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Satellite retrievals of columnar nitrogen dioxide (NO2) are essential for the characterization of nitrogen oxides (NOx) processes
and impacts. The requirements of modeled a priori profiles present an outstanding bottleneck in operational satellite NO2
retrievals. In this work, we instead use neural network (NN) models trained from over 360,000 radiative transfer (RT)
simulations to translate satellite radiances across 390-495 nm to total NO2 vertical column (NO2C). Despite the wide variability
of the many input parameters in the RT simulations, only a small number of key variables were found essential to the accurate
prediction of NO2C, including observing angles, surface reflectivity and altitude, and several key principal component scores of
the radiances. In addition to the NO2C, the NN training and cross-validation experiments show that the wider retrieval
window allows some information about the vertical distribution to be retrieved (e.g., extending the rightmost wavelength from
465 to 495 nm decreases the root-mean-square-error by 0.75%) under high-NO2C conditions. Applying to four months of
TROPOMI data, the trained NN model shows strong ability to reproduce the NO2C observed by the ground-based Pandonia
Global Network. The coefficient of determination (R2, 0.75) and normalized mean bias (NMB, -33%) are competitive with the
level 2 operational TROPOMI product (R2 = 0:77, NMB = −29%) over clear (geometric cloud fraction < 0:2) and polluted
(NO2C ≥ 7:5 × 1015 molecules/cm2) regions. The NN retrieval approach is ~12 times faster than predictions using high spatial
resolution (~3 km) a priori profiles from chemical transport modeling, which is especially attractive to the handling of large
volume satellite data.
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1. Introduction

Nitrogen oxides (NOx, comprising NO and NO2) fuel the
formation of secondary aerosols [1–3] and ozone [4–6], with
broad implications for tropospheric composition, air quality,
nitrogen deposition, and climate change [7–9]. Nitrogen
dioxide (NO2) itself is a major pollutant, with elevated con-
centration causing adverse respiratory diseases [10, 11].
Retrievals of NO2 from satellite ultraviolet-visible (UV-Vis)
spectral measurements are powerful tools for the characteri-
zation of the spatiotemporal variation of NOx. Benchmarked
by the Global Ozone Monitoring Experiment (GOME)
instrument onboard the European Remote Sensing Satellite
(ERS-2), global monitoring of tropospheric NO2 has been
possible since 1995 [12–14], which boosted the investigations
of spatial variability and long-term changes of NO2 abun-
dance [15, 16], various NOx emission from anthropogenic
[17–21] and natural sources [22, 23], NOx lifetime [24, 25],
etc. Moreover, a global geostationary constellation of NO2
monitoring is emerging [26–28], with hourly and km-scale
monitoring capabilities to further facilitate the investigation
of diurnal variability of NOx-relevant processes.

With this promise, retrieval algorithms have been devel-
oped and continuously improved to translate the rapidly
growing volume (terabytes per day) of earth observation
data to physically relevant information (e.g., NO2 abun-
dance). The majority of existing tropospheric NO2 retrievals
include three steps: (1) NO2 slant column density (SCD)
determination from radiances through spectral fitting [29,
30]; (2) stratospheric-tropospheric component separation
[31–33], and (3) air mass factor (AMF) and vertical column
density (VCD) calculation [12, 34]. Large uncertainties exist
in such retrievals as exemplified by the significant discrepan-
cies among different products from the same sensor, e.g., the
ozone monitoring instrument (OMI). Lamsal et al. [35]
found that the standard OMI NO2 product is 22% lower in
winter but 42% higher in summer than the DOMINO prod-
uct [36, 37] over North America, although both were derived
from the same SCDs. Regional OMI research products such
as the BEHR [38] over North America and POMINO [39]
over East Asia also exhibit systematic differences against
global operational products due mainly to their locally
refined AMF calculations. The AMF [34, 38] relates the
physically meaningful VCD with the optically represented
SCD (i.e., the total NO2 amount along all light beam paths
received by the satellite instrument). The AMF is the largest
source of VCD retrieval errors, containing a structural
uncertainty estimated to be in the range of 30-50%, depen-
dent on the representation and treatments of surface reflec-
tivity, clouds, aerosols, and NO2 vertical profile shape during
the retrieval [13, 40, 41]. Higher-resolution inputs of these
parameters in regional research products were found to alter
the AMF and the retrieved VCD by up to 40-80%, with bet-
ter resolved NO2 spatial gradients and local enhancements
[38, 39, 42–44]. Valin et al. [45] showed that a model resolu-
tion of <12 km is needed to resolve accurate NO2 gradients
(as well as the a priori profile) around area sources such as
cities (~1 km for point sources such as power plants). But a
typical trade-off to provide such high-resolution inputs is

the computational resources required, especially in terms
of the a priori NO2 vertical profiles which require the use
of a chemical transport model.

Global operational products currently adopt profiles
simulated at mesoscales (~1° or ~100 km), which were close
to the field of view (FOV) of early sensors like GOME
(40 × 320 km2), but are now over 30 times larger than the
nadir FOVs of contemporary instruments such as OMI
(13 × 24 km2) and the TROPOspheric Monitoring Instru-
ment (TROPOMI, 5:5 × 3:5 km2). With typical computation
environments (e.g., 1 CPU with ~30 cores), the wall time
needed to perform such global simulations for 1 month is
2-3 days, which scales as the square of the horizontal resolu-
tion [46], making long-term global simulation at local scale
(~3 km) almost infeasible. Moreover, the simulated NO2
profiles also suffer from errors in the model inputs (e.g.,
emission inventory) and assumptions (e.g., chemical mecha-
nism). In addition, using climatological monthly model
profiles was commonly adopted in operational retrievals
[33, 44]. Laughner et al. [47] showed that the NO2 VCDs
derived from profiles simulated for the exact day could differ
by up to 40% due mainly to day-to-day changes in meteorol-
ogy. For another instance, lightning NOx is critical for ozone
production in the upper troposphere, while current model
parameterization is not adequate to correctly simulate light-
ning strength [48]. Local VCD errors of up to 100% [49, 50]
were reported due to simulated profiles with modeled light-
ning, limiting the consequent application of these retrievals
to constrain lightning. Finally, the retrieved NO2 VCDs also
further impact inverse modeling and data assimilation. A
recent study suggested that inconsistent modeled profiles
used in the retrieval and in the assimilation alone could
increase the a posteriori NOx emission errors by up to 30%
over polluted regions [51].

Satellite-observed radiances from nadir observations
inherently contain information about the vertical distribu-
tion of species, provided that a broader spectral range is
used, and the gaseous absorption is strong enough. The the-
oretical foundation of such vertical sensitivity based on radi-
ative transfer (RT) was introduced in previous studies
[52–55]. Briefly, the atmospheric scattering of molecules
and aerosols decreases as a (up to -4th) power function of
the wavelength in the UV-Vis range, making the sensitivity
(e.g., weighting function or AMF) of spectral radiances to
gas absorption also an inverse function of wavelength. Rela-
tive to higher altitudes in the atmosphere, gases at lower alti-
tudes absorb the photons that are transmitted more strongly
compared to scattering, yielding stronger spectral contrast of
the AMF. This spectral contrast is more pronounced
between more distant wavelengths, and is further enhanced
by the temperature (i.e., altitude) dependency of NO2
absorption strength across the UV-Vis [55]. Physics-based
retrievals that exploit these underlying mechanisms have
been applied to the retrievals of ozone [54] and SO2 [52,
53] vertical distributions. For NO2, such physics-based
approaches have also been developed [56] for its column
retrieval; however, they still relied on preassumed profile
shapes. A recent sensitivity study based on the optimal
estimation (OE) framework [57] suggested that physical
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retrieval of tropospheric NO2 vertical distribution from sat-
ellite measurements is only possible under highly polluted
conditions (e.g., boundary layer NO2column > 2 × 1016 mol-
ecules/cm2) where the information content (i.e., degree of
freedom for signal) could reach 2. This low information con-
tent plus the high computational expense over a broader
spectral range (i.e., 320-500 nm) discouraged attempts to
perform purely OE-based determination of NO2 VCD from
satellite radiances. It is still unclear whether the dependence
on a priori profiles of NO2 retrievals could be loosened and
whether a direct inference of NO2 VCD from satellite
observed radiance is achievable, amid the uncertainty of
a priori profiles from models.

As an emerging and increasingly attractive tool to pre-
dict relevant parameters directly and efficiently from earth
observation data [58], machine learning could be an alterna-
tive to further investigate this question. Although the
interpretability of the prediction model is less than
physics-based models, its computational efficiency is espe-
cially welcomed by the handling of dense satellite observa-
tions, and the model accuracy could be continuously
improved by regular updates (iteration) including newly
available training data. Capable of resembling underlying
nonlinear relationship between relevant variables, the neural
network (NN) approach has been applied widely to expedite
forward RT modeling [59, 60] and inverse retrieval processes
[61–64] by linking satellite signals directly with relevant geo-
physical parameters using the large volume of a training
dataset.

In this paper, we describe the development of an
NN-based retrieval approach to directly determine the
total vertical column of NO2 from UV-Vis radiances, using
TROPOMI observations as a testbed. We show for the first
time that a direct inference of NO2 column without presimu-
lated a priori NO2 vertical profiles has similar data quality
compared to operational global retrievals (i.e., the standard
TROPOMI products), under clear-sky and polluted condi-
tions (i.e., total NO2 ≥ 7:5 × 1015 molecules/cm2 and cloud
fraction < 0:2). We built the NN model capabilities based
on a synthetic radiance dataset that spans realistic clear-sky
scenarios of observing conditions. Section 2 provides a
detailed discussion of retrieval sensitivities. We then applied
the NN prediction model to four months of TROPOMI data
(Section 3) and performed a comparative and evaluation
analysis with the standard products and ground-based mea-
surements. Section 4 summarizes the discussion and points
to various pathways for future research.

2. Neural Network-Based NO2 Column
Retrieval Model

The NN model (box 2 of Figure 1) to predict NO2 column
density from satellite radiances was generated from a large
volume (>360,000 samples) of simulated spectra that span
a wide range of realistic observing scenarios (Section 2.1
and box 1 of Figure 1). The model performance was evalu-
ated via a cross-validation approach (Section 2.2 and box 3
of Figure 1).

2.1. RT Simulation. We used the UNified Linearized Vector
Radiative Transfer Model (UNL-VRTM) [65, 66] to generate
a synthetic dataset of radiances observed by a satellite
instrument (i.e., TROPOMI) and the corresponding input
variables (box 1 of Figure 1). UNL-VRTM facilitates a user-
friendly interface for modifying surface and atmospheric
optical parameters, which were fed to the Vector Linearized
Discrete Ordinate Radiative Transfer (VLIDORT) [67] RT
code to calculate the top of atmosphere (TOA) radiances.
UNL-VRTM has been widely used for aerosol retrieval and
relevant sensitivity studies based on both band-averaged
and hyperspectral radiances [68–71]. To exploit the full
information possible for NO2 retrieval in the UV-Vis mea-
surements, we simulated radiances between 320 and
500 nm, with an interval of 0.01 nm. The simulations were
run in scalar-only mode to accelerate the calculation by an
order of magnitude across >18,000 wavelengths. Polarization
correction factors for each wavelength were interpolated
from an additional vector-mode run at 21 wavelengths fol-
lowing [54]. The simulated radiances (I) were then convo-
luted with the TROPOMI spectral respond function (SRF),
normalized to solar irradiance (E), and then, recorded as
log base values, to mimic the hyperspectral observations
(Lλ = ln ðIλ/EλÞ) at ~0.2 nm spectral resolution in conven-
tional retrievals [29, 62, 72].

The input variables of UNL-VRTM in each simulation
varied randomly (sampled from uniform distributions)
within their realistic ranges according to Table 1. First, solar
and satellite position angles were varied in the simulations:
solar zenith angle (SZA), satellite/view zenith angle (VZA),
and relative azimuth angle (RAA). Surface reflectance spec-
tra (Rλ) were randomly obtained from a land climatological
dataset as a combination of MERIS and OMI (Figure S1).
The whole atmosphere from sea level to 80 km (0.01 hpa)
was divided into 47 layers (30 layers below the assumed
tropopause at 12 km) following the hybrid sigma-pressure
vertical grid setting in the GEOS-Chem model [51], with
the temperature and pressure in each layer consistent with
the US standard (1976) atmosphere. The actual layer
number in each simulation depended on the surface
altitude (Hs) inputs (varied between 0 and 8 km). For
aerosols, the size/microphysical properties (water-soluble
aerosols from the OPAC dataset [73]) and vertical profile
(exponentially decreasing with a scale height at 1 km) were
fixed while the optical depth varies in each simulation.
Apart from NO2, vertical columns (Got) of four additional
absorbing gases (SO2, O3, H2O, and CH2O) also varied
with their fixed profile shapes [74] from the US standard
(1976) atmosphere encoded in the UNL-VRTM. The O2-
O2 absorption was also included and implicitly considered
based on the pressure in each layer. Raman rotational
scattering (Ring effect) [75] is not considered during the
RT simulation for this wide spectrum, and we applied the
Ring correction (Section 3.1) to ensure consistently Ring-
free Lλ in both the simulation and observation.

The NO2 vertical profile is modeled as composed of two
parts: a stratospheric component with fixed vertical distribu-
tion following the US standard profile shape between 12 and
80 km, and a tropospheric component with a quasi-Gaussian
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shape [52, 53] between the surface and tropopause (fixed at
12 km). The half width of the tropospheric plume profile is a
random number between 0.4 and 1 km for each case. The
distribution of NO2 abundance over different regions is

strongly uneven, and heavy pollution (i.e., tropospheric N
O2 > 1016molecules/cm2) is more likely to occur over urban
areas and near the ground [76]. To ensure representative-
ness, the whole training dataset was also separately
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Figure 1: Illustration of the neural network model generation to predict total NO2 column density from satellite radiances. Box 1 includes
the details about relevant variables driving the RT simulations (Section 2.1), with parameters in dark blue (red) being potential predictors
(predictands) in the NN model; box 2 shows the structure of the NN model; and box 3 presents the conceptual illustration of cross-
validation. The total NO2 column (NO2C) is the sum of stratospheric (SC) and tropospheric (TC) column. For Lλ and Rλ, the actual
inputs in the NN are their associated PC scores (Sections 2.2 and 3.2). Other absorption gases (Got) and aerosol optical depth (AOD)
varied according to Table 1 in the simulation while are not included as predictors in the final NN model according to sensitivity tests in
Section 2.4.

Table 1: Input variables and their corresponding data ranges or sources in the RT simulation (DU is Dobson unit, 1DU = 2:69 × 1016
molecules/cm2). Each simulation adopts a random number for each variable. See Section 2.1 and Figure 1 for the definition of each
abbreviated variable.

Variable group NN variable Range (source) Notes

GEO

SZA 0–75°

VZA 0–75°

RAA 0–180°

Rλ 3 PC scores From climatology (Figure S1)

Hs Hs 0–8 km

See Figure S2 about four sub-groups

NO2

TC 0-2 DU

TH 0–max(10, 12-Hs) km

SC 0.01–0.2 DU

Profile fixed as in US standard (1976)
Got

O3 200–500 DU

SO2 0–50 DU

HCHO 0–2 DU

H2O 5 – 50ð Þ × 105 DU

Aerosols AOD (550 nm) 0-1
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generated for four subgroups (Figure S2), as defined based
on specific ranges of tropospheric NO2 column (TC) and
centroid height (TH), as well as Hs. Specifically, the
simulations were dominated by urban polluted (low Hs,
low TH, and high TC) and remote clean (random Hs and
TH, low TC) scenarios, plus some elevated NO2
enhancements due to lightning and biomass burning
(random Hs, high TH, and high TC), and a small number
of polluted cases over high altitude surface (high Hs, low
TH, and high TC). TH, TC, and Hs varied randomly
within the specific range (Table 1) in each subgroup.

Our training set contains 51703 samples with Hs > 2 km
and bright surface (Rλ > 0:6 with <3% spectral variability),
which could represent high-altitude snow or cloud surfaces.
We directly use the NN from the whole training set (Section
2.2) for retrieving above-cloud NO2C under fully cloudy
assumptions (see details in Section 3.2). As this study was
not designed to perform retrievals for cloudy scenes where
NO2 retrievals are highly uncertain, and we focus on dis-
cussing the performance of retrievals under clear-sky condi-
tions (Sections 3.3 and 3.4), the lack of cloudy-scene specific
retrievals does not alter the conclusions of this paper. Future
efforts to improve the treatment of cloudy scenes in the RT
simulations and NN retrievals are needed to assess the abil-
ity of the NN to describe these scenes (see also discussion in
Section 4).

2.2. NN Training and Evaluation. The overall structure of
the feed-forward NN used in this study [77] is defined in
the box 2 of Figure 1, which composes of an input layer of
predictors (dark blue), an output layer of predictands (red),
and several hidden layers to mimic their relationship. Each
hidden layer includes several computational nodes (neurons,
N), and each neuron is modeled as a nonlinear activation
function (f ) of the weighted (the weights denoted as w)
sum of all neurons in the previous layer plus an offset (b):

Nj
i+1 = f 〠

k

wj,k
i,i+1N

k
i + bji,i+1

 !
, ð1Þ

where i is the layer index and k ðjÞ is the node index in layer
i ði + 1Þ. The training and application of the NN was done
using the Python scikit-learn (sklearn. neural_network.ML-
PRegressor) package [78], which attempts to optimize these
weights (w) and offsets (b) to minimize the least square dif-
ference between predicted and true predictands in the train-
ing data. Our numeric tests favored an NN configuration of
two hidden layers, with 16 nodes in the first layer and 8
nodes in the second, that had reached the optimal model
prediction power. Further increasing node or layer numbers
did not improve the performance.

We define the predictand in our study as the total NO2
vertical column (NO2C = TC + SC) in the training dataset,
reflecting the unknown NO2 stratospheric/tropospheric sep-
aration in real-world retrievals. Trials on retrieving SC or TC
were also tested. The performance was significantly weaker,
reflecting the low information content about vertical
location of NO2 in most of the satellite observed radiances.

Further processing of the retrieved NO2C using various
available algorithms [31, 32] could separate the stratospheric
and tropospheric component, which is beyond the scope of
this study. Inherently, all the remaining variables in the RT
simulation (i.e., dark blue terms in box 1 of Figure 1) plus
the satellite radiances (Lλ) are potentially predictors of the
NN model, from which we will determine their actual con-
tribution to model prediction power and select the employed
predictors in the final NN model (Section 2.4).

Within the predictors, the spectral surface reflectance
(Rλ) from the climatology in Figure S1 and the simulated
satellite radiances (Lλ) data contains a vector of 20 and up
to 900 wavelengths, respectively, and most of these spectral
observations are correlated [79], implying information
redundancy. We followed previous studies [62, 72] to use
the principal component analysis (PCA) technique to
reduce the dimension of these variables and simplify the
NN model training while maintaining the information
content. The PCA was conducted using the
sklearn.decomposition.PCA routine in scikit-learn [78]. We
found that the top three leading PC scores of Rλ could
reproduce the full (i.e., >99.99%) variability of the
employed monthly climatology over land, which were used
in the actual NN model experiments. For Lλ, the 15
leading PC scores could explain the full variability in all
the training data, and we also only selected several key PC
scores that are the most relevant for NO2 column
prediction in the final NN model (Section 2.4).

We used the 5-fold cross-validation technique [64, 80] to
evaluate the theoretical model performance for predicting
NO2C in the training dataset (box 3 of Figure 1). Specifically,
the whole training data samples were divided into 5 equal-
sized groups. In building the NN model (fold 1), the first
20% of the data was used as the evaluation data, and the
remaining 80% was used for training. This was repeated five
times until the data were fully covered, with every NO2C
record containing a truth and prediction pair, from which
the overall evaluation statistics (e.g., R2) were calculated.
The cross-validation helps to minimize bias in training data
selection and ensures the representativeness of the evalua-
tion metrics of the whole training records.

2.3. Determination of Optimal Retrieval Spectral Range. The
spectral windows for previous NO2 retrieval were mostly
near the peak NO2 absorption (i.e., the absorption cross sec-
tion σ) around ~430nm, with the width largely increasing
from GOME (425-450 nm) [14] to TROPOMI (405-
465 nm) [29]. However, the benefit of wider spectral win-
dows might also be compensated by the uncertainty of other
absorptions (especially further from the σ peak) and reduced
validity of constant slant column in the spectral fitting [30,
55]. Here, we apply the NN training and cross-validation
as a pure data-driven tool to investigate which spectral range
provides the maximum useful information.

Using all the potential predictors (dark blue terms in the
box 1 of Figure 1 plus the leading 15 PC scores of Lλ), we
conducted the NN training and cross-validation adopting
radiances covering different spectral ranges. We repeated
the experiment 5 times (i.e., vertically aligned circles in
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Figure 2) for each retrieval window to reduce the impact of
NN’s internal uncertainty of numeric solution. The results
below are based on Lλ from the SRF of the 200th TROPOMI
detector row, which represent consistent findings from other
rows as expected.

Figure 2 shows the evolution of the coefficient of determi-
nation (R2) following the gradually sliding spectral window
of Lλ, and Figure S3 shows the corresponding root-mean-
square-error (RMSE). The synthetic data was divided into
low-NO2 (NO2C ≤ 0:4 DU, (a, b)) and high-NO2
(NO2C > 0:4 DU, (c, d)) subgroups for training. Fixing the
left wavelength at 390nm and varying the max wavelength
of the included radiances ((a, c)), we can see a trend of
continuously increasing R2 following the wider spectral
range, demonstrating the stronger NN model capability to
predict NO2C from extraspectral information for both low-
and high-NO2 cases. For low-NO2, the model improvement
vs. wavelength range slows after ~465nm, with additional
RMSE reduction of ~0.50% from 465 to 495nm, compared
to the reduction of ~1.85% from 430 to 465nm. This
corresponds to a sharp reduction of NO2 absorption
(σ < 5 × 10−19 cm2), suggesting strong dependence of the
model performance on absorption strength rather than
window width. Under high-NO2 scenarios, the model
continues to improve (RMSE reduction of ~0.75% from 465
to 495nm vs. ~1.95% from 430 to 465nm), suggesting
additional information from extended spectral width is
useful despite weaker NO2 absorption and interferences of
other absorptions, e.g., the strong O2-O2 absorption at
477nm. As previously mentioned, satellite radiances contain
sensitivity to the NO2 vertical location under polluted
conditions due to spectrally dependent scattering (i.e., AMF)
[57], which is consistent with this more robust increase of
R2 vs. broader spectral range under high-NO2 scenarios.

However, retrievals under low-NO2 have a systematic ~2%
smaller R2 than under high-NO2 conditions, due to the lack
of vertical sensitivity that affects the model performance at
less-absorbing spectral regions (i.e., weaker ability to
distinguish between relatively lower NO2C aloft and higher
NO2C near the ground). Based on this continuous
improvement, we take the ending wavelength in the final
NN model as 495nm, the end of the range in the TROPOMI
Band 4 detector.

Similarly, fixing the ending wavelength at 495 nm and
sliding the left wavelength (Figures 2(b) and 2(d)) consis-
tently suggests more stable increase of R2 following wider
spectral range used for the high-NO2 cases, until the min
wavelength reaches around 390nm. Below 390nm, the
interferences from other gases, aerosols, and surface albedo
result in plateauing (under high NO2) or even decrease
(under low NO2) of R

2. Although the variabilities of these
additional gases were included in the NN predictors, they
appear not to compensate for the reduction of NO2 signal
over these wavelengths. Including wavelengths below
~360nm under low NO2 is unstable, as indicated by the
increasing scattering of R2 among 5 repeated experiments.
We therefore adopted the 390-495nm range as the optimal
retrieval window for the final NN model configuration. This
retrieval window is determined assuming uniform perfor-
mance of the measured spectral radiance. Inconsistencies
between the Band3 and Band4 detectors, as well as degraded
precision towards the end of Band4 (e.g., >492nm), are
expected in realistic measurements. We emphasize the gen-
eral usefulness of the extended information from wider spec-
tral range in realistic retrievals (see Section 3.3 and
Figure S8), while a more comprehensive optimization of
retrieval window warrants further investigation and should
vary from sensor to sensor.
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Figure 2: Cross-validation R2 (blue circles, repeated 5 times) for different retrieval windows (sliding at 5 nm interval) using low-NO2 (a, b)
and high-NO2 (c, d) samples for NN training. (a, c) contain results with fixed start wavelength (390 nm), and (b, d) are R2 with fixed right
wavelength (495 nm). Dashed lines are 4th-order polynomial fits to guide the interpretation. NO2 absorption cross-section at the
temperature of 294K from Harder et al. [90] is superimposed in black.
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Figure 2 suggests qualitatively contrasting sensitivities of
satellite radiances to the spectral range (i.e., NO2 vertical
information) and a necessity of separate consideration,
between high- and low-NO2 cases in the NN model genera-
tion. More detailed tests (e.g., Figure S4) consistently
indicated that including training records with both high-
and low-NO2 environments resulted in unexpectedly
decreasing R2 vs. wider spectral range over 390–430nm,
reflecting the two different sensitivity regimes that cannot
be jointly resolved by one NN model. We therefore
separately constructed the NN models for low- and high-
NO2 cases.

2.4. Determination of Sensitive Predictors. Numerical
methods like NN tend to be subject to overfitting, i.e., the
variability of unrelated predictors falsely contributing to
the model prediction. We selected predictors that contribute
significantly to NO2C prediction, using an additive
approach. We first ranked the importance of each predictor
by the cross-validation R2 when only that predictor is used
in the NN model. We then perform NN training and
cross-validation iteratively, by adding one predictor (from
the most to least important) at each iteration. The three
GEO angles and Rλ PC scores were considered as two vari-
able groups in the experiment. The improvement to R2 by

adding each predictor is used to evaluate its importance.
Again, we exemplify the results below based on Lλ over
390-495 nm and from the SRF of the 200th detector row.

Figure 3 shows the changes in cross-validation R2 in the
additive NN experiment. The key variables (labeled in red)
that contribute to the model prediction power were selected
to build the final NN models. For low-NO2 cases, the 7th
and 8th PC scores of Lλ from the radiances together could
explain nearly 80% of the variability of NO2C via NN, which
is further improved by 4-9%, respectively, by adding the 6th
PC score, GEO angles, and Rλ. For the high-NO2 model, the
5th PC score of Lλ alone can explain more than 80% of the
total NO2C variability, and GEO and Rλ are also significant
variables. We found that the 5th PC loading (R = 0:88)
extracted from Lλ of high-NO2 cases, and the 7th
(R = −0:68) and 8th (R = 0:55) PC loadings from the low-
NO2 training set are all highly correlated with the NO2σ.
The “earlier appearance” of important PC (i.e., 5th com-
pared to 7th and 8th) in the high-NO2 model can be
explained by the stronger contribution to the variability of
Lλ in the training set. Finally, the 13th PC score appears to
be the most relevant variable to predict TH in a one-
predictor NN test, explaining ~15% TH variability in
cross-validation. Hedelt et al. [62] also suggested that volca-
nic SO2 vertical information is contained in deep PCs of

100

90

80

70

60

50

40

30

Cr
os

s v
al

id
at

io
n 

R2  (%
)

PC
7

+ 
PC

8

+ 
PC

6

+ 
G

EO + 
R λ

+ 
H

s

+ 
A

O
D

+ 
O

3

+ 
H

CH
O

+ 
SO

2

+ 
H

2O

+ 
PC

1

...
...

46.0%

+ 31.5%
+ 3.7%

+ 8.8%
+ 4.8%

< 1.5%

NO2C ≤ 0.4 DU

100

95

90

85

80

75

Cr
os

s v
al

id
at

io
n 

R2  (%
)

PC
5

+ 
G

EO + 
R λ

+ 
H

s

+ 
PC

13

+ 
A

O
D

+ 
O

3

+ 
H

CH
O

+ 
SO

2

+ 
H

2O

+ 
PC

1

+ 
PC

2

...
...

81.0%

+ 6.4%

+ 6.5%
+ 1.5%

+ 2.0%

< 1.5%

NO2C > 0.4 DU

Figure 3: Changes in cross-validation R2 as employing increasing number of predictors in the NN training for low-NO2 (a) and high-NO2
(b) cases. The additional variability explained after adding each variable (group) was indicated in red above each waterfall bar, and PC#
denotes the #th PC scores or Lλ. All the variables in the shaded area introduce <1.5% additional variability according to the experiment.

7Journal of Remote Sensing



satellite hyperspectral radiances. Reasonably, we can see that
this predictor also helps improve the prediction of NO2C in
high-NO2 cases.

The importance of surface altitude (Hs) was found dif-
ferent in the low-NO2 and high-NO2 NN model due to their
different vertical sensitivities. Because the sensitivity to tro-
pospheric NO2 height is weak, the retrieval under low-NO2
also becomes almost insensitive to Hs. On the contrary, sen-
sitivity to NO2 altitude is more pronounced in satellite radi-
ances under high-NO2 environments, where accurate Hs
information also becomes significant. Variabilities of AOD,
other absorption gases (Got), and other PC scores of Lλ were
found to contribute <1.5% of additional predicted NO2C
variability and are therefore not included in the final NN
model.

3. Application to TROPOMI

The NN model built from the previous section can be
applied to TROPOMI radiances and complimentary data
to test the validity of retrieved NO2C. TROPOMI is a hyper-
spectral backscattering sensor onboard the sun-synchronous
Sentinel-5 Precursor (S5P) satellite, achieving daily global
coverage with an afternoon (13 : 30) overpass. TROPOMI
has a wide swath of 2600 km and horizontal resolution of
5:5 km × 3:5 km (since August 6, 2019). Across the two
UV-Vis Bands (Band 3: 320-405 nm and Band 4: 405-
495nm), the measured radiances have a spectral resolution
of 0.2–0.4 nm and a signal-to-noise ratio of ~1000. These
characteristics enable TROPOMI to provide unprecedented
urban-scale monitoring of atmospheric composition.
Retrievals of the level 2 (L2) operational TROPOMI NO2
product follow the typical three-step process [13, 29, 81],
in which the TM5-MP model is used to feed the a priori
NO2 profiles for an AMF calculation. Validation of the L2
products suggest a systematic underestimation of L2 NO2C
by 30% against global Pandora measurements at high-NO2

(median NO2C > 9 × 1015 molecules/cm2) [82].
Details about datasets and variables used in the retrieval

are summarized in Table S1. The data processing flowchart

is summarized in Figure 4 and Sections 3.1 and 3.2. We
then present a comprehensive evaluation of the retrievals
over four months (September/December 2019 and March/
June 2020) and three source regions (East Asia, Europe,
and North America, Figure S5), using independent satellite
and ground-based dataset in Sections 3.3 and 3.4.

3.1. Wavelength Calibration and Ring Correction. We first
calculated Lλ from TROPOMI L1B solar irradiance (E) and
earthshine radiance (I) data (Bands 3 and 4). Since the whole
Band 4 spectra and part of Band 3 (390-495 nm) are used,
the wavelength shift and stretch terms for wavelength cali-
bration in TROPOMI standard level-2 (L2) NO2 data
(405-465nm) are not suitable, and we repeated the calibra-
tion process before L2 NO2 retrievals [29] in this study.
Briefly, the shift and stretch terms were first determined
for each day and detector row using the solar irradiance
observation and reference spectrum (E0). Then, a further
shift (wλ) and Ring coefficient (Cring) for each TROPOMI
pixel were fitted to

I λn +wλð Þ = E0 λn +wλð Þ × P λn +wλð Þ

× 1 + Cring
Iring λn +wλð Þ
E0 λn +wλð Þ

� �
,

ð2Þ

where λn is the wavelength nodes after the first-step
irradiance-based calibration, P is a 3rd-order polynomial
function of wavelength that implicitly accounts for the
effects of slit function and other errors during the radiomet-
ric calibration, I is the radiance intensity measured by TRO-
POMI, and Iring/E0 is the simulated sun-normalized Ring
spectrum. The employed solar and Ring reference spectra
(Table S1) are consistent with the ones used in TROPOMI
L2 NO2 retrievals [29] that were already convoluted with
the TROPOMI SRFs of Bands 3 and 4.

The Ring-corrected TROPOMI observation is then cal-
culated based on the calibrated radiance intensity (Iλ) and
irradiance (Eλ):

TROPOMI Eλ
(S5P_L1B_IR)

Calibration &
Ring correction

TROPOMI Iλ
(S5P_L1B_RA)

MODIS BRDF (MCD43)
+ climatology

TROPOMI L2 NO2
(S5P_L2_NO2) 

GMTED 2010

GEO

Lλ

Rλ

Hs

NN

…
…

…
…

NO2Clow, clear

Fr

NO2Chigh, clear
NO2Cclear

NO2Chigh, cloudy

NO2Ccloudy

NO2Clow, cloudy

“Visible-only” NO2C

Figure 4: Processing flowchart to retrieve NO2 vertical column (NO2C) from TROPOMI radiances (390-495 nm), including datasets (grey
shaded) and processing steps (pink shaded). Datasets related with retrievals under clear (cloudy) conditions are labelled with black (white)
fonts. See Sections 3.1 and 3.2 for detailed introduction of each processing step.
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Lλ = ln
Iλ

Eλ 1 + Cring Iring,λ/E0,λ
� �� �

" #
: ð3Þ

As we did not include the Raman rotational scattering in
the RT simulation, the correction of Ring effect based on the
fitted Cring is necessary.

3.2. Visible-Only NO2C Calculation. The TROPOMI Lλ could
then be applied to the NN model to determine NO2C. For
each TROPOMI pixel, we retrieved four NO2C values, differ-
ing by the adopted NN model for high-NO2 or low-NO2 con-
ditions and the assumption of pure clear-sky or fully cloudy
scene (Figure 4). Under the clear-sky assumption, the Rλ

(calculated using GEO and MODIS BRDF product [83] at
470nm and spectral shape from the climatology introduced
in Figure S1) and Hs (from the GMTED 2010 [84] global
elevation dataset) described the surface; while for fully
cloudy retrievals, Rλ (cloud albedo with flattened spectral
shape) and Hs (converted from cloud pressure) were from
the FRESCO+ [81, 85] cloud retrievals using the NO2 band
of TROPOMI (available in the L2 NO2 product). The PC
scores of Lλ ðRλÞ were then derived using the precalculated
eigenvectors from the training sets (Lλ climatology), before
being applied to the NN models.

The NO2C values determined from applying the high-
NO2 and low-NO2 NN models, respectively, were first com-
bined under both the clear and cloudy assumptions:

This merging strategy was inferred from the 2D density
plot of NO2C from both NN models, which presents a
two-mode distribution (Figure S6). One of the two clusters
(i.e., Zone I of Figure S6) has retrievals <0.3 DU from the
low-NO2 NN while the NO2C predicted by the high-NO2
NN is not covarying but scattered. This NO2C from the
high-NO2 NN in this regime is likely irrational considering
most pixels are not over emission sources and should have
low NO2C, and NO2C from the low-NO2 NN is taken. A
smaller number of NO2C near the other mode (Zone II) are
jointly supported by the low- and high-NO2 NN retrievals
(i.e., >0.4 DU), and the NO2C from the high-NO2 NN is
selected due to its representativeness. We set a buffer NO2C
(in DU) in Equation (5) to determine a narrow merge zone
(i.e., Zone III in Figure S6). Over this regime, the two
retrievals were considered indistinguishable and weighted-
averaged, with the weights linearly varying between Zones I
and II. Zone IV contains retrievals that both NN models
predict NO2C out of its represented ranges, which rarely
occurred in the results. Tests varying this buffer NO2
suggested that a buffer of 0.08 DU resulted in the best
agreement vs. ground-based (i.e., Pandonia and MAX-
DOAS) measurements in Section 3.3, and this is adopted in
the rest of the processing.

Our RT simulation did not explicitly consider cloud
scattering and absorption between the bottom surface and
TOA due to the strong opaqueness of clouds over the UV-
Vis [86]; therefore, the NO2C from the NN model under
both the clear-sky and fully cloudy assumption is “visible-
only” columns (i.e., total column above either the surface

or the cloud layer). We merge these two retrievals based
on the cloud radiance fraction (Fr) to generate the final
NO2C amount:

1
NO2C

=
1 − Frð Þ

NO2Cclear
+

Fr
NO2Ccloudy

: ð6Þ

Equation (6) is similar to the processing in the L2 prod-
uct, where the clear-sky and cloudy AMFs were assumed lin-
early weighted based on Fr [81]. Although operational
retrievals (e.g., the L2 NO2) report total column above the
surface under cloudy scenes, the information under the
cloud layer is still contributed by the modeled a priori pro-
file. As our purpose is to relax that reliance, we do not
attempt to estimate the “ghost column” under cloud, render-
ing the NO2C from our approach a pure radiance-based
retrieval.

The TROPOMI spectral responses vary subtly between
detector rows (each with own SRFs). We generated NN
models based on trainings using SRFs of every 50th detector
row, and linearly interpolated the retrieved NO2C to the
untrained rows following Hedelt et al. [62]. This interpola-
tion approach was confirmed applicable as no artificial
row-based striping was detected in the output daily NO2C
maps.

3.3. Evaluation with the Pandonia Global Network. The
Pandonia Global Network (PGN) is the main source of
ground truth for our evaluation. PGN provides direct sun-
view measurements of total vertical column of various trace

NO2C =wlow∙NO2Clow + 1 −wlowð ÞNO2Chigh, ð4Þ

wlow =

1, if NO2Clow < 0:4 − bufferð Þ½ � or NO2Clow < 0:4 andNO2Chigh < 0:4
� �

Zone Ið Þ,
0, if NO2Clow ≥ 0:4 andNO2Chigh ≥ 0:4 Zone IIð Þ,
0:4 −NO2Clow

buffer
, if 0:4 − bufferð Þ ≤NO2Clow < 0:4 andNO2Chigh ≥ 0:4 Zone IIIð Þ,

invalid, if NO2Clow ≥ 0:4 andNO2Chigh < 0:4 Zone IVð Þ:

8>>>>>>><
>>>>>>>:

ð5Þ
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gases from ground-based standardized Pandora Sun pho-
tometers. The Pandora NO2C has a random error of ~0.05
DU (1:35 × 1015 molecules/cm2) and has been widely
applied to the validation of satellite NO2 retrievals [82, 87].

The PGN NO2C were collocated with TROPOMI NO2C,
using conventional spatial and temporal proxy criteria (i.e.,
the closest pair within 30min in time and 30 km in distance).
All the available TROPOMI retrievals without quality filter-
ing were applied to the collocation due to currently unavail-
able quality assignments in the NN retrievals (which
requires longer-term data collection and more comprehen-
sive evaluations). The evaluation conclusions were also con-
sistent if only selecting high quality PGN data, except for the
significantly reduced number of available retrievals under
cloudy conditions (i.e., comparing Figure 5 and Figure S7).
We present in Figure 5 those without the selection,
consistent with the evaluations over China (Section 3.4)
that are without available quality flags.

Figure 5 shows the evaluation of the NN retrievals and
the TROPOMI L2 NO2C vs. collocated PGN measurements.
Both retrievals partially reproduce the range of PGN NO2C,
with overestimations at low NO2C and underestimations at
high NO2C. This was similarly observed in a more compre-
hensive evaluation of the L2 retrievals [82], and could be

partially explained by the TROPOMI FOV that smears the
Pandora measured local air mass. Interestingly, the two
retrievals show similar distribution of performances over
different regimes, as jointly determined by NO2C and
geometric cloud fraction (Fg). Only over high NO2C
(≥1:1 × 1016 molecules/cm2) and low cloudiness (Fg < 0:2)
conditions do both retrievals have relatively strong correla-
tions vs. PGN (R2 > 0:48), whereas under the other condi-
tions, both retrievals exhibit low correlations (R2 < 0:16).
The distributions of R2 and normalized mean bias (NMB)
from the two independent retrievals highlight the uncer-
tainty of the model simulated a priori profile and indicate
the profiles only marginally compensate for the weak NO2
signal.

Without the aid of modeled NO2 under clouds, the NN
retrievals exhibit stronger degradation than the L2 NO2C
under cloudy conditions (Fg ≥ 0:2). The NN predicted
NO2C also has weaker performances vs. L2 under low
NO2C (i.e., <7:5 × 1015 molecules/cm2) because of the previ-
ously mentioned reduced vertical sensitivity (Section 2.3).
We identified an “optimal NN regime” (ONR, NO2C ≥ 7:5
× 1015 molecules/cm2 and Fg < 0:2, i.e., shaded in
Figure 5), where the NN retrievals reveal robust ability
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(i.e., close or slightly better R2) similar to the L2 products, to
reproduce the PGN NO2C. Within this regime, the NN
retrievals have an overall R2 of 75% and NMB of -33%, both
comparable to the L2’s R2 of 77% and NMB of -29%,
whereas out of the ONR, the overall R2 of NN is <1% com-
pared to the L2’s R2 of 17%. Therefore, for the ONR sce-
nario, the extended spectral range provided the trained NN
model additional observation-based information to resolve
NO2C variability, that is competitive to a model simulation
of a priori NO2 profiles in L2.

This extended spectral information confirmed the con-
tribution to the NN retrieval of the radiances of the TRO-
POMI Band 4 (401-495 nm, Figure S8). The reduced
vertical sensitivity resulted in systematic underestimation
of NO2C vs. PGN across almost all the bins, mainly due to
the smaller number (~50%) of high NO2C (>1 × 1016
molecules/cm2) pixels. As we discussed in Section 2.3, the
vertical sensitivity of the high-NO2 NN model increases
with the spectral width of included retrieval window
(Section 2.3). Even the ~11 nm spectral information in
Band 3 is useful for the NN-based retrieval. We expect the
retrievals using the spectral information adopted in L2
(405-465 nm) to perform worse than in Figure S8 if relying
on a pure NN-based approach.

3.4. Evaluation with Complementary NO2 Measurements
over China. The PGN network is mostly located over devel-
oped regions with smaller NO2C (Figure S5). Since the NN
retrievals reveal a strong dependence on NO2 abundance, it
is also meaningful to evaluate the applicability of the NN
retrievals over developing areas with stronger NO2
pollution (e.g., China).

Over wide areas of China without PGN sites, we used sur-
face NO2 concentration and MAX-DOAS tropospheric NO2
column measurements for the evaluation of TROPOMI
NO2C (Figure S5). The hourly surface NO2 concentrations
are from the routine monitoring by the Ministry of Ecology
and Environment (MEE) of China [88]. The MAX-DOAS
measurements [41, 89] are from three suburban stations
(Beijing, Xuzhou and Nanjing, respectively, from North to
South in Figure S5).

Figure S9 shows the comparisons of the retrievals against
MEE surface NO2 over China. With a wider dynamic range
of NO2C (i.e., 0 − 6 × 1016 molecules/cm2) more frequent
occurrence of scenarios favorable for NN retrievals (i.e.,
within the ONR regime), the NN shows competitive
performance vs. the L2 for resolving surface NO2

variability. We observe similar R2 for the two retrievals
(0.43 and 0.42) in near clear-sky conditions (Fg < 0:2). The
NN underestimates surface NO2 in many cases where the
L2 does not, forming a discernable population (Figure S9,
right), which likely corresponds to cases where NO2 is
strongly concentrated near ground. The underestimation
by the NN is consistent with the weaker overall signal of
near-ground NO2; thus, higher retrieved NO2C from the
NN still provides a robust indicator of its data quality. For
cases with high TROPOMI NO2C, the R2 of NN retrievals
surpasses that of the L2 product (e.g., above the threshold

NO2C ≥ 6 × 1015 molecules/cm2, Figure S10). Differences
between the two retrievals increase with the NO2C
threshold. This reveals the meaningful vertical sensitivity in
the TROPOMI radiances penetrating into the boundary
layer that gradually becomes advantageous against the
modeled profiles used in L2 for more polluted cases. The
NN retrievals are thus especially applicable for estimation
of surface NO2 over China, and other conditions with very
high NO2 amounts.

Figure S11 shows the comparison against MAX-DOAS
tropospheric NO2 columns. Under Fg < 0:2, both retrievals
are highly correlated (R2 > 0:75) with the MAX-DOAS
measurements and are systematically biased low (although
the MAX-DOAS data only represents the tropospheric
NO2C). Nonetheless, the NN exhibits less underestimation
than the L2 product. We found that switching the L2
dataset from total NO2C to tropospheric NO2 column
slightly deteriorated the L2 performance.

Figure 6 presents maps of retrieved NO2C over the East
Asia domain, from the two independent retrievals. There are
consistent spatial distributions of NO2C from both products
under near clear-sky conditions (i.e., Fg < 0:2). NO2C
enhancements are noticed over anthropogenic polluted and
heavily industrialized regions, including the North/North-
east China Plain, Inner-Mongolia and Shanxi coal industry
center, Fenwei Plain, Sichuan Basin, Yangtze River Delta,
Pearl River Delta, Wuhan, Seoul, and Tokyo Metropolitan
regions; the rest of the domain is dominated by background
NO2C. The enhanced regions in the NN retrievals (“visible-
only” column) are more localized than the L2 (“full” col-
umn) product (both with Fg < 0:2). The background NO2C
as determined by the NN retrieval are 1-2 × 1015 mole-
cules/cm2 higher than the L2 product, consistent with its
weaker performance and overestimation of NO2C at NO2C
< 5:5 × 1015 molecules/cm2 (Figure 5).

The rightmost panels of Figure 6 show the comparison
of all collocated daily NO2C from both products. Two clus-
ters are notable in the scatterplots, one with smaller Fg and
tight correlations around the 1-1 line, another with
enhanced cloud presence and weakened covariation between
the two retrievals (where the visible-only NO2C from NN is
systematically lower). For cases with Fg < 0:2, the two prod-
ucts show higher correlations over more severely polluted
months (i.e., March and December, R2 > 0:65) than rela-
tively cleaner months (i.e., September, R2 < 0:35). Such
enhanced correlation at higher NO2 concentration again
confirms the inherently stronger reliability of both retrievals
under polluted and near clear-sky conditions (Figure 5).

In summary, the evaluation of both TROPOMI NO2C
retrievals over China confirms that NN retrievals are accu-
rate over polluted regions, with promising applicability to
developing areas around the world.

4. Discussion and Conclusion

It has been proposed that extending the spectral range of
NO2 retrievals introduces additional vertical sensitivities
[30, 55, 57], which might facilitate the retrievals without
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modeling the a priori profile—the most time-consuming
step. In this study, we used NN as a data-driven tool to
investigate this issue from a new perspective and quantita-
tively tested this idea. To the best of our knowledge, this is
the first attempt at a satellite NO2 retrieval of this form.
Our main findings are as follows:

(1) The NN training experiments confirmed the exis-
tence of vertical sensitivity in the satellite radiances
utilizing a broader spectral range. The retrieval sensi-
tivity exhibits qualitative contrasts between high-
and low-NO2 cases, indicating a necessity of separate
considerations

(2) The retrieval sensitivities have a reasonable spectral
distribution consistent with the relative strength of
NO2 absorption vs. other interfering trace gases,
resulting in an optimal retrieval window of 390-
495nm for TROPOMI

(3) Despite many sources of variabilities in the inputs of
the RT simulation, only the key factors (observing
geometry, surface reflectivity, surface altitude, and
several key PC scores of satellite radiances) signifi-
cantly contribute to the NO2C prediction in the opti-
mized NN

(4) An application and evaluation of the NN model to
TROPOMI reveals that NO2C from the NN
retrievals have competitive accuracy relative to the
L2 product. The NN retrievals resolve NO2C varia-
tion under less cloudy and more polluted scenarios
(NO2C ≥ 7:5 × 1015 molecules/cm2 and Fg < 0:2). In
other environments, both the NN and L2 retrievals
show distinctive degradation, and the NN retrievals
without a priori profiles become less reliable than
L2. These findings are consistent with the theoretical
variation of retrieval sensitivity, as is also revealed in
the NN training experiments

Over populated areas, stratospheric NO2 of 2-5 × 1015
molecules/cm2 are persistent [32, 33]. Therefore, this study
indicates that the NN retrieval can track tropospheric NO2

pollution of as low as ~ 3 × 1015 molecules/cm2 at similar
precision as the L2 data under clear-sky conditions, with-
out the need to simulate a priori NO2 profiles. This con-
clusion is especially promising for future retrievals using
geostationary satellite observations over polluted areas,
where the data volumes per day are over 10 times that
of polar-orbiting satellites. The wall time for a retrieval
using the NN and a 30-core node for 1-month hourly
NO2C at ~3 km resolution (typical resolution of future
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Geostationary instruments) and over the domain shown in
Figure 6 is ~20 hours, ~12 times faster than the time
required for model simulation of the a priori profile
(~10 days). The NN time is dominated by the wavelength
calibration (Section 3.1).

For an efficient and effective retrieval for geostationary
instruments such as TEMPO [27] or GEMS [26], additional
research is needed to improve the machine learning-based
NO2 retrievals. Key ideas to be explored include:

(1) Extend the training set to represent additional real-
world scenarios. The fixed stratospheric NO2 profile,
aerosol optics, and tropopause height in the RT sim-
ulations could be better customized to potentially
improve performance in regions and seasons where
the assumptions were less sound. More sophisticated
sampling of RT input variables (e.g., from model
simulation over the retrieval domain) other than
random sampling should be explored to increase
the representativeness. In addition, the separate
retrievals assuming clear and fully cloudy conditions
could be improved by directly simulating the
observed radiances under partial cloudy conditions.
Alternative forms of NN structure, such as replacing
the radiance PC scores with SCDs after spectral fit-
ting should also be investigated to evaluate which
contains more useful information. Finally, the emer-
gence of additional ground-based NO2C sites and
data will facilitate an observation-based training set,
as an alternative to RT simulations

(2) Explore complementary datasets and methods where
pure NN-based retrievals are less favorable (i.e., out
of the ONR). This will enhance the potential utility
of the retrieval products. Adding a climatological
background NO2 or a simulated ghost column, for
example, could strengthen the robustness of the
retrievals. To separate the stratospheric/tropospheric
NO2 columns, training additional NNs for remote/
oceanic scenes or exploring the application of similar
L2 stratospheric/tropospheric separation approach
should be investigated

(3) The vertical sensitivity over a wide spectral range
indicates the possibility of retrieving NO2 vertical
location under heavily polluted conditions. This pos-
sibility should be further exploited, and will be valu-
able for studies of lightning, biomass burning, and
the vertical variation of tropospheric chemistry and
for evaluating the a priori profiles in operational
retrievals

Data Availability

The neural network retrieval code with necessary instruc-
tions is available at GitHub (https://github.com/ChiLi90/
ANNNO2). One-day of input data for testing the code
is available at https://mega.nz/file/c10wGKJT#GkY6_
HCDLIM88T5vlO7P26bL9oc53Fj7N0z3-oGKp58.
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