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Abstract: An urban heat island (UHI) is a phenomenon whereby the temperature in an urban area is
significantly warmer than it a rural area. To further advance the characterization and understanding
of UHIs within urban areas, nighttime light measured by the Day/Night Band (DNB) onboard the
Visible Infrared Imaging Radiometer Suite (VIIRS) and the land surface temperature (LST) data
derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) combined with principal
component analysis (PCA) are used here. Beijing (highly developed) and Pyongyang (less developed)
are selected as the two case studies. Linear correlation analysis is first used, with higher correlations
being found between DNB and LST data at nighttime than between population and LST data for both
cities, although none of the correlation coefficients are particularly high because of noise. Principal
component analysis (PCA), a method that can remove random noise, is used to extract more useful
information. Two types of PCA are conducted, focusing on spatial (S) and temporal (T) patterns.
The results of the S-mode PCA reveal that the typical temporal variation is a seasonal cycle for
both LST and DNB data in Beijing and Pyongyang. Furthermore, there are monthly cycles for DNB
data related to the moon phase in two cities. The T-mode PCA results show important spatial
information, while the spatial pattern of the first mode explains over 50% of the variation. This study
is among the first to demonstrate the advantages of using urban light to study the spatial variation
of urban heat, especially for nighttime urban temperatures measured from space, at the street and
neighborhood scales.

Keywords: urban heat island; Day/Night Band; principal component analysis (PCA)

1. Introduction

An urban heat island, or UHI, refers to a phenomenon whereby urban areas tend
to have higher air or surface temperatures than their surroundings, which is among the
most notable aspect of human impacts on the Earth [1–5]. The UHI effect not only alters
ecoenvironments, affecting net primary production, biodiversity, water and air quality,
and climate [6–9], but also affects human health and well-being, contributing to increases
in morbidity, mortality, and risk of violence [10–12]. These impacts are expected to be more
severe when compounded by global climate changes [13]; thus, better characterization
and understanding of the UHI effects are critically important to support future climate
mitigation actions and human adaptive strategies [3,4,14].
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The mechanism underlying UHI formation is thought to be an alteration of a bio-
physical process in nature by frequent human activities. The surface properties in rural
and urban areas are significantly different in their sensible heat dissipation, convection
efficiency, evaporative cooling, and sunlight reflection. In the daytime, reductions of the
sensible heat convection efficiency and evaporative cooling are important contributors to
the UHI effect, while at nighttime a major contributor to UHIs is the heat released from
energy use and from solar energy stored in buildings [15].

UHIs can be calculated by using either 2 m air temperatures or land surface tempera-
tures (LSTs). Because the data from the former approach suffer from the sparse distribution
of in situ weather stations, it cannot provide a full description of the spatial distribution of
UHIs. Remote sensing data hold promise for their ability to add information for spatial cov-
erage. To date, the vast majority of climatologic studies of UHIs have been performed using
satellite-derived LST data to study surface urban heat islands, as more satellite products
are available from space-borne sensors such as the NOAA Advanced Very High-Resolution
Radiometer (AVHRR) [16], Moderate Resolution Imaging Spectroradiometer (MODIS)
LST [14,17], Landsat TM/ETM+ images [2], the Defense Meteorological Satellite Program
(DMSP) [18], and Visible Infrared Imaging Radiometer Suite (VIIRS) [19]. For example,
Gallo found that the satellite-derived normalized difference vegetation index (NDVI) is
a good indicator of the differences in surface properties between the two environments
that are responsible for differences in urban and rural minimum temperatures, using data
from AVHRR for 37 cities in the USA [16]. Cao analyzed the annual mean ∆T values mea-
sured by the MODIS instrument onboard the Aqua satellite from 2003 to 2013 for 39 cities
across mainland China and found that the MODIS-derived nighttime ∆T (3.4 ± 0.2 K,
mean ± 1 s.e.) was higher than the daytime value (2.1 ± 0.3 K; p < 0.001) [20].

While the use of satellite data has been a mainstay in UHI characterization, different
methods exist. For example, a paper studying UHIs in 39 cities in mainland China selected
3 × 3 pixels from the urban core to represent the whole urban area, while surrounding
rural areas were represented by up to four sets of 3 × 3 pixels at the four sides of the
city [20]. Another study mapped UHIs from 32 cities in China using cloud-free Landsat
TM/ETM+ images at a high spatial resolution of 30 × 30 m and classified land covers
into three types (i.e., built-up land, water bodies, and other lands) using the maximum
likelihood classification approach [2]. Another study also classified the urban areas using
the city clustering algorithm for 419 global cities according to the MODIS land cover map
and defined the suburban area as the nonurban pixels (excluding water pixels) within the
ring zone around the urban area [1].

Several parameters have been found to have a close correlation with the magnitude
of a UHI, such as population. The use of an urban population as a predictor of a UHI
has been studied for a long time [4,21,22]; these studies using satellite data found that the
magnitude of a UHI on average has a positive correlation with a city population. Hung [23]
found that the magnitudes and spatial extents of UHIs in eight selected Asian megacities in
both temperate and tropical climate regions had positive correlations as high as 0.47 with
respect to the population sizes of the cities during the daytime. For 65 selected cities in
North America, the annual mean midnight temperature from the UHI was also positively
correlated with the logarithm of the population, with a coefficient of 0.54 [24]; however,
limitations to the use of population statistics as estimators of UHIs include the lack of
globally consistent statistics. Additionally, the population data given for a geographically
arbitrary boundary can be difficult to relate to the population in the immediate vicinity of
the weather stations or urban areas. Furthermore, there are no reliable or timely gridded
population data available, especially over regions that have experienced rapid urban
development, such as in China.

The aim of the present study is to investigate spatial characteristics of the nighttime
UHI in a city via combined use of the MODIS LST and VIIRS DNB products, since the
latter have been shown to be good surrogates for estimating population and economic
activity at national and sub-national scales [25]. Indeed, city light data measured using
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DMSP have been used to map urban areas from as early as 1997 [26], although the potential
to quantitively characterize the variability of the city light intensity is limited due to the
lack of calibration and low saturation limit, especially over urban cores [18]. In contrast,
the VIIRS onboard the recently launched Suomi-NPP has significant improvements over
DMSP in terms of the spatial resolution, radiometric resolution, and calibration, in turn
offering an unprecedented opportunity to map the distribution of a population [19].

This study differs from past studies in that it not only characterizes UHIs in terms
of the inner-urban scale but also analyzes the extent to which city light data at night
can explain the spatial and temporal variability of LST within UHIs, especially at night.
By focusing on the application of both DNB and LST data measured nearly simultaneously
at night, this study contrasts with the past studies on UHIs, which studied variations of
urban-area-averaged UHI effects among different cities with respect to (a) the population
or (b) NDVI. Both approaches have disadvantages for studying nighttime UHIs because
population data are often static (e.g., not updated in a timely manner by month or by
year), while the NDVI is measured during the daytime only and is not concurrent with
nighttime satellite measurements. These disadvantages may lead to uncertainties in areas
such as Beijing that have had steady and rapid urban growth in the past decades. Beijing,
the capital of China, has been expanding over the past three decades by replacing villages
and farmlands with high-rise buildings. It has a population of about 21.7 million and is
one of the most urbanized and brightest cities in China on clear nights [27]. In addition,
to provide contrast analysis for Beijing, Pyongyang is also selected here, the capital of
North Korea, with a population of 2.5 million. It is a city that is darker at night and less
developed than Beijing, and thereby will enable the analysis of the hypothesis that the
distribution and intensity of city lights can be a better surrogate for describing the UHI
effect at night. To quantitatively establish the relationships of the spatial and temporal
variability between LST and DNB, the principal component analysis (PCA) technique is
employed, which has not been used in UHI studies. The rest of this paper is organized as
follows. Section 2 introduces the multiple datasets and methods used herein. Section 3
presents the results of the PCA analysis for all datasets and anomalies. The discussion and
conclusions are provided in Section 4, respectively.

2. Materials and Methods
2.1. Datasets and Processing

Land surface temperature (LST) data were obtained from the Aqua MODIS 8-day
composite products (version 6), with a spatial resolution of 1 × 1 km (MYD11A2). The Aqua
MODIS LST data were retrieved from clear-sky (99% confidence) observations monitored at
01:30 and 13:30 local solar time, using a generalized split-window algorithm for the thermal
infrared band [28]. The retrieval of LST data was further improved by correcting noise
due to cloud contamination, topographic differences, and zenith angle changes. Wan [29]
reported that the accuracy of MODIS LST data is better than 1 K for most tested cases, while
Rigo [30] found less than a 5% difference between MODIS LSTs and in situ measurements
in urban areas. In addition, the reason why the Aqua LST images were chosen instead of
the scenes from the Terra platform for this study is that the overpass time for Aqua is much
closer to the actual occurrence of observed maximum and minimum temperatures and is
also closer (within one hour) to the VIIRS overpass time at night.

The nighttime light intensity data used here were from the Visible Infrared Imager
Radiometer Suite (VIIRS) aboard NPP, which was launched on 28 October 2011 and collects
high-quality nighttime images at a spatial resolution of 750 m from the day–night band
(DNB). The DNB has a unique ability to sense extremely low levels of visible and near-
infrared light at nighttime at levels more than 10 million times fainter than reflected
sunlight [31]. The DNB also has a measured spectral response of 400–900 nm (full width at
half maximum, with a nominal band center wavelength of 705 nm) and features several
advances to the heritage DMSP, including full calibration and improved spatial (0.74 km vs.
~3 km) and radiometric (14 bit vs. 6 bit) resolutions [32]. The VIIRS data were released by
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NOAA/NGDC in early 2013, while the daily cloud-free products used in the current study
were obtained from https://www.bou.class.noaa.gov/saa/products/welcome, accessed
on 5 July 2021.

The population density data used in the current paper were extracted from the Grid-
ded Population of the World Version 4 (GPWv4) dataset provided by the Center for
International Earth Science Information Network of Columbia University (http://sedac.
ciesin.columbia.edu/data/collection/gpw-v4, accessed on 5 July 2021) [33]. This dataset is
based on Population and Housing Censuses, while the product used here is Population
Density v4.10 2015, with a spatial resolution of 30 arc-seconds (approximately 1 km at
the equator) [33]. The fourth version of GPW (GPWv4) is a raster data collection of glob-
ally integrated national population data from the 2010 round of Population and Housing
Censuses, which occurred between 2005 and 2014. The input data are extrapolated as
a function of time to produce population estimates for the years 2000, 2005, 2010, 2015,
and 2020, which may have large uncertainty in reflecting urban growth. In the current
work, gridded population data from 2015 were selected.

MODIS LST and VIIRS data from 2014 to 2016 were re-gridded to a resolution of
2 km, while population data represent the statistical average for 2015 resampled to 2 km.
Because LST data are 8-day composite products, VIIRS data here were also processed for
8-day intervals.

2.2. Analysis Method

Linear regression was used firstly to reveal the relationships between LST, DNB,
and population data. Since LST, DNB, and population data are all gridded data, the correla-
tion coefficients of LSTs between DNB and population data on all grids were first calculated.
The calculations were verified by comparing the results between those using the inter-
nal functions in Python and those using the Pearson correlation coefficient. In addition,
an advanced statistical technique, principal component analysis (PCA), was used to find
the major spatial and temporal variation patterns for nighttime LST and DNB. PCA was
invented in 1901 by Karl Pearson [34]. It is a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set
of values of linearly uncorrelated variables called principal components. PCA has been
traditionally applied to climate variables such as temperature to examine climate modes
by filtering the noise into a series of high-order modes while separating signals in the
dominant modes [35]; however, researchers have found that it is also suitable for other
variables related to air pollution. For example, Li et al. analyzed the spatial and temporal
patterns of aerosol optical depth in land and ocean areas with data taken from several
different platforms [36].

In addition, the vast majority of applications in meteorology are space–time studies.
In such studies, a decision must be made on whether the data will be expressed in an S- or
T-mode approach [37], where S and T stand for space and time, respectively. The S-mode
treats the time series (m times) of a geophysical parameter at each of the n stations (or grid
points) as a data vector in the analysis; n vectors of these variables are then arranged as one
data matrix because the domain of interest is the geographical area or space. Conversely,
the T-mode treats the spatial field, defined by all n stations (or grid points) for a given
time, as one data vector; therefore, data vectors for each of the m time observations can
form a data matrix, while the domain of interest is time. If each column of the input data
matrix X is treated as one data vector for the variable of interest, X has dimensions of
M (rows) × N (columns) for the S-mode representation (hereafter XS) and N × M for the
T-mode (XT). As a consequence of these definitions, S-mode analysis results in an N × N
similarity matrix, as the analysis investigates how temporal changes vary with space (e.g.,
how the dominant temporal mode is distributed as a function in space), whereas the
T-mode results in an M × M similarity matrix, as the analysis investigates how spatial
changes vary with time (e.g., how the dominant spatial mode is distributed as a function

https://www.bou.class.noaa.gov/saa/products/welcome
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of time) [38]. The next decision is to select an appropriate similarity matrix. The most
common approaches use the covariance or correlation dispersion matrix.

Taking the S-mode of LST data in Beijing as an example, LST data fields can be
represented by X with a size of M × N, while each pixel in an observation is a variable,
so M (number of times) is the number of observations and N (number of features) is the
number of pixels. Then, the PCA is calculated by determining the eigenvectors of the
covariance matrix C, which are:

C =
1

M − 1
XTX (1)

Here, C is a real, positive, semidefinite N × N matrix, which can be written as:

C = EΛET (2)

where E is an orthogonal matrix and N × N dimensions indicate eigenvectors (called PC
loadings), in which each column is one eigenvector. The elements (λi) in the diagonal
matrix Λ are eigenvalues.

Consequently, each PC score can be obtained by projecting the original data with
respect to the corresponding PC loading, which can be calculated by:

P = XE (3)

where P is an M × N matrix in which the columns are the N PCs, known as PC scores;
therefore, P and E satisfy:

X = PET (4)

Using (1), (2), and (4), we can get:

Λ =
1

M − 1
PT P (5)

Since Λ is diagonal and PCs are mutually orthogonal, the eigenvalues are equal to
their variances. Finally, the explanation variance corresponding to each PC can be obtained
from:

Vk =
∑k

i=1 λi

∑N
i=1 λi

(6)

3. Results
3.1. Spatial Distribution of LST, DNB, and Population Data

To better understand the spatial patterns of LST, DNB, and population data in Bei-
jing and Pyongyang, an elevation map is presented in Figure 1a,e. Clearly, Beijing is
surrounded by mountains in the northwest, while Pyongyang is flat compared to Beijing.
Figure 1 also shows the spatial distribution of the annual mean nighttime LST (Figure 1b,f),
DNB (Figure 1c,g), and population (Figure 1d,h) data in Beijing and Pyongyang from 2014
to 2016. It is obvious that nighttime LST data in the Beijing urban core give an annual
average highest temperature around 10 ◦C. The farther from the urban core, the lower the
LSTs; temperatures as low as 0–2 ◦C can be found in the northwestern mountainous areas
of the city boundaries. The LST in Pyongyang is cooler than in Beijing, while the LST in
the urban core is close to 7 ◦C. Consistently, the largest DNB values are located in urban
areas; they are usually higher than 50 nW/(cm2str) in Beijing, while the largest value in
the Pyongyang urban core is only 50 nW/(cm2str). The contrast of DNB radiance intensity
levels between Beijing and Pyongyang reflects the differences in modernization and urban
development between these two cities. The spatial population patterns also differ a lot
between these two cities. The population is more densely distributed in the urban core,
while the population in Pyongyang is somewhat dispersed. In the vast majority of the
literature on UHIs, population is often used as a predicator; however, it is obvious that
DNB is a more direct indicator of a UHI because of the high similarities between LST and



Remote Sens. 2021, 13, 3180 6 of 19

DNB data, especially for Beijing. It is worth noting that there is an international airport in
the northeast of Beijing (marked by a red rectangle), where the DNB value is much higher
than in other regions. The airport can be easily distinguished using the DNB data but not
the population data.
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Figure 1. The elevation map (a), spatial distribution of averaged nighttime LSTs for 2014–2016 (b), visible light intensity (c),
and population data (d) for Beijing, the same aspects are shown for Pyongyang (e–h), (i) is the administrative map. The red
box indicates Beijing Capital Airport.

3.2. The Relationships between LST, DNB, and Population Data

DNB values at night can be a proxy for human activities and energy use at night, which
may have a close relationship with nighttime LST. To test this hypothesis, nighttime LST
data were used here to explore the correlations of LST with DNB intensity and population.
The correlation between nighttime LST and nighttime DNB intensity in Beijing is shown in
Figure 2a. Taking all of the grid boxes into consideration, their linear correlation coefficient
is 0.41. Beijing is a city with many mountains in the northwest, where both nighttime
temperature and night light are very low. In the meantime, there are also some pixels
corresponding to high temperature but low night light, which lie in the southwest of Beijing
and may have a relationship with the highways in this area. It is obvious that when the
night light intensity is less than 50 nW/(cm2str), the distribution of the surface temperature
is irregular, appearing as both low and high ground temperatures. After removing these
outliers, pixels with night light intensity values larger than 50 nW/(cm2str) and smaller
than 300 nW/(cm2str) were selected and are plotted in Figure 2b. It is obvious that the
correlation coefficient between nighttime temperature and night light improves up to 0.76,
with statistically significant p values being lower than 0.001. Population also correlates very
highly with nighttime temperature. Similar to nightlight, it is evident that both higher and
lower ground temperatures appear in areas with low population density. Figure 2c shows
all pixels, with a correlation coefficient of 0.48, while Figure 2d shows pixels where the
population density is larger than 4000 people per pixel, for which the correlation coefficient
improves to 0.64; therefore, nighttime LST performs slightly better than population in
describing the urban nighttime temperature in Beijing.

Similar to the analysis for Beijing, Figure 3 shows the linear correlation of LST with
the DNB and population data in Pyongyang. Taking all pixels into consideration, the corre-
lation coefficient between the LST and population data is lower than that between the LST
and DNB data. After setting the threshold (light intensity values larger than 10 nW/(cm2str)
and the population density is larger than 2000 people per pixel) to concentrate on urban
centers, the correlation coefficient between the LST and DNB data increases to 0.51, while
the correlation coefficient between the LST and population data decreases to 0.16; therefore,
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this high correlation contrast in Pyongyang also highlights the advantage of using DNB to
study LST.
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3.3. S-Mode PCA of Nighttime LST and DNB Data in Beijing and Pyongyang

LST and DNB data were analyzed by means of principal components analysis (PCA)
in S-Mode (correlation between temporal series at each pixel) and in T-Mode (correla-
tion between fields at each observation time). The two different kinds of analysis show
how these approaches reveal different results. The results of the S-mode PCA are firstly
presented in this section.

Figure 4 shows the S-mode PCA results for LST data. Figure 4a shows the explanation
ratio for all PC loadings (PCLs), while Figure 4b shows the corresponding PC scores (PCS)
for the first two PCLs. Figure 4c, d shows the spatial patterns for the first two PCLs.
The PCL (PC loading) indicates the eigenvectors, while the PC score can be obtained by
projecting the original data with respect to the corresponding PC loading. In other words,
PCL is the main distribution of the variables under study and PCS is the changing curve
corresponding to the distribution of the variable. The first PCL explains over 99% of the
spatial variance, while the second PCL only explains 0.2%. PCS1 in Figure 4b shows an
obvious seasonal cycle, and it was found that the deep blue areas located in Yanqing,
Shunyi, and Daxing districts responded strongly to the seasonal cycle. The Beijing urban
area responses were weaker, with the response for the mountainous area in northwest
area being the weakest. There was no obvious cycle in PCS2. We can conclude that the
seasonal cycle is the most representative main pattern for LST data. Figure 5 shows the
S-mode PCA results for DNB data. The first PCL explains 75.7% of the variance, while the
second explains only 5.5%. PCS1 shows an obvious seasonal cycle, while PCS2 shows a
monthly cycle. Similar to the S-mode LST results, the seasonal cycle plays a dominant role
in the S-mode DNB results. This may be related to the seasonal cycle of aerosol optical
depths [39,40]. In addition, moonlight also has a great effect on the detection of the DNB,
as presented in PCS2. There are about 12 peaks in each year. The S-mode results for LST and
DNB data in Pyongyang are similar to those for Beijing (Figure 6). The first PCL explains
over 99% of the variance and the time series shows a significant seasonal cycle. For DNB
data, the first PCL reflects the natural variance of the moon phase. Comparing PCS1 from
the DNB data in Beijing and Pyongyang, it is interesting that PCS1 for Pyongyang seems to
be more regular than PCS1 of Beijing. It is suspected that this may have something to do
with the different levels of pollution in the two cities.
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3.4. T-Mode PCA of Nighttime LST and DNB Data in Beijing and Pyongyang

LST temporal patterns can be described in terms of the significant PCLs in the T-mode
PCA when focusing on the analysis of key features of the temporal variations of LST.
The first two PCLs explained 81.6% of the total variance. Figure 7a shows the explanation
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ratio for each mode. The first LST pattern (PCL1) explains 71.6% of the total variance, while
the second LST pattern (PCL2) explains 10.0%. Differing from Figure 4b, Figure 7b shows
the first two PCLs, which characterize representative time series, while Figure 7c, d shows
the distribution of the first PC scores. Figures 7c,d show the spatial patterns for PCL1 and
PCL2, respectively. PCL1 shows that the largest value was located in the urban core, while
lowest value appeared in the mountainous area of the city. PCL1 in Figure 7b shows an
irregular fluctuation, showing that there is always an urban heat island pattern all year
around when combined with the spatial pattern in Figure 7c. PCL2 shows a significant
seasonal cycle and positive values mostly located in the mountainous areas, such as the
Fangshan district in southwestern Beijing, while negative values are located in areas where
human activities are frequent, such as Shunyi and Daxing districts in the northeastern
and southern parts of Beijing, respectively. Combining Figure 7b,d demonstrates that
when human activity is more active, the summer temperature increases more drastically.
In addition, it is obvious that the variance in the urban core is very small in PCS2, which
means that the urban core area is less sensitive to natural seasonal variance.
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Figure 7. The T-mode PCA results for Beijing surface temperature data during 2014–2016: (a) the
variance explained by the principal covariance analysis (PCA) modes for surface temperature; (b) the
PC time series for the first two modes (the red vertical lines are used to divide data into different
years); (c,d) the spatial patterns of the first two modes for PCA results.

Figure 8 shows the PCA results for DNB data. The first PCL for DNB data explains
95.6% of the total variance, while the second PCL explains 0.5%. Figure 8b shows the
first two PCLs, while Figures 8c and 8d show the spatial patterns for PCL1 and PCL2,
respectively. The largest value was located in Beijing airport and higher values appeared
in the urban areas of this city, as shown in Figure 8c. The time series (PCL1) in Figure 8b
shows a seasonal cycle, where DNB data are a little darker in summer, which may have
been related to higher aerosol optical depths in summer. Che showed high AODs from June
to August in Beijing, reflecting the hygroscopic growth of fine particles and the conversion
of gases to particles over a broad area [41]. Furthermore, PCL2 shows a significant annual
trend and positive signals mostly located in the airport area, while negative signals can
be seen in areas where human activities are frequent. Combined with the PCL2 and
PCS2, the deep blue spot indicates that DNB values are increasing in areas with frequent
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human activity and rapid development, such as Daxing, Shunyi, and Yanqing districts (the
topographic map and DNB samples of Beijing are shown in Figure 1).
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Figure 8. The T-mode PCA results for Beijing DNB data during 2014–2016, (a) the variance explained by the principal
covariance analysis (PCA) modes for surface temperatures, (b) the PC time series for the first two modes (the red vertical
lines are used to divide data into different years, (c,d) the spatial patterns of the first two modes for PCA results.

Since the explain ratios for LST and DNB data in mode 1 are all greater than 50%,
the original can be reconstructed by multiplying the PCL and PCS in mode 1. The main
characteristics of the original data can be more clearly reflected in the reconstructed data.
Taking the first mode of LST and DNB data for reconstruction, we found that the correlation
between reconstructed LST and DNB data was 0.56, which was improved a lot compared
with the first value of 0.41 shown in Figure 3. This fully proves that the spatial patterns for
LST and DNB data have high similarity. T-mode PCA can extract the majority of useful
information. The correlation between reconstructed mode 1 LST and population data was
also analyzed and the correlation coefficient was increased from 0.36 to 0.52 (Figure 9).

For Pyongyang in Figure 10, the T-mode PCA results for LST data show that there
is a seasonal cycle and the hot areas are distributed in urban areas, as shown in PCS1.
Simultaneously, there are some peaks in PCL2, which mostly happen in summer. These
peaks may correspond to biomass burning. A seasonal cycle also exists in the PCL1 for T-
mode PCA results for DNB data; however, there was no annual trend for DNB data, which
means that we could not find an obvious developing signal for Pyongyang. Using PCL1
and PCS1 to reconstruct LST and DNB, the correlation coefficient between LST and DNB
increased from 0.35 to 0.38. Similarly, the correlation of reconstructed LST and population
data was also analyzed and the coefficient increased from 0.29 to 0.32 (Figure 11). To better
illustrate the data processing and analysis, a structure diagram is shown in Figure 12.
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Figure 10. The T-mode PCA results for Pyongyang LST (the first four panels) and DNB (the last four panels) data during
2014–2016. (a) the variance explained by the principal covariance analysis (PCA) modes for LST, (b) the PC time series for
the first two modes of LST (the red vertical lines are used to divide data into different years, (c,d) the spatial patterns of the
first two modes for LST PCA results, (e) the variance explained by the principal covariance analysis (PCA) modes for DNB,
(f) the PC time series for the first two modes of DNB, (g,h) the spatial patterns of the first two modes for the DNB PCA
results.
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4. Discussion

Beijing and Pyongyang are the capitals of China and North Korea, respectively. Beijing
has undergone tremendous changes in the past 30 years and the speed of urbanization
has been very fast. Pyongyang, on the other hand, has developed quite a lot slower than
Beijing due to policy reasons. Nighttime lights are usually used to infer the accuracy of the
official gross domestic product (GDP). This is because nighttime lights reflect real economic
activities, meaning they are correlated with the true GDP. Beijing has a population of about
21.7 million and is one of the most urbanized and brightest cities in China on clear nights,
while Pyongyang has a population of only 2.5 million. Human activities have significantly
altered the distribution of nighttime surface temperatures. Areas with more human activity
tend to have higher surface temperatures.

In this study, 8-day-interval nighttime LST data from Aqua, 750-m-resolution DNB
data from the VIIRS, and gridded population data were used here to explore which factors
can indicate the variations in nighttime LST. Linear correlation analysis showed that DNB
has a closer correlation to nighttime LST data compared with population data. Because
there was so much noise in the linear analysis, which reduced the correlation coefficient,
PCA, a method used to extract main information, was used to investigate the relationships
between LST, DNB, and population data. There are two types of PCA, namely S-mode PCA
and T-mode PCA. Different types of PCA can lead to different results. S-mode PCA can
obtain typical time series, while T-mode PCA achieves typical spatial patterns. The PCS1
results for LST in Beijing and Pyongyang showed significant seasonal cycles; however,
the PCS1 results for DNB data in Beijing showed an obvious seasonal cycle, while PCS2
showed a monthly cycle, which may have been related to the moon phase. For Pyongyang,
the PCS1 results for the DNB data reflected seasonal and monthly cycles at the same time,
meaning the pollution level in Pyongyang is lower than in Beijing. T-mode PCA captured
the spatial information well, whereby the first mode explained over 50% of the variance
in both LST and DNB data. Using the first mode to reconstruct LST and DNB data for
Beijing, we found that the correlation coefficient between reconstructed LST and DNB data
increased from 0.41 in the linear analysis to 0.56. Furthermore, the correlation coefficient
between reconstructed LST and population data increased from 0.36 in the linear analysis
to 0.52. The same calculation was also applied in Pyongyang and the results showed that
the correlation coefficient for reconstructed LST and DNB increased from 0.35 in the linear
analysis to 0.38, while the correlation coefficient between reconstructed LST and population
data increased from 0.29 in the linear analysis to 0.32. Combined with the second spatial
pattern and time series for DNB data in Beijing, it was found that the districts where DNB
values increased were built-up, with population levels also showing increasing trends.
This fully demonstrates that DNB data are well suited for studying the spatial variation of
urban heat islands, especially for nighttime urban temperatures taken from space, at the
street and neighborhood scales.

The main contribution of this work was the use of the highest-resolution nighttime
light data to explore the distribution of nighttime surface temperatures, meaning tempera-
ture data could be seen in more detail. Meanwhile, T-mode PCA and S-mode PCA were
used for the first time to better analyze the temporal and spatial variations in nighttime
light and nighttime surface temperature data, offering a new way to explore the urban
heat island effect. In the past studies on urban heat, the population distribution has often
been used; however, we show here that the light distribution can better reflect the spatial
distribution of urban heat, as the population distribution cannot be tracked on a daily or
monthly basis from space. The contrast between Beijing and Pyongyang was used here to
highlight the value of using city light to study urban heat (rather than using population).
Pyongyang has a sizeable population, although the economy is much less developed com-
pared to Beijing. To our knowledge, this paper is among the first to use city light data in an
analysis of urban heat distribution.
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