
1. Introduction
The heavy haze that has occurred in recent years in China has been largely attributed to atmospheric aerosols 
(Zhang et al., 2015), especially fine particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5). 
These small particles can affect the climate through aerosol–radiation and aerosol–cloud interactions (Huang 
et al., 2006; Li et al., 2017a; Liu et al., 2011; Takemura et al., 2005; Yang et al., 2017). The concentrations 
and composition of PM2.5 show large spatiotemporal variability owing to their complex formation and transport 
processes, leading to large uncertainties in the estimation of aerosol impacts on the environment and climate 
(IPCC, 2013).

Abstract Air pollution over the Yungui Plateau (YGP) in southwestern China can be caused by the 
transport of biomass burning aerosols from Southeast Asia; however, the magnitude and mechanisms of 
such long-range transport have not been fully investigated. Here, we studied the impacts of fire emissions on 
vertical PM2.5 over the YGP and the transport mechanisms of PM2.5 during the fire seasons (March–April) 
of the neighboring Indo-China Peninsula (ICP) region in 2015–2019 using ground-based monitoring data, 
reanalysis of meteorology, and GEOS-Chem model simulations. Average daily PM2.5 concentrations of 
36.06 ± 14.86 μg m −3 were measured at 16 ground stations in the YGP with the highest value of 53.77 μg m −3 
at Xishuangbanna, the nearest station to the ICP. Model simulations showed that fire emissions contributed 
approximately 50%–60% of the vertical PM2.5 over the YGP at a height of 3–4 km, with larger contributions in 
meridional than zonal cross-sections. Four weather patterns with low pressure over the YGP were identified as 
favorable conditions for smoke transport. The pattern with the lowest pressure over the northern YGP and the 
strongest vertical wind disturbance was the most favorable for the eastward transport of fire air pollution to the 
YGP. Another pattern, which had the strongest southerly wind, promoted smoke aerosols to climb from eastern 
Myanmar and northern Laos/Vietnam to the YGP. Through these typical pathways, ICP biomass burning 
significantly impacted PM2.5 pollution in southwestern China.

Plain Language Summary Based on the ground atmospheric monitoring data, reanalysis of 
meteorological data, and simulations of chemical transport model, we studied the impacts of fire emissions on 
vertical PM2.5 over the Yungui Plateau (YGP) and the transport mechanisms of PM2.5 during the fire season 
of the neighboring Indo-China Peninsula (ICP) region in 2015–2019. We find that fire emissions contributed 
approximately 50%{plus minus}20% of the vertical PM2.5 over the YGP at a height of 3–4 km, with larger 
contributions in meridional than zonal cross-sections. Four weather patterns with low pressure over the 
YGP were identified as favorable conditions for smoke transport and the weather pattern showed two typical 
pathways of smoke transport from the ICP to the YGP. This study reveals the large impacts of trans-boundary 
air pollution from the ICP on the air quality in the YGP during biomass burning seasons.
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Although PM2.5 in China is mainly attributed to anthropogenic emissions (Zhang & Cao, 2015; Zhang et al., 2019), 
natural emissions, such as biomass burning, play an important role in modulating regional air quality. Previous 
studies have estimated annual PM2.5 emissions of 3,526.7 Gg from biomass burning in China (Zhou et al., 2017). 
During the fire season, the contribution of biomass burning to PM2.5 can reach 11% in Beijing (Song et al., 2006), 
37% in the Yangtze River Delta (Cheng et al., 2014), and 19% in the Pearl River Delta (Cheng et al., 2014; Wang 
et al., 2007). PM2.5 that is emitted by intense burning affects not only local air but also that of downwind regions 
through atmospheric transport (Li et al., 2019, 2021; Poulain et al., 2021; Wang et al., 2018). The impact of 
smoke transport has been well studied in regions with frequent fire activities, such as Central America (Saide 
et al., 2015; Wang & Christopher, 2006), Russia (Li et al., 2019; Mielonen et al., 2012; Péré et al., 2014), Africa 
(Ansmann et al., 2009; Williams et al., 2012), and South/Southeast Asia (Ding et al., 2021; Engling et al., 2011; 
Wang et al., 2017, 2021; Zhang et al., 2018; Zhu et al., 2019).

The Yungui Plateau (YGP), located in southwestern China, experiences cross-boundary transport of air pollutants 
from fire emissions in Southeast Asia every spring (Dong & Fu, 2015; Liang et al., 2019). The elevation of the 
YGP is generally greater than 2,000 m, with mountain peaks as high as 3,700 m. The annual aerosol loading over 
the YGP is relatively low with an aerosol optical depth (AOD) of 0.1–0.2 (Li et al., 2003; Luo et al., 2014), but 
the surrounding regions show high AOD levels with frequent biomass burning in the Indo-China Peninsula (ICP) 
during the late dry season (Streets et al., 2003). Previous studies have revealed the significant impacts of biomass 
burning in the ICP on aerosols over the YGP region. For example, Zhu et al. (2017) indicated that biomass burn-
ing from Southeast Asia contributed to approximately 57% of the total AOD over the city of Kunming in the YGP 
during March and April from 2012 to 2013. In a case study, Xing et al. (2021) reported that biomass burning from 
Southeast Asia increased PM2.5 concentrations in Yunnan Province by 39.3 μg m −3 (68.0%). In another case, Li 
et al. (2017b) showed that fires in the ICP contributed 10%–40% of the near-surface PM2.5 in southwestern China. 
However, most of these studies explored fire contributions based on 1–2 cases or for short periods. The transport 
mechanisms and long-term impacts of biomass burning on the YGP have not been fully investigated, especially 
for vertical transport above a high altitude of >2 km.

In this study, we explored the multi-year impacts of biomass burning on vertical PM2.5 using both observations 
and model simulations. We specially focused on the transport processes of aerosols from the ICP region to 
the YGP during the fire season. Section 2 describes the observational stations, data, and methods. Section 3 
explores the spatiotemporal variations in PM2.5, the impacts of biomass burning on vertical PM2.5, and the poten-
tial weather patterns and vertical transport mechanism of aerosols from the ICP region to the YGP.

2. Data and Methodology
2.1. Ground-Based Stations and PM2.5 Data
In this study, 16 ground-based stations from China's Ministry of Ecology and Environment in Yunnan Province 
of the YGP were used. Every station included 2–3 observational sites, and the values of all sites in a station 
were averaged to represent the station. Figure 1 shows the topography of the study region (YGP and ICP) and 
16 ground-based stations located in Yunnan in the YGP. The 16 stations in the study area were divided into 
four groups: northwest (NW), northeast (NE), southwest (SW), and southeast (SE), with 3–5 stations in each 
group. The dividing lines were latitude 24.5°N and longitude 101.25°E, which were selected based on a compre-
hensive consideration of the distribution of stations, potential pathways of smoke transport from the ICP to the 
YGP, and resolution of the model simulation. In the YGP and ICP, the mean climate showed apparent rainy 
(May–October) and dry (November–April) seasons that were associated with monsoon onsets in May and with-
drawals in October (Yan et al., 2013). Since biomass burning events occurred more frequently in the late dry 
season (which was also the transition period from dry to wet) in Southeast Asia, this work focused only on the 
late dry season (March–April, which was also the biomass burning period).

The PM2.5 concentrations are measured using the micro oscillating balance method and/or the β absorption 
method from commercial instruments. The instrumental operation, maintenance, data assurance and quality 
control are properly conducted according to the China Environmental Protection Standards revised in 2013 
(Zhang & Cao, 2015). Past studies have showed that the data from the China's Ministry of Ecology and Environ-
ment stations fit the Benford's Law and were highly consistent with the data measured by U.S. Embassy in china 
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with correlations of >95% at most cities since 2013 (Liang et al., 2016; Stoerk, 2016). The hourly concentrations 
of PM2.5 at the 16 stations in the YGP region during the late dry season from 2015 to 2019 were collected.

2.2. Global Fire Emissions Database (GFED)
The Global Fire Emissions Database (GFED) version 4.1 (GFED4s) (van der Werf et al., 2017) was analyzed 
and used as a biomass burning inventory for simulations. The GFED derives biomass burned based on satellite 
retrieval of burned areas and active fire information (Giglio et  al.,  2013). GFED4s considers six land cover 
types: temperate forests, peat, savanna, deforestation, boreal forest, and agricultural waste. For each land type, 
fire-induced emissions were estimated as the product of the dry matter and species-specific emission factors from 
Akagi et al. (2011). By default, GFED4s provides monthly fire emissions with a spatial resolution of 0.25° from 
1997 to the present (December 2021). Since 2003, daily fire emissions data have been available by multiplying 
daily scale factors with monthly emissions data (Mu et al., 2011).

2.3. ERA5 Reanalysis Meteorological Data
The European Center for Medium-Range Weather Forecasts (ECMWF) produces global numerical weather 
predictions for members and cooperating states and reanalysis data for a broader community (Hoffmann 
et al., 2019). The fifth-generation ECMWF atmospheric reanalysis system (ERA5) provides hourly wind fields 
on a 0.25° × 0.25° latitude/longitude grid (Hersbach et al., 2020). The 800 hPa wind field and geopotential height 
were used to classify the weather pattern on regional pollution days following the k-means classification method 
proposed by Lloyd (1982). Three-dimensional wind fields, including zonal u, meridional v, and vertical velocity 
w, were used to study the dynamic conditions of transportation.

2.4. GEOS-Chem Simulations
2.4.1. GEOS-Chem Model and Configuration
The 3-D GEOS-Chem (http://wiki.seas.harvard.edu/geos-chem/) chemical transport model version 12.0.0, with 
2° × 2.5° horizontal resolution and 47 layers from the surface to 0.01 hPa for the vertical grid (Bey et al., 2001), 
was used to estimate fire-induced PM2.5. The model was driven by the Global Modeling and Assimilation Office 
MERRA-2 meteorology, with a temporal resolution of 3 hr for meteorological parameters and 1 hr for surface 
fields. The model included a fully coupled O3-NOx-hydrocarbon-aerosol chemical mechanism to simulate 
the atmospheric composition and air quality (Gong & Liao,  2019; Lei et  al.,  2020). All GEOS-Chem emis-
sions were configured at runtime using the Harvard–NASA Emission Component module described by Keller 

Figure 1. Topography of the study area and the 16 ground-based stations located at the Yungui Plateau (YGP), which are separated into four regions: northwest (NW), 
northeast (NE), southwest (SW), and southeast (SE). The neighboring Indo-China Peninsula (ICP) region is shown in the left panel.

http://wiki.seas.harvard.edu/geos-chem/
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et al. (2014). The default global anthropogenic emissions were overwritten over East Asia by the MIX inventory 
of Li et al. (2017c). The biomass burning inventory was adopted from GFED4s. GEOS-Chem used the TPCORE 
advection algorithm proposed by Lin and Rood (1996). Convective transport was computed from convective mass 
fluxes in the meteorological fields, as described by Wu et al. (2007). The boundary layer mixing in GEOS-Chem 
used the nonlocal scheme implemented by Lin and McElroy (2010). Dry deposition was based on Wesely (1989), 
as implemented by Wang et al. (1998), and aerosol deposition was based on Zhang et al. (2001). Wet deposition 
was performed as previously described by Liu et al. (2001). Studies have shown that GEOS-Chem captures the 
spatiotemporal variability of PM2.5 in China (Dang & Liao, 2019).

2.4.2. Model Experiment Design
We performed full-chemistry simulation that included fire emissions from March 2015 to April 2019 with 
2 months of spin-up. The PM2.5 output diagnosis was set to three dimensions and a daily average, which was used 
to show the three-dimensional characteristics of PM2.5 during the pollution period of the YGP. We also conducted 
a sensitivity simulation without fire emissions, which was used to explore the contributions of fire to PM2.5. We 
used “Fire” and “Nofire” to represent the model simulations with and without fire emissions, respectively.

2.5. Classification of Weather Patterns
We classified the weather patterns adopting the k-means classification method proposed by Lloyd  (1982). 
Considering the height and range of the plateau, the geopotential height at 800 hPa and the domain (10–30°N, 
90–110°E) covered YGP on the days of regional air pollution were chosen to represent the synoptic patterns. 
Through calculation, there were 33 days of regional air pollution due to PM2.5 in YGP which was shown in next 
section. The steps of the classification method are as followed. Step 1, choose k (predefined number of patterns) 
initial cluster centers (centroid) among the 33 days. Here use the k-means ++ algorithm for cluster center initiali-
zation (Arthur & Vassilvitskii, 2006). Step 2, compute the correlations between the daily geopotential height with 
location information on all pollution days to each centroid. Step 3, assign each pollution day to the cluster with 
the closest centroid (the largest correction). Step 4, compute the average of the days in each cluster to obtain k new 
centroid locations. Step 5, repeat steps 2 through four until cluster assignments do not change, or the maximum 
number of iterations (100) is reached. We selected the numbers of clusters (2–8) to classification, and then used 
elbow method (the corner of the Sum Square Error) to determine the last number of clusters (=4 in this study).

3. Results and Discussion
3.1. Variations in Ground-Based PM2.5 Over the YGP During the Late Dry Season
Figure 2a shows the daily PM2.5 concentrations of the 16 stations in the YGP during the late dry season from 
2015 to 2019. The SW and SE regions in the YGP showed high PM2.5 concentrations, with regional averages 
larger than 40 μg m −3, while the NE and NW regions had averages less than 40 μg m −3. The regional order of 
the mean daily PM2.5 concentrations was SW > SE > NE > NW, indicating that the southern area of the YGP 
suffered more aerosol pollution than the northern area. Among these stations, the southernmost station Xish-
uangbanna experienced the highest mean PM2.5 concentrations (53.77  ±  26.23  μg  m −3). In contrast, Lijiang 
(14.52 ± 5.74 μg m −3) and Diqing (14.52 ± 3.83 μg m −3), stations far from the ICP at high altitudes of 3,000 m, 
showed the lowest PM2.5 concentrations. The average PM2.5 concentrations for all 16 stations at YGP in the study 
period was 36.06 ± 14.86 μg m −3, lower than the mean PM2.5 concentrations of 78 in the North China Plain and 
>40 μg m −3 in the Yangtze River Delta (Hu et al., 2014; Li et al., 2020; Ming et al., 2017).

According to the China National Ambient Air Quality Standards for PM2.5 in 2012 (GB3095–2012), we calculated 
the frequency of PM2.5 at different levels during March–April of 2015–2019 (Figure 2b). The frequency of PM2.5 
on most days at all YGP stations was below the pollution standard (75 μg m −3). The SW and SE stations (except 
for Yuxi Station) showed the highest percentage (52.13%–71.80%) of days at a good level, while the NW and NE 
stations (except for Kunming Station) showed the highest percentage (54.43%–100%) of days at an excellent level. 
However, most stations had days when daily PM2.5 reached the polluted level (daily PM2.5 > 75 μg m −3). Some 
stations (all SW stations and two stations in the NW region) even experienced medium pollution (75 < daily 
PM2.5 < 115 μg m −3). Only Xishuangbanna Station showed severe pollution for 1 day (daily PM2.5 > 150 μg m −3). 
The percentages of daily PM2.5 above the polluted level during March–April of 2015–2019 were 6.56%–18.69% 
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for the SW stations and 0.98%–12.79% for the SE stations. Such ratios were much higher than the annual mean 
frequency of 1.84% for Yunnan for polluted level, suggesting that the late dry season (March–April) was a typical 
pollution period for the YGP.

To explore the impact of smoke transport on PM2.5 over YGP, we identified regional pollution events with multi-
ple stations experiencing air pollution on the same days. For each region in the YGP, a polluted day was defined 
as when more than half of the stations within the region were polluted. Figure 3 shows the polluted days for 
stations and regions during March–April in 2015–2019. There were 30, 7, 1, and 1 day with daily PM2.5 reaching 
pollution levels in the SW, SE, NE, and NW regions, respectively. The SW region showed the most polluted days, 
and its periods of pollution often coincided with the other three regions, suggesting the possible transport of air 
pollution through SW to other regions (Li et al., 2017b). In total, there were 33 days of regional pollution during 
March–April in 2015–2019, with a relatively low number of polluted days in 2016 and 2018.

3.2. Contribution of Fire Emissions to PM2.5 Concentrations
We used the GEOS-Chem model to quantify the contributions of fire emissions to the PM2.5 concentrations over 
the YGP during March–April in 2015–2019. Evaluations showed that the model reasonably captured the spatial 
distribution of PM2.5 with high levels of PM2.5 in the south and SW and low levels of PM2.5 in the north and NE 
of the YGP (Figure 4a). For a total of 528 samples across stations and days, the model predictions yielded a 

Figure 2. Statistics of daily PM2.5 concentrations of the 16 sites over the Yungui Plateau during March–April from 2015 to 2019. (a) Box plots. In each box, the central 
bar is the median and the lower and upper limits are the first and the third quartiles, respectively. The lines extending vertically from the box indicate the spread of 
the distribution with the length being 1.5 times the difference between the first and the third quartiles. The asterisk symbols indicate geometric means. (b) Frequency 
distribution. The values in grids are the number of days for corresponding thresholds of PM2.5 concentrations.
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good correlation coefficient of 0.53 (Figure 4b), suggesting that the simulations in general reproduced observed 
spatiotemporal variations of PM2.5 concentrations over the YGP on regional polluted days during March–April 
in 2015–2019.

We quantified the absolute (Fire-Nofire) and relative ((Fire-Nofire)/Fire) contributions of fire emissions to verti-
cal PM2.5 concentrations in the zonal cross-section which is an average across the latitude of 23–25°N (Figure 5). 
On average, fire emissions contributed up to 30  μg m −3 and 50% of the PM2.5 concentrations in the vertical 
levels. The areas of high contribution ranged from the western to the eastern part of the plateau and showed a tail 
over the east side of the plateau, indicating a transport pathway of smoke from west to east. Fire contributions 

Figure 3. The polluted day at each site (red) and for each region (gray) during March–April from 2015 to 2019.

Figure 4. Model evaluation of daily PM2.5 concentrations at the surface on regional polluted days by using ground-based observation: (a) special distribution and (b) 
spatial-temporal matching. The dots with color-filled in (a) are the averages of ground measured daily PM2.5 concentrations and the color in each pixel stands for the 
averaged value of the model simulation on the regional polluted days. The statistical parameters in (b) include the number of matchup data (N), the slope and intercept 
at the y axis of linear regression (red line), the mean bias (MB), the root-mean-squared error (RMSE), and the correlation coefficient (R).
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are high at the 600 hPa level (∼4 km), consistent with the elevated smoke observed by the Cloud-Aerosol Lidar 
with Orthogonal Polarization over the YGP during spring (Liao et  al.,  2021). The standard deviations were 
10–15 μg m −3 for absolute contributions and 15%–23% for relative contributions from the surface to an altitude of 
approximately 4 km. The meridional vertical cross-section averaged the longitude of 98.75–103.75°E in Figure 6 
shows that fire contributions to PM2.5 at vertical levels over the YGP could exceed 30 μg m −3 (60%), which was 
higher than that in the zonal cross-section (Figure 5). High fire contributions were near the surface for regions in 
20–22°N but extended to 600 hPa (∼4 km) for regions in 22–24°N, which is the southern part of the YGP. Fire 
contributions over the central and northern parts of the YGP (24–28°N) decreased gradually, indicating another 
smoke transport pathway from south to north.

Our estimated fire contributions of 50 ± 20% to YGP PM2.5 were within the range of 10%–70% from previous 
case studies (Li et al., 2017b; Xing et al., 2021). Such high contributions can extend up to 3–4 km, with a larger 
magnitude in meridional than zonal cross-section over the YGP.

Figure 5. Simulated vertical cross-sections of absolute (Fire-Nofire) and relative ((Fire-Nofire)/Fire) contributions of fire emissions to PM2.5 concentrations, and their 
standard deviations, along the latitude of 24.5°N (showed in Figure 1), averaged for all regional polluted days during March–April in 2015–2019.
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3.3. Analyses of Meteorological Conditions
We further explored the sources and transport processes of fire air pollution in the YGP. As shown in Figure 7, 
fires mainly occurred in the ICP region, adjacent to the south of the YGP. Compared with the ICP, local biomass 
burning over the YGP was limited. However, southern YGP showed much higher contributions of fire emissions 
than the northern part (Figure 6), suggesting cross-boundary transport of fire air pollution from the ICP to the 
YGP. Meteorological conditions play an important role in smoke transport. In this study, we analyzed and identi-
fied four major weather patterns during regional pollution days.

Figure 8 shows the mean geopotential height overlaid with horizontal winds at 800 hPa for each of the four 
weather patterns, which was plotted by averaging all the regional polluted days that belong to that category. The 
first pattern occurred most frequently, with 17 out of the 33 (51.5%) regional polluted days, followed by Pattern 
2 (18.2%), Pattern 4 (18.2%), and Pattern 3 (13.3%). All patterns featured low pressure over the YGP, indicating 
the regional convergence of the atmosphere. The strength of low pressure decreased gradually from Pattern 1 
to 4, with northward placement for Patterns 1–2 and southward placement for Patterns 3–4, leading to more 
air  transport from the west in Patterns 1–2 and from the south in Patterns 3–4. Table 1 shows the statistic of the 

Figure 6. Same as Figure 5 but for the longitude slice of 101.25°E. The white lines represent the approximate boundaries of the Yungui Plateau and Indo-China 
Peninsula.



Journal of Geophysical Research: Atmospheres

ZHU ET AL.

10.1029/2022JD036734

9 of 15

mean concentrations of PM2.5 for the regions in the YGP under each pattern. There was no obvious correlation 
between the average values of PM2.5 and the strength of low pressure of the four patterns. The reason was that 
the intensity of the emission source was also one of the important factors of pollution in addition to the meteor-
ological conditions. However, there was significant regional feature (SW > SE > NE > NW), which suggested 
the  influence of the meteorological conditions of the transportation. Horizontal winds at 800 hPa also illustrated 
the two transport pathways from the ICP to the YGP, with one from northern Myanmar to western YGP and the 
other from the adjacent areas of Myanmar, Laos, and Vietnam to the YGP.

Figure 9 shows the zonal vertical circulation along latitude 24.5°N for each of the four weather patterns. All 
patterns showed significant downward and upward movements from the surface to 700–750 hPa (3.0–3.5 km) 
west of the plateau (longitude of 93°–98°E), especially at ∼95°E (western Myanmar) and ∼98°E (the western 
border of the plateau). Such air disturbances provided favorable conditions for aerosol uplift but showed weaken-
ing tendencies from Pattern 1 to Pattern 4. The zonal wind field showed westerlies at an altitude of 500–800 hPa, 
which was an important driver of the eastward transport of uplifted aerosols to the YGP. Therefore, both the 
vertical wind disturbance and zonal westerly flows were conducive to the uplift of smoke from Myanmar and the 
eastward transport to the western YGP region, especially for Pattern 1. The meridional winds in the western and 
central parts of the plateau were mostly southerly but small.

The meridional vertical circulation showed weak updrafts around 20–22°N (Figure 10). The strong meridional 
southerly airflows provided favorable conditions for aerosol climbing from eastern Myanmar and northern Laos/
Vietnam to the south and center of the YGP. In addition, the zonal airflows were almost westerly from 18° to 
28°N below 500 hPa, promoting eastward transport of smoke to the YGP. The vertical velocities in Patterns 4 
and 3 were larger than those in Patterns 1 and 2, indicating a stronger uplift from the adjacent areas of Myanmar, 
Laos, and Vietnam to the YGP.

In summary, our work revealed two typical pathways of smoke transport from the ICP to the YGP. One pathway 
was from northern Myanmar to the western part of the YGP, another was from eastern Myanmar and north 
Laos/Vietnam to the YGP. These pathways are consistent with previous findings based on 1–2 cases of smoke 
transport (Fu et al., 2012; Li et al., 2017b; Xing et al., 2021). Moreover, Pattern 1, with the lowest pressure 

Figure 7. Monthly biomass burned (Tg dry matter) during March–April of 2015–2019 from Global Fire Emissions Database inventory.
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over northern/eastern YGP and the strongest zonal vertical wind disturbance, was the weather pattern that was 
most favorable for smoke transport through the first pathway. Pattern 4, with low pressure located at western/
central YGP and the strongest meridional southerly airflows, was the weather pattern which was more likely to 
promote smoke aerosols transport through the second pathway. Pattern 2 and 3 transported smoke through the 
two pathways.

4. Conclusions
Using ground-based monitoring data, ERA5 reanalysis of meteorology, and 
GEOS-Chem simulations, the impacts of biomass burning on vertical PM2.5 
over the YGP and the potential transport mechanisms of aerosols during the 
ICP fire seasons in 2015–2019 were analyzed. The main conclusions are as 
follows:

1.  The average daily PM2.5 concentration over the YGP was 
36.06 ± 14.86 μg m −3 in March–April from 2015 to 2019. The regional 
mean PM2.5 concentration decreased gradually from the south to the 
north. The SW region suffered the most days of pollution with the high-
est PM2.5 concentration of 53.77 μg m −3 at Xishuangbanna Station.

Figure 8. The ERA5 mean geopotential height (gpm) overlaid with horizontal winds (m/s) at 800 hPa under each of the four weather patterns on regional polluted days 
during March–April from 2015 to 2019. The pink box in figure is the domain of classification.

Region Pattern 1 Pattern 2 Pattern 3 Pattern 4 Average

SW 72.02 77.94 74.86 82.44 76.82
SE 60.90 66.93 44.15 58.93 57.73
NE 44.25 42.35 45.84 44.14 44.15
NW 34.46 37.52 39.42 42.86 38.57
Average 66.46 72.44 59.51 70.69 -
Note. YGP, Yungui Plateau.

Table 1 
The Statistic of the Mean Concentrations of PM2.5 (μg m −3) for the Regions 
in the YGP Under Each Pattern
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2.  The GEOS-Chem model reasonably captured the observed spatiotemporal PM2.5 concentrations over the 
YGP. The model simulations showed that fire aerosols could be uplifted to a height of 3–4 km and contribute 
approximately 50% of the vertical PM2.5 from west to east of the YGP. This contribution is even higher at 60% 
for the vertical PM2.5 from south to north of the YGP.

3.  Four weather patterns were identified on regional polluted days over the YGP. One pattern (Pattern 1) with 
the lowest pressure over northern/eastern YGP and the strongest zonal vertical wind disturbance was the most 
favorable for smoke eastward transport from Myanmar to the western part of the YGP. Another pattern (Pattern 
4) with low pressure located at the western/central YGP and the strongest meridional southerly airflows was 
more beneficial to smoke aerosols transported from eastern Myanmar and northern Laos/Vietnam to the YGP.

This work revealed the large contributions of fire emissions to the vertical PM2.5 concentrations over the YGP 
during the fire season of the neighboring ICP region. This improved understanding of the environmental effects 
of smoke aerosols. The analyses of meteorological conditions deepened understanding of the smoke transport 
mechanisms between special terrains. Moreover, the classification of weather pattern on regional polluted days 
could provide some help for the forecasting of pollution events over the YGP.

Figure 9. The ERA5 zonal vertical wind vectors (zonal wind and 100 times vertical velocity) and meridional wind (filled with color) along the latitude of 24.5°N 
under each of the four weather patterns. The black shaded area represents the terrain.
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