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A B S T R A C T   

Groundwater resources in Nebraska, U.S. are closely monitored by 23 Natural Resources Districts (NRDs) located 
across the state. Growers who use groundwater for irrigation are required to have flow meters installed at wells 
to monitor their water usage. However, many of these flow meters are still being read and recorded through in- 
person visits, which can be time-consuming and costly. Although some flow meters in Nebraska are monitored 
remotely by telemetry-enabled camera systems, yearly telemetry costs are high and making long-term operation 
financially burdensome. Using less expensive network protocol, such as Internet of Things (IoT), to transmit flow 
meter readings could enable new monitoring opportunities. However, there are challenges in directly trans-
mitting flow meter images via IoT due to limited bandwidth. Therefore, in this study, we developed an algorithm 
using object detection deep learning techniques, i.e. You Only Look Once (YOLO) that can be programmed at an 
IoT node which can recognize readings from images of flow meters onsite before transmitting. The developed 
algorithm could significantly reduce data size and is essential for flow meter monitoring in an IoT network 
setting. The developed algorithm achieved 95.35% accuracy when recognizing 1,248 real-world flow meter 
images obtained at the courtesy of North Platte Natural Resources District (NPNRD) in western Nebraska. The 
framework and algorithm were also tested in a real-world scenario on a flow meter installed on a linear-move 
sprinkler irrigation system and showed promising results. By leveraging IoT and deep learning techniques, 
this research has the potential to revolutionize flow meter monitoring, reducing costs and improving efficiency in 
the management of groundwater resources in Nebraska, and potentially in other regions as well.   

Introduction 

Irrigation is critical to the success of crop production. In U.S., 
Nebraska is one of the most irrigated state, accounting for approximately 
3.78 million ha of irrigated production land. Groundwater is vital to the 
well-being of Nebraskans and economic prosperity of the state. Ac-
cording to the 2018 Nebraska Groundwater Quality Monitoring Report 
[1], Nebraska has 96,593 active irrigation wells and 30,932 active do-
mestic wells. Dynamic and real-time information on water quantity 
drawn from these wells is essential to water users and management 
agencies. Out of the 23 Natural Resources Districts (NRDs) in Nebraska, 

who regulates groundwater usage, 18 NRDs have mandatory re-
quirements on installation of flow meters on all groundwater wells or at 
least on newly installed wells in their districts in order to monitor 
groundwater usage. Most of these flow meters require NRDs’ staff to 
visit in person to record the numbers. Due to the large footprint that an 
NRD can cover, manually reading all flow meters can be extremely time 
and labor consuming, and therefore difficult to obtain frequent readings. 
For instance, the North Platte NRD (NPNRD) at the Nebraska Panhandle 
covers 1.21 million ha in 5 counties. Currently, NPNRD is remotely 
monitoring around 800 groundwater wells in Scotts Bluff County using a 
commercial flow meter monitoring system (Fig. 1). The system utilizes a 
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camera and cellular telemetry equipped at each flow meter to send 
captured images back to be transcribed. Besides the initial cost of 
hardware, cellular telemetry subscription is charged per device per year 
(~$60, based on personal communication with NPNRD) resulting in a 
significant long-term expense. This also limits NRDs’ ability to scale up 
their remote monitoring capability. Therefore, finding new ways to 
obtain reliable and frequent readings from flow meters remotely, yet 
low-cost to operate, is key to help Nebraska NRDs or other water man-
agement agencies to increase their monitoring capability and efficiency. 
To achieve such goals, it is key to use low-cost telemetry for real-time 
data transmission. Long range wide area network, or LoRaWAN, is one 
of the data transmission protocols that has been rapidly developing for 
many Internet of Things (IoT) applications. With one LoRaWAN 
gateway, it has the capability of connecting to large number of 
battery-powered sensors at low power consumption with a transmission 
range up to 15 km in suburban areas [2,3]. The limitation of LoRaWAN 
is that its data transmission rate is much lower than traditional telem-
etry, at a maximum speed of 27 kb/s [2] and therefore not suitable for 
directly transmitting large size data such as flow meter images. How-
ever, if images are pre-processed and stored onsite, and only processed 
results are transmitted, the size of data package would reduce from 
~1000 kb to 2–3 kb which will be suitable for LoRaWAN. 

Previous recognition techniques for detection of digits in meters are 
usually categorized into two groups: traditional methods and more 
recent convolutional neural network (CNN)-based methods. A tradi-
tional method utilizes computer vision and image processing techniques 
such as pixel projections [4], connected components [5], and matching a 
prior template Zhao et al. [6] to recognize readings from images. It is 
usually composed of multiple stages including 1) detecting and 
extracting a region of interest (ROI) which encloses the target digits 
from the input image, 2) segmenting subregions containing each indi-
vidual digits from the ROI, and 3) recognizing these digits. To determine 
ROI, several methods have been developed to detect counters by uti-
lizing pixel projections [4,6–8]. Specifically, a binarization of an input 
image is first computed, a ROI is then determined by counting the 
number of white pixels of the binary image along the vertical and hor-
izontal directions, respectively. The major limitation of such method is 
that the accuracy of the detection highly depends on intrinsic 

characteristics of images. For instance, the layout and complexity of the 
image content, and features of the input image, such as the resolution, 
color contrast, distortion, as well as image qualities, etc. As these fea-
tures can vary significantly in different application scenarios, pixel 
projection method usually only produces promising results under a 
determined analysis task with similar spatial layouts of digits and color 
characteristics. Once a ROI is determined, a traditional method subse-
quently segments the contours or silhouettes of individual digits from 
the ROI. Some techniques achieve segmentation by computing the 
connected components from the binarization of the ROI [4,5]. Alterna-
tively, a support vector machine (SVM) can be used to compute the 
segmentation of digits [8,9]. By using this method, the binarization of 
the ROI is parameterized into a higher dimensional space, and then, a 
certain number of hyperplanes are computed by solving a predefined 
optimization equation to separate these hyperparameters into different 
classes, representing background and foreground. Unfortunately, both 
methods can easily fail when the input images are not from similar 
distribution, i.e. the characteristics of images vary significantly. The last 
stage of a traditional method is to recognize digits from the previously 
determined segmentations. Many techniques have been developed 
including template matching, SVM, and histogram of oriented gradient 
(HOG) [4,8–10]. Some of these methods produce promising results, but 
the accuracy relies extremely on the success of binarization and seg-
mentation computed from the previous two stages. Therefore, they are 
not robust enough for more general application contexts. For this study, 
since flow meters are mostly installed at outdoor environment that are 
susceptible to dust, dew, abrasions, images taken from such complex 
scenes, e.g., various flowmeter types, different camera views, and messy 
environments, can be quite challenging to recognize using aforemen-
tioned traditional methods [11]. 

Beyond the traditional methods, more recently, another line of 
research employs the power of artificial intelligence techniques to 
automatically recognize readings of meters. Gao et al. [11] developed a 
two-stage framework by first adopting aggregated channel features to 
detect a ROI, and subsequently recognizing readings by combining CNN 
and bidirectional long short-term memory (LSTM) techniques [12]. 
While the author reported high accuracy using this method, the images 
were with high degree of clarity and similarity. In addition, it fails to 

Fig. 1. Flow meters (blue circles) that North Platte Natural Resources District (NPNRD) monitor as of 2013. Red dashed line highlights Scotts Bluff County. Photo 
downloaded from NPNRD website. 
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process rotated images. Similarly, Laroca et al. [13] proposed another 
two-stage framework, detecting ROIs of digits using the FastYOLO and 
recognizing the digits in the detected ROIs using CR-NET. Even though 
this method eliminates the segmentation stage, reducing the source of 
uncertainty of accuracy, and achieving promising results, this method 
employs two deep learning models and does not fit the IoT application 
context. The reason is that a computer node in an IoT system is usually 
not as powerful as a desktop or cloud computer node so that minimizing 
computational resources is essential for on-board computation and 
processing. Yet, initializing the two deep learning architectures pro-
posed in [13] and loading and executing their corresponding trained 
models requires much memory and computational time. Alternatively, 
Gomez et al. [14] reported another CNN-based method without explic-
itly locating target digits. However, high accuracy can only be achieved 

by training a large dataset, i.e., 222,198 images in their study, which is 
not possible in this study with much more limited training dataset. 
Therefore, the objective of this study was to develop an algorithm using 
object detection and recognition deep learning techniques that is 
compact enough to be able to reside at a IoT node device and can execute 
to process images taken from flow meters onsite to significantly reduce 
data size to facilitate data transmission in an IoT network setting. 

Materials and methods 

Flow meter data and image labeling 

In this study, 3248 flow meters images were obtained from NPNRD. 
The images were divided into two sets, including 2000 images for 
training and the remaining 1248 for validation. As the images were 
taken from real-world scenario, they post many challenges and would 
require good robustness for the recognition algorithm. The challenges 
included: the images were taken using multiple random camera devices, 
inducing variations of device-related factors such as focal length, angle 
of view, lens distortion, and photo resolution. In addition, the images 
were taken manually at varied angles, heights, distances, weather and 
lighting conditions, which in turn added variations to the image clarity, 
glare, completeness of showing a flow meter, and the area ratio between 
the number of pixels to the background of the flow meters. Fig. 2 shows 
an example of an analog-styled flow meter (McCrometer Inc., Hemet, 
CA, U.S.A.) that are commonly deployed in the study area. The flow 
meter contains digits with different information. At top of the flow 
meter, the sequence of numbers indicates land-specific information. At 
bottom of the flow meter, the black block contains numbers representing 
accumulative water flow. Finally, the flow meter also has tick marks all 
around for reading instant water flow rate. In this study, the target 
number is the accumulated water flow, which is what NRDs use for 
regulation purposes. The 2000 training images were manually labeled 
using an open-source tool: Yolo Mark (AlexeyAB) to train the deep 
learning model. Using Yolo Mark, a text file was generated for each 
image with information of individual digits, x and y coordinates of 
bounding boxes of these digits, and dimensions (width and height) of the 
bounding boxes. The coordinates and dimensions are relative to the 
width and height of the input images. For cases where the meter was 

Fig. 2. An example of a McCrometer Flow Meter (McCrometer Inc., Hemet, CA, 
USA) installed in the North Platte Natural Resource District. Numbers on the 
dial include land ID at the top of the meter (pseudo land legal IDs are used here 
for privacy protection), accumulative water flow (ACRE INCHES X 0.01 as 
shown) in the lower center, and tick markers around edge of the meter which 
are used to read instant water flow (gallons per minute). 

Fig. 3. . Proposed processing framework to recognize flow meter images in this study, where the Raspberry Pi-based node device will take images of flow meter, 
process images using developed algorithm, send data via LoRaWAN or other IoT communication protocols, and display results at a visualization platform. 
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rolling between two digits, two labels would be created (Fig. 6a). 

The image recognition algorithm 

Selection of deep learning model - You only Look Once (YOLOv3) 
The image processing employed in this study has two stages: digits 

recognition and post-processing which includes filtering and rear-
rangement. The first step of the proposed algorithm is to automatically 
recognize all possible digits, including their actual value and locations 
from an input image. This was achieved by adopting the YOLOv3 deep 
learning model, which is one of the novel deep learning detection 
techniques implemented based on the Darknet framework [15]. YOLOv3 
was chosen for several reasons. First, Darknet is an open-source neural 
network framework implemented using the C programming language. It 
can be easily compiled and executed on an operating system with a C 
compiler, which is a built-in for any Linux-based operating systems, e.g., 
Ubuntu, that is able to be installed on IoT node devices. Second, the 
Darknet is a light-weight framework. Its source code is sized about 15 
Mb and it requires no additional libraries or packages for compiling and 
execution. Comparing to other deep learning frameworks such as the 
Caffe, Tensorflow, and Pytorch, which have heavy dependency on li-
braries, the Darknet is more flexible, resource-saving, and thus would be 
better suited on a IoT node device that has limited storage space and 
computation power. In this study, a Raspberry Pi computer was assumed 
to be the IoT node device to take and process flow meter images. The 
proposed framework is shown in Fig. 3, where the Raspberry Pi-based 

node device will take images of flow meter, process images using the 
developed algorithm, send data via LoRaWAN or other IoT communi-
cation protocols, and display results at a visualization platform. Physical 
constraints of the imagined IoT node devices were considered. 
Compared to cloud computer server or desktop computers, Raspberry Pi 
has less CPU cores and memories. It also lacks GPU devices that are 
needed by most deep learning techniques. As YOLOv3 can be executed 
in systems with CPU only, and for previously mentioned reasons, it was 
chosen as base of this recognition algorithm. Although YOLOv4 [16], a 
newer version of YOLO model, was released during development of this 
study, it was not adopted because the major improvements of YOLOv4 
focus on increasing the accuracy of detecting multiple overlapping ob-
jects and it is not a concern with flow meter images. 

Setup of backbone and head for YOLOv3 
Like any modern deep learning-based object detectors, YOLOv3 has 

two components: a backbone and a head. A backbone is a specific design 
of deep neural networks pre-trained on ImageNet [17], which is a large 
image database. A backbone is responsible for extracting low level fea-
tures from images such as lines and edges. The structure of the backbone 
of YOLOv3 is described in Fig. 4. where a pink box with CONV repre-
sents a convolutional layer. YOLOv3 designs a convolutional layer by 
utilizing Leaky ReLu [18] activation function and batch normalization 
[19] technique to improve the performance of the network. A con-
volutional layer, together with batch normalization and Leaky ReLu, 
form the base layers of the YOLOv3 architecture, which are represented 

Fig. 4. . The model structure of YOLOv3. BL indicates a sequence of components including a convolutional layer, a batch normalization and a leaky ReLU activation 
function. RESxN indicates repeating RES combination N times, a RES represents a combination of two BLs and ADD indicates adding current results to the previ-
ous one. 
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using green boxes in Fig. 3. Blue boxes, denoted as RSExN, represent 
residual blocks with two base layers that have been repeated N times 
[20]. As this backbone has 53 convolutional layers, it is referred to as 
Darknet-53 by its original author [21]. 

Subsequent to a backbone, several additional layers are designed to 
predict different object classes. In this study, the object classes include 
digits of the flow meter readings and their bounding boxes. These 
additional layers are usually referred as a head of a neural network 
(Fig. 4). The head of YOLOv3 is enclosed by a gray dashed box in Fig. 4. 
While most alternative heads predict classes (digits in this case) and 
bounding boxes through two separate routines, YOLOv3 predicts them 
in a single process, significantly speeding up the prediction. Specifically, 
it simultaneously predicts bx, by, bw, bh, to, and tc, where bx, by, bw, and bh 
are the four coordinate offsets of a bounding box relative to the top left 
corner of the input image, to indicates the objectness, i.e. the possibility 
of existences of an object prediction of this bounding box, and tcindicates 
the class prediction if there is an object detected in this bounding box. In 
addition, to increase the accuracy of detections, YOLOv3 predicts the 
detections across three different resolution scales, combining both the 
global context and fine-grained features of the images. As shown in 
Fig. 3, the low-resolution prediction only uses information from the last 
layer of the backbone, while the mid and high-resolution predictions 
integrate coarse-grained information computed from early layers. For 
each individual scale, it also predicts three bounding boxes with 
different sizes. Therefore, the output of each scale is a 3d tensor with a 
depth of [3x(4 + 1 + N)], where 3 represents three bounding boxes, 4 
represents the four offsets of a bounding box, 1 indicates the objectness 
prediction, and N represents the number of possible classes. In this 
implementation, as it has 10 different digits, i.e., 10 different classes, N 

equals 10, and thus, the depth of the 3d tensor is 45. Another important 
configuration of utilizing YOLOv3 is to determine the bounding box 
priors at the three resolution scales. This study started with nine priors 
computed via the k-means clustering method proposed in [15] by using 
the distance metric relative to the intersection of union of bounding box 
centroids, and adjusted these priors based preliminary experimental 
results. The final priors are (10,13), (16,30), and (33,23) for a 
low-resolution scale, (30,61), (62,45), and (59,119) for a 
middle-resolution scale, and (116,90), (156,198), and (373,326) for a 
high-resolution scale, each pair represents the width and height priors of 
a bounding box. 

Post-processing: Filtering and rearrangement 
As mentioned earlier, the digits that are most interested to this 

project are accumulative water flow. A filtering process was created to 
filter out non-necessary digits. First, the filtering process looped through 
all the raw detections and merged close ones in terms of the intersection 
over union (IoU) of their bounding boxes. Specifically, given two 
bounding boxes B0 and B1, the IoU between them is defined as IoU =
area(B0∩B1)
area(B0∪B1)

. For each pair of bounding boxes, if their IoU was greater than 
a predefined threshold, which is 0.1 in this implementation, they were 
merged using the one with a higher prediction score. Subsequently, the 
merged predictions were spatially sorted from left to right along the x 
direction to form the accumulative flow meter reading. 

Implementation in real-world 

To assess the performance of the framework and algorithm in real- 
world conditions, an analog-style flow meter (McCrometer Inc., 

Fig. 5. a. a linear-move sprinkler irrigation system at Panhandle Research and Extension Center, University of Nebraska-Lincoln, Scottsbluff, NE, USA. b. an analog- 
style vertical flow meter. c. an AI-FlowCAM mounted on top of the flow meter. d. an image taken by AI-FlowCAM. 
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Hemet, CA, USA) was installed on a linear-move sprinkler irrigation 
system (Lindsay Corporation, Omaha, NE, USA) at the Panhandle 
Research and Extension Center of the University of Nebraska-Lincoln. 
The research site is located in Scottsbluff, NE, USA, with an average 
elevation of 1189 m and GPS coordinates of 41◦53′34.93′′N, 
103◦41′2.04′′W. The irrigation system travels in the direction of south to 
north. To capture data from the flow meter, an edge-computing camera 
unit, named AI-FlowCAM, was programmed with the developed algo-
rithm and installed atop the flow meter using a customized enclosure 
and 3D-printed mounts on the west side of the irrigation system where 
water inlet is located. The AI-FlowCAM was comprised of a Raspberry Pi 
4 computer (Raspberry Pi Foundation, U.K.), a battery, a PiJuice HAT 
power management board (Pi Supply, U.K.) for managing sleep and 
wake schedules, a solar panel, a Raspberry Pi 8 megapixel RGB camera 
(2592 × 1944 pixels), Raspberry Pi LoRa node pHAT (Pi Supply, U.K.), 
and an external 915 MHz LoRa antenna (Laird Connectivity, Akron, OH, 
USA). A Sentrius RG1xx LoRaWAN-enabled gateway (Laird Connectiv-
ity, Akron, OH, USA) was set up on the rooftop of a nearby office 
building as the receiving gateway. Flow meter readings captured by the 
AI-FlowCAM, as well as LoRa transmission parameters such as received 
signal strength indicator (RSSI), signal-to-noise ratio (SNR), and airtime, 
were recorded and stored on a cloud server. The flowmeter readings 
recognized by the AI-FlowCAM were also verified manually by human 
inspection. Fig. 5 shows the setup and an image taken by AI-FlowCAM 
(Fig. 5d). 

Results and discussion 

Model training results 

The proposed model was trained and evaluated on the computer 
cluster at Holland Computing Center (HCC) at the University of 
Nebraska-Lincoln. The training was completed on a computer node with 
32 CPU cores, each node has 4 GB memory. To speed up the training 
process a NVIDIA V100 GPU with 32 GB memory was utilized. The 
complete training process took about 14 h. The recall of training was 
0.92, and the mean average precision, with IoU threshold setting at 50%, 
is 93.59%, the average lose was 0.288924. To maximize the perfor-
mance, the batch size was set to 64, image resolution was set to 416 ×
416, and learning rate was set to 0.01. When training a detection model, 
YOLO first normalizes all training images of different resolutions into a 
unified resolution. It is noticed that the accuracy of the model was 
decided relative to this unified resolution. Setting this parameter to an 
inappropriately small number will downscale the training data signifi-
cantly, losing too much information and resulting in a low recognition 
accuracy. On the other hand, as the study dataset has a wide variation in 

image resolutions, setting this parameter to a very large number will 
induce interpolation errors when up-sampling small images and increase 
the uncertainty of the model. This study finally selected 416 × 416 for 
the unified resolution, which led to the best accuracy. 

Model validation results - Quantitative evaluation 

A correct recognition case is considered only when all digits of 
accumulative water flow reading are correctly recognized. The valida-
tion was done on using the AI-FlowCAM at a lab setting. Processing each 
individual image took 6–10 s. This system was first evaluated by 
examining the performance in terms of recognizing individual digits. 
The results are summarized in Table 1, where the digit indicates the class 
of digits; the precision is defined as the fraction between the number of 
correct recognitions of a digit and the total number of recognitions of 
this digit; the recall is defined as the fraction between the number of 
correct recognitions of a digit and the total frequency of this digit in the 
dataset; the average precision (AP) is computed using the area under 
curve approach with IoU of 0.5 [22] and the frequency indicates the 
frequency of a digit in the dataset. The last row reports the mean of the 
precision, recall and AP, respectively. 

As reported in Table 1, the high accuracy suggests that this algorithm 
is very likely to make a valid prediction of the target digits; while the 
high recall rate indicates that these recognitions cover the ground truth 
of individual digits with a high degree of completeness. The AP and the 
mean of AP (mAP) are widely adopted as an evaluation metric in the 
community of objects detecting, and the results indicate that this 
recognition system obtains a superior balance between validity and 
completeness. The algorithm was then tested on the 1248 validation 
flow meter images in terms of detecting accumulative flow meter 
readings (all digits). The results are shown in Table 2. It successfully 
recognized readings of 1190 images, resulting in an accuracy of 95.35%. 
Among the 58 failed cases, 46 of them missed 1 digit while 12 of them 
missed multiple digits. 

Model validation results - Qualitative evaluation 

In addition to evaluating the system using quantitative metrics, a 
qualitative analysis was also conducted. This system was able to suc-
cessfully process images that have wide variations in many aspects, 
making it more robust in both the real-world application this work is 
investigating and other potential generalized scenarios. Such robustness 
is demonstrated in Fig. 6, where each image presents a difficult situation 
to be processed by alternative techniques or even read by a human-being 
but are accurately recognized using this system. Because of the data 
privacy restrictions, the device IDs have been masked using gray boxes. 
The robustness of this algorithm is reflected in different aspects. First, 
the proposed algorithm was able to successfully process images with 
incomplete information. As shown in Fig. 6a, the last digit is between 4 
and 5 and these two numbers are only partially seen, but the system 
developed here recognized both two digits correctly. Fig. 6d shows 
another difficult case where the surface of a flow meter is worn and the 
area containing the target digits is blurred. Second, this system is robust 
in recognizing images with different foreground-background ratio, i.e. 
the ratio between the number of pixels of a flow meter relative to the 
background. For instance, Fig. 6a, 6d, and 6f have larger foreground- 

Table 1 
. Recognition results of individual digits. The first column indicates the class of 
digits. Accuracy refers to the fraction between the number of correct recogni-
tions of a digit to the total number of recognitions of this digit. Recall is defined 
as the fraction between the number of correct recognitions of a digit and the total 
frequency of this digit in the dataset. The fourth column indicates average ac-
curacy which is computed using the area under curve approach with IoU of 0.5 
[22]. The last column indicates the frequency of a digit in the dataset.  

Digit Accuracy (%) Recall (%) Average Accuracy (%) Frequency 

0 95.45 98.64 98.71 1107 
1 91.36 94.75 94.41 781 
2 95.30 96.28 96.72 779 
3 91.35 96.20 96.12 736 
4 95.69 96.96 97.79 756 
5 92.04 97.67 97.58 687 
6 94.18 95.75 97.28 659 
7 94.78 95.66 96.52 645 
8 95.21 96.57 97.56 700 
9 94.41 97.91 98.76 621 
Average 93.78 96.64 97.15   

Table 2 
. Recognition results of complete accumulative water flow readings.   

Percentage (%) Number of cases 

Correct recognitions 95.35 1190 
Incorrect recognitions   
Missed 1 digit 3.69 46 
Missed multiple digits 0.96 12 
Total 100 1248  
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background ratios, while in Fig. 6b, 6c, and 6e have smaller foreground- 
background ratios. In addition, the flow meter images were taken under 
different lighting conditions so that there were variations in color hues 
of the images. For example, Fig. 6a and 6b appear to have a yellow tint 
while Fig. 6c had a blue tint and 6d and 6f had white tint. Furthermore, 
this algorithm was able to extract numbers from blurry images, which 
are frequently encountered in a real-world application, and make ac-
curate predictions. This was shown in Fig. 6e, where the image had low 
resolution, and the digits of the reading were hard to read even if it is 
enlarged to be read by human. Lastly, the proposed system was accurate 
when recognizing images taken from a rotated angle (Fig. 6f). Alterna-
tive techniques usually process such case by first extracting long 

horizontal or vertical lines from the image, and subsequently use them 
as references to rotate the image by a degree so that the digits block is 
parallel to the truly horizontal line (x axis). Accuracy of this approach is 
sensitive to the a priori assumption of the references and can easily fail 
when contents of images are complicated. In contrast, the proposed 
approach in this study was able to directly make the correct recognition 
without computing the rotation angle, suggesting the generality and 
efficiency of this approach. The success of predicting these images in-
dicates that the proposed algorithm is not only capable in a specific 
controlled environment but robust in a wide spectrum of real-world 
application scenarios. 

Discussion of failed cases 

Beyond the successful cases, this work also analyzed the incorrect 
recognitions and summarized them into four categories. The first is 
shown in Fig. 7a. Although this image is in good resolution and the 
contents are seen clearly, some of the digits were covered by dirt so that 
they appear to be incomplete or confused with digits. Such noises 
mislead the algorithm to make false predictions, e.g., the second digit 8 
and fifth digit 9 were both recognized as 3. The second category is that 
the flow meter was shattered heavily where the cracks were on top of the 
digits, making it extremely difficult to distinguish them visually 
(Fig. 7b). In this example, the first digits 8, which is white color, are 
covered by scratches which also appear to be white in the image. This 
information is mixed in such a way that the features of this area 
extracted by the deep neural network may not match the features of 
other areas that may contain digit 8, and lead to incorrect reading as 5. 
The third category is that a large portion of the first digit was blocked by 
the meter pointer needle, as shown in Fig. 7c, in which case even a 
human being is not able to recognize it correctly. However, in such cases 
the first digit could be estimated according to the previous reading in 
real applications so it would not be a major concern. The last case is that 
the digits are too small in the image to be recognized, as shown in 
Fig. 7d. In this situation the information of the area containing these 
digits may quickly be eliminated or diluted when the tensor encoding 
this image is convoluted in the first couple of convolutional layers. The 

Fig. 6. . Examples of successfully recognized accumulative water flow (digits in black box on the dial) in the flow meter images. Caption under each image shows 
recognized readings from the proposed algorithm. 

Fig. 7. . Examples of failed recognized accumulative water flow (digits in black 
box on the dial) in the flow meter images. Caption under each image shows 
recognized readings from the proposed algorithm. 
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loss of information results in a high degree of uncertainty to make the 
recognition. These challenges could be resolved or mitigated by having 
fixed camera type, lighting condition, and mounting location to achieve 
standardized images. 

Real-world evalulation results 

During a 10-day evaluation on a linear irrigation system, AI- 
FlowCAM was installed and tested. The camera was programmed to 
capture images and send data at hourly intervals, resulting in a total of 
262 images collected. Out of these images, 107 were deemed valid as 
they had distinctive flow meter readings during irrigation, while 155 
were considered invalid due to repetitive readings. Repetitive images 
with the same flow meter reading were not counted towards the final 
performance statistics. All image readings were successfully sent and 
received by the gateway. The average processing time for each image 
was 9.16 s using the configuration of AI-FlowCAM. The average airtime 
to send the processed image data from AI-FlowCAM to the gateway was 
0.051 s, with an average RSSI of − 51, and a maximum and minimum 
SNR of 12 and 6, respectively. Out of the 107 valid images, 79 images 

were recognized correctly, accounting for 73.8% of the total images, 
while 28 images were not recognized correctly, representing 26.2% of 
the total images. Among the 28 images, 24 images were able to recog-
nize the first 4 digits but were missing the last 2 digits, while 4 images 
reported no detection even though images were taken by the camera. 
The issue of missing digits could be attributed to the fact that the colors 
of the testing flow meter were different from the colors of the training 
images. The training images had flow meter with white background with 
a black box containing the digits, whereas the test flow meter had a deep 
blue background, causing difficulties for the algorithm to locate the 
correct area containing the digits, especially when the irrigation was 
running, and the digits were rolling on the flow meter. The reason for the 
4 images reporting zero reading despite successfully capturing images is 
unclear and could possibly be due to a busy CPU when processing the 
images. Table 3 provides a summary of the performance of AI-FlowCAM 
during the testing period. 

The testing period for the proposed framework was limited to only 10 
days due to freezing temperatures. However, during this period, it was 
demonstrated that the framework has the potential to work effectively in 
real-world scenarios. It’s worth noting that no graphical user interface 
(GUI) was designed to visualize the readings during this brief testing 
period. For a similar setup involving the design and testing of an edge- 
computing camera sensor for capturing crop canopy cover images, 
processing the images onsite, and transmitting the processed images 
using LoRa to a website-based GUI, readers can refer to Liang et al. [23] 
(Fig. 8). 

Conclusion 

This paper presents an approach for automatic recognition of accu-
mulative water flow readings for analog-style commercial flow meter, 
specifically for irrigation water usage monitoring within an agricultural 

Table 3 
Performance summary of AI-FlowCAM during the 10-day real-world testing 
period.   

Percentage (%) Number of cases 

Correct recognitions 73.8 79 
Incorrect recognitions 26.2 28 
Other performance parameters   
Average runtime (seconds) 9.16  
Average RSSI − 51  
Maximum SNR 12  
Minimum SNR 6  
Average airtime (seconds) 0.051   

Fig. 8. An example of an edge-computing camera node using framework proposed in this study that was used to capture image, process image, and transmit 
processed results in Liang et al. [23]. Figure shows the camera node was able to capture canopy cover development at a dry edible bean field during 2-month testing 
period. This figure and sensor reading can be accessed at: https://phrec-irrigation.com/#/f/58/sensors/236. 
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IoT application scenario. The approach involves training a YOLOv3- 
based deep learning model to recognize potential digits and their 
bounding boxes in input images. Subsequently, a process is developed to 
filter out unnecessary digits obtained from the deep learning model and 
rearrange the remaining digits to form the correct reading. The system 
achieves a recognition accuracy of 95.35% using 1248 real-world flow 
meter images, while remaining lightweight and efficient, making it 
suitable for deployment and execution on IoT node devices, such as 
Raspberry Pi. Qualitative evaluation indicates high robustness of this 
approach, although there may be cases where it is not able to recognize 
numbers due to dirt, water, or meter pointer obstructions in real-world 
applications. The framework and algorithm were also tested in a real- 
world scenario on a flow meter installed on a linear-move sprinkler 
irrigation system, showing promising results. However, future im-
provements may be needed to address issues related to differences in 
colors between the flow meter in real-world scenarios and training im-
ages. Overall, the proposed IoT and edge-computing-based approach has 
the potential to significantly reduce monitoring costs for irrigators and 
government agencies, while increasing their monitoring capacity. 
Furthermore, it can be integrated with other sensors to inform irrigation 
management decisions. 
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