening afterward, supporting
the existence of the turning point of total NOx trend
in 2009 as simulated by Tnew (figure 5(b)), and the
stronger slowdown of NO2 VCDs reduction in Cent-
ral US than in Western and Eastern US implies that
NOx emissions fromnatural sources contribute to the
slowdown (figure S2). Therefore, the fidelity of Tnew

in simulating theNOx VCDvariation (section 5.1 and
figure 5(b)) enables further quantitative attribution
of relative trend of total NOx emissions to role of
emissions from each sector.

The relative trend since 2005 of total NOx emis-
sions is −2.75% a−1 (figure 5(a)); it equals the
sum of the relative trends of every sector weighted
by the ratio of sectoral to total NOx emissions in
2005 (equation (2)). NOx emissions from fires sec-
tor have the largest positive relative trend of 6.49%
a−1 (figure 5(a)), but its contribution to the relative
trend of total NOx emissions is negligible, as the per-
centage of fires sector to total NOx emissions is only
0.87% in 2005 and 1.89% during 2005–2019. The
contributions of soil, lightning, and anthropogenic
sector to total NOx emissions in 2005 are 11.15%,
16.10%, and 71.88%, respectively. Hence the relat-
ive trend of total NOx emissions is mainly affected
by these three sources. The relative trend of anthro-
pogenic NOx emissions is −4.12% a−1, while soil
sector has a weaker downward trend of −1.44%
a−1 and lightning sector has an upward trend of
1.94% a−1 (figure 5(a)). As a result, despite the large
steady decrease of NOx emissions from anthropo-
genic source, total NOx emissions trend is weakened
by the impacts of the increase of lightning emissions
and the weaker decrease of soil emissions to reach
−2.75% a−1 overall during 2005–2019.

The trends relative to 2005 in the periods of
2005–2009 and 2009–2019 for different NOx emis-
sions sources are calculated (table 1) to investigate
the abrupt slowdown of total NOx emissions reduc-
tion starting in 2009. The relative decreasing trend in
total NOx emissions is −5.19% from 2005 to 2009,
which is 120% stronger than that during 2009–2019.
The relative trend in anthropogenic NOx emissions
is only 53% stronger during 2005–2009 than that
from 2009 to 2019. The much larger slowdown of the
total NOx emissions reduction than that of anthropo-
genic source is caused by the difference between the
two periods for relative trends in soil and lightning
NOx emissions. The relative trends in lightning and
soil sources during 2005–2009 are −1.15% a−1 and
−8.00% a−1, respectively, and their weighted mean
is−3.95% a−1; by contrast, their combination shows
an upward relative trend of 0.60% a−1 from 2009
to 2019. The change of the directions of the relat-
ive trends largely contribute to the slowdown of total
NOx emissions reduction. The temporal variation of
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Figure 5. Relative trends since 2005 of (a) NOx emissions by sectors from Tnew, (b) tropospheric NO2 VCDs derived from OMI
and the GEOS-Chem Control, Tnew, and NO_SOIL simulations in contiguous US. (c) Is the decomposition of the variance of
total NOx emissions (black dash line) according to equation (3) with each bar showing the covariance of component and total
NOx emissions. (d) Is the decomposition of the variance of the trend in total NOx emissions (black dash line) according to
equation (4) with each bar showing the covariance of component trend and trend in total NOx emissions.

Table 1. The NOx emissions trends relative to the start year of various time periods for difference sources (units: % a−1).

2005–2019 2005–2009 2009–2019

Total −2.75± 0.20 −5.19± 0.84 −2.34± 0.32
Anthropogenic −4.12± 0.12 −5.66± 0.05 −3.71± 0.11
Lightning 1.94± 0.82 −1.15± 3.44 2.48± 1.47
Soil −1.44± 1.21 −8.00± 4.96 −1.82± 2.11
Fires 6.49± 6.01 −5.01± 21.82 14.74± 10.66

soil NOx emissions are mainly affected by soil tem-
perature and soil moisture rather than the change of
fertilizer (S1 in supplement).

In addition to linear trends, we investigate the
contribution of sectoral emissions to the inter-annual
non-linear variations of NOx emissions following
equation (3). The covariance between anthropo-
genic trend part and total NOx emissions is 55 123
(Gg N)2 (gigagram N squared), which is slightly lar-
ger than the variance of total NOx emissions of
54 877 (Gg N)2 (figure 5(c)). The sum of covariances

between sectoral trends and total NOx emissions
is 51 229 (Gg N)2, suggesting that the linear trend
among each sector can explain 93.4% of the variance
of total NOx emissions, while the non-linear inter-
annual variability explain 6.6% (figure 5(c)). Simil-
arly, following equation (4), we find that the con-
tribution of anthropogenic, soil, lightning, and fire
sources to the trend of total NOx emissions in terms of
variance are 107.60%, 5.84%, −11.35%, and 2.09%,
respectively, in contagious US, and these values are
103.9%, 11.6%,−15.8%, 0.2% inCentralUS (defined
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in figure S2(a)). Thus, the non-linear inter-annual
variability also plays an important role, and its contri-
bution is expected to increase as anthropogenic NOx

emissions decrease over time.

6. Discussion and conclusions

We revised Berkeley-Dalhousie Soil NOx Paramet-
erization (BDSNP) in GEOS-Chem by (a) allowing
the increase of soil NOx emission with temperature
up to 40 ◦C (instead of 30 ◦C in BDSNP) based
on in situ observations, and (b) using the soil tem-
perature directly from MERRA-2 (instead of indir-
ectly deriving soil temperature from air temperate
as in implemented in standard GEOS-Chem), hence
forming the new BDSINP (where ‘I’ stands for Iowa)
scheme. Compared to the GEOS-Chem simulation
with BDSNP, using BDSINP overall yields better
agreement with OMI NO2 climatology; the linear
correlation coefficients between simulated and OMI-
observed tropospheric NO2 VCDs during 2005–2019
summer increase by 0.05–0.2 over the Central US,
where soil NOx emissions dominate. Furthermore,
GEOS-Chem with BDSINP renders a tropospheric
NO2 VCDs response function to temperature that is
more consistent with the counterpart independently
derived from a combined analysis from OMI and
MERRA-2 data.

With its improved fidelity, GEOS-Chem sim-
ulation with BDSINP is used to disentangle the
covariance among different NOx emission sectors
toward understanding the slowdown of tropospheric
NO2 VCD reduction during 2009–2019. A statist-
ical framework is proposed to decompose the vari-
ance of total NOx emission into linear and non-linear
parts, and further offer a quantitative approach to
attribute each part to the linear and non-linear vari-
ation of emissions from each sector. GEOS-Chem
simulation with BDSINP is able to capture the linear
trend of OMI tropospheric NO2 VCDs, both show-
ing a decreasing trend during 2005–2009 summer and
a level-off after 2009. Indeed, in the total variance
of total NOx emissions in 2005–2019, ∼93.4% can
be explained by linear trends from each sector, in
which anthropogenic, soil, lightning, and fire sources
contribute 107.60%, 5.84%, −11.35%, and 2.09%,
respectively; the negative contribution of lightning
emissions means they are negatively correlated with
total NOx emissions, hence dampening the trend in
total NOx emissions. The remaining 6.6% is due to
non-linear inter-annual variations of each sector and
their co-variations among each sector, and such non-
linear inter-annual variations is expected to increase
in the next decade as anthropogenic emissions con-
tinue to decline while natural variations due to fires,
lightning, and soil are expected to increase. Due to
the impact of soil and lightning emissions on the total
trend and the contribution of non-linear inter-annual
variations to the variation of total NOx emissions, a

linear trend derived from the satellite observations in
rural areas would be difficult to discern the trend of
anthropogenic emissions.

This study has quantified that NOx natural
sources (soil and lightning) contribute to the slow-
down of NO2 VCDs reduction, although the roles
of anthropogenic source and atmospheric chemistry
could be important and should be investigated in
the future research. We have simulated the slowdown
of NO2 VCDs reduction starting at 2009 with the
input of the EPA’s emission inventory that presen-
ted the steady (and more or less linear) reduction
of anthropogenic NOx emissions. In the past stud-
ies, Jiang et al (2018) reported another inventory that
showed the slowdown of the reduction of anthro-
pogenic NOx emissions due to ‘the growing relative
contribution of industrial, area, and off-road mobile
sources of emissions, decreasing relative contribution
of on-road gasoline vehicles, and slower than expec-
ted decreases in on-road diesel NOx emissions’, and
used it to explain the slowdown of the reduction of
atmospheric NO2; in contrast, Silvern et al (2019)
showed that both trends of two inventories from EPA
and Jiang et al (2018) are within the uncertainty of
AQS surface NO2 trends. Therefore, which anthropo-
genic inventory is more realistic is still open to dis-
cussion. However, this study showed quantitively the
importance of soil and lightning NOx in explaining
the slowdown starting at 2009 (other than in the years
prior to or after 2009), and pointed out that the lin-
ear trend only partially explains the variance of atmo-
spheric NO2 with time. While chemistry and anthro-
pogenic emissions both play a role in the slowdown
(as pointed by Laughner and Cohen (2019) and Jiang
et al (2018)), this study reveals that the importance
of soil emissions should not be overlooked toward
a better understanding of the slowdown of atmo-
spheric NO2 reduction, especially over the Central US
where the slowdown is more significant than Eastern
or Western U.S. (figure S2). An improved soil NOx

emission scheme for the Central U.S., as developed in
this study, can be used to further detangle the relative
role of chemistry, anthropogenic emissions, and nat-
ural source emissions in the change of atmospheric
NO2 with time.

Data availability statement

The data that support the findings of this
study are openly available at the following URL/
DOI: https://disc.gsfc.nasa.gov/datasets/OMNO2_
003/summary?keywords=omi%20no2 (OMI NO2

product), https://aqs.epa.gov/aqsweb/airdata/down
load_files.html (EPA in situ NO2), http://
wiki.seas.harvard.edu/geos-chem/index.php/GEOS-
Chem_12#12.2.0 (GEOS-Chem source code and all
required emission inventories (including GFED4
and NEI2011) other inputs), www.epa.gov/air-emissi
ons-inventories/air-pollutant-emissions-trends-data
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