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A B S T R A C T   

Canopy cover (CC) is an important indicator for crop development. Currently, CC can be estimated indirectly by 
measuring leaf area index (LAI) using commercially available hand-held meters. However, it does not capture the 
dynamics of CC. Continuous CC monitoring is essential for dry edible beans production since it can affect crop 
water use, weed, and disease control. It also helps growers to closely monitor “yellowness”, or senescence of dry 
beans to decide proper irrigation cutoff timing to allow the crop to dry down for harvest. Therefore, the goal of 
this study was to develop a device – CanopyCAM, containing software and hardware that can monitor dry bean 
CC continuously. CanopyCAM utilized an in-house developed image-based algorithm, edge-computing, and 
Internet of Things (IoT) telemetry to process and transmit CC in real-time. In the 2021 growing season, six 
CanopyCAMs were developed with three installed in fully irrigated dry edible beans research plots and three 
installed at commercial farm fields, respectively. CC measurements were recorded at 15 min interval from 7:00 
am to 7:00 pm in each day. Initially, the overall trend of CC development increased over time but fluctuations in 
daily readings were noticed due to changing lighting conditions which caused some overexposed images. A 
simple filtering algorithm was developed to remove the “noisy images”. CanopyCAM measured CC (CCCanopyCAM) 
were compared with CC obtained from a LI-COR Plant Canopy Analyzer (CCLAI). The average error between 
CCCanopyCAM and CCLAI was 2.3 %, and RMSE and R2 were 2.95 % and 0.99, respectively. In addition, maximum 
CC (CCmax) and duration of the maximum CC (tmax_canopy) were identified at each installation location using the 
generalized reduced gradient (CRG) algorithm with nonlinear optimization. An improvement of correlation was 
found between dry bean yield and combination of CCmax and tmax_canopy (R2 = 0.77, Adjusted R2 = 0.62) as 
compared to yield versus CCmax (R2 = 0.58) or yield versus tmax_canopy (R2 = 0.45) only. This edge-computing, IoT 
enabled CanopyCAM, provided accurate and continuous CC readings for dry edible beans which could be used by 
growers and researchers for different purposes.   

1. Introduction 

Dry edible beans (DEBs) are important food crops in the United 
States (U.S.) which provide excellent sources of protein. Total U.S. DEBs 
production area is approximately 809,000 ha, and the leading produc-
tion states are North Dakota, Nebraska, Colorado, California, and Idaho. 
Nebraska DEBs production averages from 57,000 to 81,000 ha annually, 

producing approximately 1 billion servings (NDSU, 2020). The pro-
duction is concentrated in western Nebraska, where the climate is semi- 
arid and the warm days and cool nights provide excellent growing 
conditions (NDBC, 2019). Dry edible beans require 85 to 110 days to 
reach maturity and the maximum production potential is reached when 
dry bean pods are mature, filled with seed, and 80 % of foliage yellowing 
(NDBC, 2019). 
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Canopy cover (CC) is the layer formed by the branches and crowns of 
plants. During the vegetative and reproductive stages, CC is an impor-
tant parameter for measuring the development and health of DEBs, and 
it directly relates to crop growth stage, crop height, architecture of the 
leaves and density of the plants (Dai et al., 2009). Canopy cover is also 
important for the interception and use of solar energy and for increasing 
canopy photosynthetic productivity (Ma et al., 2001). It also affects crop 
water use, yield, disease (Westgate et al., 1997) and weed development 
(Ma et al., 2001). The advantages of rapid canopy development in crops 
include greater biomass accumulation, greater yield potential, and early 
season weed suppression (Westgate et al., 1997) and reduction of 
evaporative water loss from soil. 

Canopy cover is also considered a core parameter for crop models 
(Qiao et al., 2016). Various crop models use CC to calculate ‘light use 
efficiency’ of the crop and simulate the energy balance equations, and to 
enable understanding of the physical processes that occur between 
plants and the environment (Norman et al., 1995; Drewry et al., 2010; 
Colaizzi et al., 2012; Liang et al., 2021). Therefore, continuous moni-
toring of CC is necessary for not only providing observation of crop 
development but also for irrigation management, weed control, fungi-
cide application, and crop modeling, etc. 

Many prior and current studies have used commercial plant canopy 
analyzers such as the LAI-2000 (LI-COR Biosciences, Lincoln, NE, U.S.) 
to obtain leaf area index (LAI) (Norman et al. 1995; O’Neal et al., 2002; 
Malone et al., 2002; Colaizzi et al. 2010, 2012; Hoffman et al. 2016; 
Yang et al. 2018). CC can be calculated with LAI and zenith angle (Eqn. 
(1)). 

CCLAI = 1 − exp
(
− 0.5LAI
cos(θ)

)

(1) 

where CCLAI is the fraction (dimensionless, between 0 and 1) of CC 
appearing in the field of view, θ is the zenith angle of LAI meter, and LAI 
is leaf area index. To obtain CC, many studies (Colaizzi et al. 2010; Yang 
et al. 2018; Liang et al. 2021) have conducted manual LAI measurement 
once every other week or even once a month. Despite infrequent mea-
surements by LAI, moreover, it is difficult to obtain LAI at early crop 
development stages since canopy can be too small for the proper use of 
LAI meter. In addition, such manual measurement of LAI is technically 
complex and labor intensive, and it is impossible to continuously mea-
sure CC in the field to account for the variations and dynamics of CC 
along the crop growth cycle. 

Image processing has been used as an effective tool for analyses in 
various crops and applications. In recent years, several studies have used 
image processing to assess features of crop canopies for different pur-
poses, such as determining fertility requirements, disease detection, 
smart spraying, and yield estimation (Diago et al., 2012; Hitimana and 
Gwun, 2014; Masood et al., 2016). Canopeo, an image processing tool, 
was developed using Matlab (The MathWorks Inc., Massachusetts, U.S.) 
and is based on color ratios of red to green (R/G), and blue to green (B/ 
G), and an excess green index (2G-R-B) to determine CC (Patrignani and 
Ochsner, 2015). This online tool uses color classification techniques in 
the RGB color spectrum to distinguish canopy from background (e.g. 
soil) in images. However, image overexposure and soil under shadow 
were not considered in Canopeo, resulting in overestimation of CC when 
crops reach full CC (Buchi et al., 2018). To estimate the CC more 
accurately from images, supervised classification has been used in 
research studies (Chena et al., 2010; Diago et al., 2012; Liang et al., 
2018; Liang et al., 2021). Several statistical measurements of similarity 
between groups, in terms of multiple characteristics, have been pro-
posed, such as Kolmogorov’s variation distance, Bhattacharyya distance, 
and Mahalanobis distance (Devroye et al., 1996). Mahalanobis distance 
(Md) classification is widely used for pattern recognition and data an-
alyses when groups have different means but similar standard deviations 
(Devroye et al., 1996) and is most suitable in image processing for 
precision agriculture (Chena et al., 2010; Diago et al., 2012; Liang et al., 

2018; Liang et al., 2021). Chena et al. (2010) extracted 28 color features 
from corn imagery using Md for identifying five Chinese corn varieties at 
a success rate of 90 %. Diago et al. (2012) extracted 40 color features in 7 
color groups and used Md to determine each pixel from image belongs to 
which color group to characterize grapevines, leaves, and background. 
The results showed a performance of 92 % effectiveness for leaves and 
98 % effectiveness for grapes. Liang et al. (2018) extracted 180 colors in 
8 groups and showed a performance of 96 % for detection of soybean 
leaves using Md classification. The Md supervised classification was able 
to separate soybean leaf color from background and determine the 
soybean leaf pixel numbers to determine soybean defoliation caused by 
insect damages. 

Current image processing techniques require images to be trans-
mitted or downloaded for either server- or local processing. However, 
CC images can range ~ 1–4 Mb in size and it can be infeasible to transmit 
such images frequently due to high bandwidth requirement and costly 
telemetry fees. An alternative solution is to leverage edge-computing to 
reduce data package size and utilize low-cost Internet of Things (IoT) 
telemetry for low-cost and near real-time data transmission. Due to data 
transferring with limited network performance, the centralized cloud- 
computing structure becomes inefficient for processing and analyzing 
huge amounts of data and images collected from IoT devices. Edge 
computing can reduce the loads of computing tasks of the centralized 
cloud by conducting computation at edge IoT devices. At each edge- 
computing IoT device, images can be processed and only edge- 
processed data are transmitted to cloud server, and therefore greatly 
reduces data package size (Chen et al., 2018). 

Long range wide area network, or LoRaWAN, is one of the data 
transmission protocols that has been rapidly developing for many IoT 
applications. With one LoRaWAN gateway, it has the capability of 
connecting to a large number of battery-powered sensors at low energy 
consumption with transmission range up to 15 km in suburban areas 
(LoRa Alliance, 2015; Adelantado et al. 2017). The limitation of LoR-
aWAN is that its data transmission rate is much lower than traditional 
telemetry, at a maximum speed of 27 kb/s (Adelantado et al. 2017) and 
therefore not suitable for directly transmitting high-volume data such as 
CC images. However, if images are pre-processed and stored onsite, and 
only processed results are transmitted, the size of data package would 
reduce from ~ 4 Mb to 2–3 kb which will be suitable for LoRaWAN. 
Hence, the objective of this paper was to develop an edge-computing 
camera device, named CanopyCAM that can continuously monitor CC 
for DEBs. Detailed objectives included: 1) develop an algorithm to es-
timate CC from Red-Green-Blue (RGB) imagery; 2) develop a ground- 
based edge-computing node that can take CC images, store and pro-
cess images onsite, send processed CC value through LoRaWAN 
network, and display at an in-house programmed website 
(http://phrec-irrigation.com/); 3) evaluate performance of the software 
on determination of CC versus LAI meter derived CC; 4) refine the CC 
algorithm to filter out abnormal images; and 5) identify key CC infor-
mation such as max canopy cover (CCmax) and duration of CCmax 
(tmax_canopy) and evaluate its relationship with yield of DEBs. 

2. Materials and methods 

The sections discussed below included hardware and software of 
CanopyCAM, followed by description of field sites, data collection pro-
cedures, and finally data evaluation procedures. 

2.1. CanopyCAM – Hardware development and processing framework 

The processing framework was shown in Fig. 1, where it started from 
CanopyCAM designed to acquire, store, and process images at 15 min 
sampling intervals from 7:00 am to 7:00 pm on a daily basis. Then the 
device sent processed CC percentage by CanopyCAM (CCCanopyCAM) 
through nearby gateways to a cloud server and then displayed the results 
at a customized visualization platform (https://phrec-irrigation.com). 
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As shown in Fig. 2c, CanopyCAM consisted of a Raspberry Pi 4 
computer (Raspberry Pi foundation, U.K.), a battery, a PiJuice HAT 
power management board (Pi Supply, U.K.) that manages sleep and 
wake schedules, a solar panel, a Raspberry Pi camera module V2-8 
megapixel RGB camera (2592 × 1944 pixels), Raspberry Pi LoRa node 
pHAT (Pi Supply, U.K.), and an external 915 MHz LoRa antenna (Laird 
Connectivity, Akron, OH, U.S.). It also had a DC to DC voltage regulator 
to convert the voltage coming in from the solar panel to 9 V (+/- 0.9 V) 
to the power management board. The mounting height of CanopyCAM 
for dry beans was determined to be 1.4 m aboveground facing north, 45 
degrees off nadir-view for best image qualities (Fig. 2a, 2b). Algorithm 
was programmed on Raspberry Pi and images were processed onsite to 
calculate CCCanopyCAM. The CCCanopyCAM values and other variables such 
as the battery status were then converted to encoded HEX value which 

were then transmitted to nearby LoRaWAN gateways. 

2.2. Experiment site and data collection 

In this study, six CanopyCAMs were deployed at three DEBs research 
plots at the University of Nebraska-Lincoln, Panhandle Research and 
Extension Center (PHREC) in Scottsbluff, NE (41◦53′34.93′′N, 
103◦41′2.04′′W, elevation 1189 m), and three commercial dry bean 
fields in Henry and Mitchell, NE, in 2021 (Table 1). Each field or plot 
had one CanopyCAM installed at a representative location. The three 
CanopyCAMs at PHREC were installed in fully irrigated dry bean 
research plots. The fully irrigated plots were meant to fully satisfy crop 
water needs by carefully scheduling irrigation events to make sure crops 
were not water stressed. The commercial fields were assumed to be fully 

Fig. 1. Proposed processing framework to acquire and process Canopy Cover (CC) images, transmit the CC percentages through LoRaWAN gateways to a cloud 
server, and report the results via a cutomized website in this study. 

Fig. 2. a. CanopyCAM 3d illustration. b. CanopyCAM installed in field in 3d-printed casing. c. processing hub for CanopyCAM that includes raspberry pi 4 board, 
battery, pijuice power management board, dc to dc voltage regulator, transmissing module raspberry Pi LoRa pHAT. 
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irrigated according to on-site soil water sensor data (data not shown), 
but they were subjected to different field conditions and management 
practices. The climate at both research and commercial farms is semi- 
arid with average annual rainfall of 398 mm. Great Northern Beans 
were planted at 56 cm row spacing on June 1, May 27, and May 20 of 
2021 at PHREC, Henry, and Mitchell, respectively. The seeding rates 
were 210,035 seeds ha− 1, 217,836 seeds ha− 1, and 217,448 seeds ha− 1 

at PHREC, Henry, and Mitchell, respectively. The nitrogen application 
rates were 85.1 kg ha− 1, 89.6 kg ha− 1, and 89.7 kg ha− 1 at PHREC, 
Henry, and Mitchell, respectively. The soil textures were sandy loam, 
sandy loam, and sandy clay loam at PHREC, Henry, Mitchell, respec-
tively. Beans were harvested with a commercial combine (John Deere 
9500, John Deere, Moline, Illinois, U.S.) equipped with Global Posi-
tioning System (GPS) enabled yield monitor (Ag Leader Insight yield 
monitor, Ag Leader Technology, Inc., Ames, Iowa, U.S.) at research 
plots. Yield at commercial farms were obtained from weigh scale at 
grain elevators. Dry edible beans were harvested on 9/27/2021 at three 
research plots (R-1, R-2, and R-3), 9/10/2021 at commercial field 1 (C- 
1), 9/16/2021 at commercial field 3 (C-3), and 9/21/2021 at com-
mercial field 2 (C-2) (Table 1). In addition to CC images, leaf area index 
(LAI) was manually taken twice a week at the same location of the three 
CanopyCAM installed at research plots (R-1, R-2, and R-3) using LAI- 
2000 (LI-COR Inc., Lincoln, U.S.). LAI values were converted to CC, 
termed as CCLAI using Eqn. (1), and were used as reference CC. Simul-
taneously, a commercial RGB camera (Sony Cyber-shot DSC-RX100, 
Sony Corporation, Tokyo, Japan) was used to take images at the same 
height as CanopyCAM with the same shooting angle. Manual images and 
LAI were collected at the same time at each plot around solar noon 
(11:00 AM – 2:00 PM) to guarantee data and image quality. Each image 
taken by the handheld camera was compared with nearest timestamp 
image taken by CanopyCAM. The manual images also served as refer-
ence images which can be quality controlled. 

2.3. CanopyCAM – Software development 

2.3.1. Determination of canopy cover percentage – Crop canopy image 
analyzer (CCIA) 

As mentioned earlier, CanopyCAM took images at every 15 min from 
7:00 am to 7:00 pm on a daily basis during July and August in 2021 
growing season. Thirty representative canopy images from research 
plots (R-1, R-2, and R-3) during different growth stages were randomly 
selected to classify color groups and train an in-house designed software 
crop canopy image analyzer (CCIA) for estimating CCCanopy_CAM. CCIA 
utilized a supervised classifier based on Mahalanobis distance (Md) 
method to estimate CC, which was used to determine soybean leaf area 
(Liang et al. 2018) and DEBs leaf area (Liang et al. 2021). The Md (Eqn. 
(2)) measured the similarity between an unknown sample group and a 
known sample group. 

Md =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(X − Y)TS− 1(X − Y)
√

(2) 

where X is a three-dimensional vector (R, G, B), which represented 
pixels from the image to be processed. Y is a three-dimensional vector 

(R, G, B), which represented the average of reference pixels (reference 
group) for each class to be identified. The Mahalanobis color distance 
standardizes the influence of the distribution of each feature considering 
the correlation between each pair of terms. In the case of RGB color 
images, S is computed as (Eqn. (3)): 

S =

⎡

⎣
σRref Rref σRref Gref σRref Bref

σGref Rref σGref Gref σGref Bref

σBref Rref σBref Gref σBref Bref

⎤

⎦ (3) 

and as an example, the elements of S are calculated as: 

σGref Rref = σRref Gref =

∑n
i=1(Ri − R)(Gi − G)

n − 1
(4) 

where σ is covariance of R, G, B reference group colors, Ri, Gi, Bi are 
the values of the ith match (i = 1, 2, 3, ….n), and R, G, B are the mean 
color values for R, G, B in the given image, respectively. 

In this study, eight reference groups of pixels were selected to 
generate the classification, in which every group represented relevant 
characteristics of dry bean leaves and background classes, as well as 
installation environment of CanopyCAM. The eight groups were iden-
tified as: light green leaves, light yellow leaves, dark green leaves, 
greyish green leaves, shadow, light-colored soil, deep-colored soil, and 
silver-colored metal post on which CanopyCAM were attached. If any of 
these classes were not present, or a new class appeared on the image, the 
number and/or the group labels would be modified. Each reference 
group was manually selected from a set of 30 canopy images and a set of 
20–30 color pixels with R, G, B, values in each reference group was 
chosen. The 30 canopy images were used to train CCIA so pixels could be 
classified into the right color group. After training CCIA, Md was 
computed over a set of 11,206 images from the six CanopyCAM devices 
installed during the 2021 growing season. CCIA was written in C++

programming language (Stroustrup, 1995) and was programed on 
CanopyCAM since Raspberry Pi lacks GPU and has limited computation 
power. After images were processed in CanopyCAM, the outputs of 
canopy pixels, background pixels, battery power, and CCCanopyCAM were 
transmitted to the IoT gateways and back to the cloud server. Identified 
CC were shown as pink color and the background was shown as original 
color in the output images. The CCCanopyCAM percentage was calculated 
using green area pixel number (NG) and background pixel number (NB) 
(Eqn.5). 

CCCanopyCAM =
NG

NG + NB
× 100% (5)  

2.3.2. Post-processing: Image filtering algorithm 
After evaluating the images from the six CanopyCAM units, it was 

noticed that the overall trend of CC development increased over time but 
there were large variations in daily readings. Upon inspection of the 
large daily variations of CCCanopyCAM, some were caused by images that 
were taken in poor lighting conditions (e.g. overexposure) that inter-
fered with the camera. Overexposure was caused when too much light 
hits camera’s sensor and resulted extremely bright images. An example 
of overexposed raw and processed images from CanopyCAM were 

Table 1 
Study sites and CanopyCAM node information.  

Site information 
ID Loc. Elev., m Planting Date Harvest Date Start Date1 End Date2 

R-1 PHREC 1189 6/1/2021 9/27/2021 6/28/2021 8/30/2021 
R-2 PHREC 1189 6/1/2021 9/27/2021 7/1/2021 8/24/2021 
R-3 PHREC 1189 6/1/2021 9/27/2021 7/1/2021 8/30/2021 
C-1 Mitchell 1200 5/20/2021 9/10/2021 7/15/2021 8/24/2021 
C-2 Henry 1231 5/27/2021 9/21/2021 7/16/2021 8/9/2021 
C-3 Henry 1231 5/28/2021 9/16/2021 7/16/2021 8/25/2021  

1 Images acquisition starting date. 
2 Images acquisition end date. 
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shown in Fig. 6. When images were overexposed, CCcanopyCAM were 
underestimated. Therefore, a 2-step filtering processes was created to 
filter out the overexposed images. First, images prior to 10:00 am and 
after 4:00 pm were filtered out because the sunlight could enter the 
camera lens at more parallel angles. Subsequently, the color intensity of 
each pixel of the images (Y) was calculated (Eqn. (6)), and when Y was 
greater than 224, the pixel was determined to be an overexposed pixel. If 
the percentage of overexposed pixels was greater than 50 %, or if the 
CCCanopyCAM percentage was increased or reduced by more than 10% 
compared to the previous image (indicating too much variation), the CC 
image was removed. 

Y = 0.299 × R+ 0.587 × G+ 0.114 × B (6) 

where Y is color intensity of the pixel, R is red color value, G is green 
color value, B is blue color value, and the values are between 0 and 255. 

2.4. Evaluation of CCCanopyCAM, CCLAI, and CCHandheld_Camera 

To determine the accuracy of CCCanopyCAM, root mean square error 
(RMSE) values for pairs of CCCanopyCAM versus CCLAI, and CCHandheld_Ca-

mera versus CCLAI, daily averaged canopy cover from CanopyCAM after 
post processing (CCave_CanopyCAM) images versus CCLAI were calculated 
using: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(E − M)
2
i

n

√

(7) 

where n is number of measurements; and E and M are estimated 
values (from CanopyCAM/handheld camera/average daily Can-
opyCAM) and measured values (from LAI), respectively. 

Average error for pairs of CCCanopyCAM versus CCLAI, and CCHand-

held_Camera versus CCLAI, daily averaged canopy cover from CanopyCAM 
after post processing (CCave_CanopyCAM) images versus CCLAI were 
calculated using: 

Average error =
∑

|E − M|

n
(8) 

where n is number of measurements; and E and M are estimated 
values (from CanopyCAM/handheld camera/average daily Can-
opyCAM) and measured values (from LAI), respectively. 

2.5. Determination of maximum canopy cover (CCmax) and its duration 
(tmax_canopy) 

In this study, we categorized the development of CC for DEBs into 
three stages. The first stage is mostly vegetative development when CC 
gradually increase to a maximum (CCmax). The second stage is mostly 
reproductive stage when CC remains nearly constant and dry beans are 
flowering and developing pods. The third stage is senescence when leaf 
starts to turn yellow, and CC starts to decrease as dry beans approach 
maturity. It should be noted that this categorization follows numerical 
value of CC rather than agronomically determined growth stage, as DEBs 
could be developing its canopy size while entering reproductive stage. 
The number of days that DEBs take to reach from planting to beginning 
of second stage is termed as t1 and is normally less or equal to 56 days 
after planting (NDSU, 2019). The duration of CCmax during the second 
stage, termed as tmax_canopy would continue for 15–40 days, depending 
on the beans variety, field environment, and management. The end time 
of CCmax is defined as t2, and the tmax_canopy is defined as t2-t1. It was 
hypothesized that the combination of CCmax and tmax_canopy would 
closely relate to yield of DEBs. The daily CCave_CanopyCAM was used for 
estimating t1 and t2. The generalized reduced gradient (CRG) algorithm 
and constraints (Eqns. (9) and (10)) in Microsoft Excel Solver (Microsoft 
Excel, Microsoft Corporation, 2018.) were used with nonlinear optimi-
zation to obtain the t1 and t2 at each CanopyCAM location. 

〈

t1 ≤ 56
t1 = integer

t1 ≥ initial day
(9) 

The CCmax is decreased after reproductive stage R8 (82 days after 
planting) (NDSU, 2019). The estimated CCmax was averaged during t2-t1 
interval. 

〈

t2 ≤ the harvest day
t2 = integer
t2 ≥ 82

(10)  

2.6. Statistical regression of dry edible beans yield 

Empirical model for yield of DEBs from research plots and com-
mercial fields were developed to evaluate statistical trends in the data. A 
simplified multiple variable regression analysis (using SAS procedure 
PROC REG) (SAS, 2014, Institute SAS Inc., Cary, NC) was used to 
generate linear regression for dry bean yield with CCmax and tmax_canopy. 

3. Results and discussion 

3.1. Performance of software 

Using current configuration of CanopyCAM, it took 2–3 seconds to 
process one image (resolution 2592 × 1944). Processed data were sent 
through nearby LoRaWAN gateways and saved on server’s database and 
shown at a customized reporting website. An example of CanopyCAM 
reported original CCCanopyCAM at R-1 on the website is shown in Fig. 3. 

At the three research sites: R-1, R-2, and R-3, CanopyCAM collected a 
total of 2422, 2238, and 2394 images, respectively (Table 2). At com-
mercial farms: C-1, C-2, and C-3, CanopyCAM collected a total of 1483, 
1041, and 1628 images, respectively (Table 2). CanopyCAM collected 
fewer images at commercial farm fields than research plots since they 
were deployed later and retrieved earlier to avoid interference with 
growers’ planting/spraying/harvesting operations. Table 2 also listed 
standard deviation of daily CCCanopyCAM readings. It was assumed that 
CC should remain constant during the day and standard deviation (SD) 
was computed for daily CCCanopyCAM readings (Table 2). Original CCCa-

nopyCAM showed large variation during the day with SD as much as 22.1 
% (Table 2, R-1 plot). An example of dry bean canopy (raw and pro-
cessed images, taken on 7/7/2021 at R-1) during vegetative stage taken 
by CanopyCAM was shown in Fig. 4. While Fig. 5 showed an example of 
dry bean canopy (raw and processed images, taken on 8/27/2021 at R- 
1) during senescence stage when dry beans were ready to be harvested. 
It was observed that dark-colored soil pixels, crop residual pixels, and 
shadows pixels were properly classified and filtered (Fig. 5). The clas-
sifiers for eight reference groups performed well without any adjust-
ments of contrast, brightness, or color. However, as mentioned in the 
material and methods section, overexposed images were also noticed 
(Fig. 6). Overexposure resulted underestimation of CCCanopyCAM. For 
example, at R-1, CanopyCAM reported CC of 26 % on 7/22/2021 
(Fig. 6), a decrease from 37 % reported on 7/7/2021 (Fig. 4). Since it 
was still during vegetative stage, CCCanopyCAM on 7/22/2021 should be 
larger than CCCanopyCAM on 7/7/2021. Post-processing algorithm 
(described in 2.3.2) was applied to all CanopyCAM images downloaded 
from the six CanopyCAMs. Post processing has effectively reduced SD of 
daily CCCanopyCAM readings to 2.2–7.5 % (Table 2). 

As shown in Fig. 7a-c and Fig. 8a-c, it further demonstrated large 
daily variations of original CCCanopyCAM (black hollow circles) due to 
overexposure and other possible abnormal lighting conditions. The CC 
images were not available for C-2 after August 10th due to battery power 
and LoRa signal issues (Fig. 8b). The post-processing process removed 
most of the daily variations and provided more reasonable CC curves for 
CC development (Fig. 7a-c and Fig. 8a-c, red solid dots). The commercial 
farms also exhibited different CC trends as C-1 (Fig. 8a) appeared to 
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have larger CC than C-2 (Fig. 8b) and C-3 (Fig. 8c). This was possible due 
to soil texture at C-1 was sandy clay loam, which had better water 
holding capacity compared to C-2 and C-3 with sandy loam soil. Also, C- 
1, C-2, and C-3 belong to different growers and could subject to different 

management practices and therefore exhibited different CC patterns. 
Lastly, white mold disease was found at C-3 and caused lower CC at C-3 
compared to C-1 and C-2. 

Before evaluating performance of CanopyCAM, CC recognized from 
images taken using handheld camera (CCHandheld_camera) were evaluated 
against CC from LAI (CCLAI). Images from handheld camera were 
considered to have the best image quality and were processed using the 
same software (CCIA) that was programmed on CanopyCAM. Good 
agreement between CCHandheld_camera with CCLAI would indicate good 
performance of CCIA and confirm confidence with the algorithm. A total 
of 41 pairs of CCHandheld_camera with CCLAI collected from 7/2/2021 to 8/ 
24/2021 at R-1, R-2, and R-3 research plots were compared (n = 41). 
The average error between CCHandheld_camera and CCLAI was 2.0 %, and 
RMSE and R2 were 2.64 % and 0.99, respectively (Fig. 9a). This indi-
cated good performance of CCIA when image quality was satisfactory. 
To evaluate performance of canopy cover from CanopyCAM (CCCanopy-

CAM) versus CCLAI, CCCanopyCAM that was collected at the same time as 
LAI measurements were used. As shown in Fig. 9b, the average error 
between CCCanopyCAM and CCLAI was 2.3 %, and RMSE and R2 were 2.95 
% and 0.99, respectively. This confirmed satisfactory performance of 
CanopyCAM. Furthermore, daily CCCanopyCAM after the two filtering 
processes were averaged at each CanopyCAM location (CCave_CanopyCAM) 
and were compared with CCLAI. As a result, error and RMSE of CCave_-

CanopyCAM with CCLAI slightly increased to 5.7 % and 4.05 %, respec-
tively; R2 also slightly dropped to 0.98 (Fig. 9c). It was noticed that at 

Fig. 3. Continuous canopy cover percentage of original images captured using CanopyCAM at a fully-irrigated dry edible research plot at R-1, Panhandle Research 
and Extension Center, University of Nebraska-Lincoln. 

Table 2 
Number of original and post-processed images, as well as standard deviations 
(SD) of daily canopy cover (CC) readings at each site.  

Site Image       
#1 SD4 #2 SD5 #3 SD6 

R-1 2422 6.8–22.1 % 1509 5.2–14.2 % 1325 2.4–6.8 % 
R-2 2238 6.2–19.8 % 802 5.8–13.1 % 688 2.3–5.9 % 
R-3 2394 7.1–20.3 % 956 6.7–13.8 % 852 2.2–5.8 % 
C-1 1483 5.9–18.7 % 702 4.3–12.8 % 649 2.7–5.3 % 
C-2 1041 6.4–19.2 % 530 5.2–13.7 % 512 2.5–4.6 % 
C-3 1628 4.7–15.3 % 469 4.2–11.5 % 463 2.8–7.5 %  

1 Number of images downloaded from CanopyCAM at each site. 
2 Number of images applied 1st step filter process which is time-based 

filtering. Images collected prior to 10:00 am and after 4:00 pm were filtered. 
3 Number of images applied 2nd step filer process which is lightness-based 

filtering. 
4 Standard deviation of daily original CCCanopyCAM readings. 
5 Standard deviation of daily CCCanopyCAM after 1st step filter process was 

applied. 
6 Standard deviation of daily CCCanopyCAM after 2nd step filter process was 

applied. 

Fig. 4. An example of original and processed canopy cover (CC) image collected by CanopyCAM at R-1 on July 7, 2021.  
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lower CC, CCave_CanopyCAM was lower than CCLAI. This was possibly due 
to variations occurred during the senescence stage as leaves were yel-
lowing before harvest. The color of deep yellow group could be added to 
CCIA and could potentially solve this issue. However, the underesti-
mation was marginal and was not addressed in this study. Overall, 
CCCanopyCAM, CCHandheld_camera, and CCave_CanopyCAM all provided satis-
factory estimation of CC compared to CCLAI. 

3.2. Evaluation of CCmax and tmax_canopy 

After satisfactory performance of CanopyCAM was obtained, 
maximum CC (CCmax) and duration of maximum CC (tmax_canopy) were 
estimated using CRG algorithm and constraints (Eqns. (9) and (10)). 
Daily CCave_CanopyCAM were used to estimate t1, t2, averaged CCmax, and 
tmax_canopy. Fig. 10 provided an example of estimating t1 using CRG al-
gorithm and constraints (Eqn. (9)) at R-1 field. The t1, t2, average CCmax, 
tmax_canopy, and yield of the six fields were listed in Table 3. The CCmax 
and tmax_canopy were not available at C-2 due to the limited number of 
images and CRG algorithm could not be applied. The average CCmax of 
R-1, R-2, R-3, C-1, and C-3 were 77 %, 71 %, 79 %, 82 %, and 53 %, 
respectively (Table 3). Fig. 11 showed the pictures of CCmax at six fields 
on 8/9/2021. As C-2 lost power on 8/10/2021, CC image taken on 8/9/ 
2021 was extracted for visual comparison, but it was not used in the 
subsequent analysis. The tmax_canopy at R-1, R-2, R-3, C-1 and C-3 were 
33, 28, 15, 19, and 15 days, respectively (Table 3). During 2021 growing 
season, the dry edible beans yield of R-1, R-2, R-3, C-1, C-2, and C-3 were 
436, 315, 329, 403, 322, and 248 kg ha− 1, respectively. Many literature 
have supported that CC is closely related to yield of crops such as corn 
(García-Martínez et al., 2020) and soybean (Schmitz et al., 2021). In this 
study, visual inspection has shown that when CCmax of dry edible beans 
was larger, yield was higher (Fig. 11 and Table 3). Interestingly, 
although CCmax at R-1 and R-3 were similar, tmax_canopy at R-1 (33 d) 

were much longer than R-3 (15 d). As a result, yield at R-3 (329 kg ha− 1) 
was lower than R-1 (436 kg ha− 1). At commercial farms, CC at C-3 was 
the lowest. By examining CanopyCAM images, white mold disease was 
suspected to occur at C-3 after flowering with some dead leaves and 
bleached white tissues (Fig. 11 C-3). White mold, caused by the path-
ogen Sclerotina sclerotiorum, is one of the most important diseases 
affecting dry edible beans in western Nebraska (Harveson et al., 2013). 
The incidence and severity of white mold can be sporadic year to year 
with possible yield losses reaching 20 % on average (Harveson et al., 
2013). Infected stems and branches affected plant parts to wilt and die, 
resulting in a dried bleached appearance (Fig. 11, C-3). Later, personal 
communication with the grower confirmed the occurence of white mold 
at the C-3 field. 

As previously mentioned, tmax_canopy could be another parameter 
related to yield of dry edible beans. To our best knowledge, tmax_canopy 
for DEBs is not available in the literature, possibly due to the inability to 
monitor CC frequently or continuously either using LAI meter, drone, or 
satellite images. Yet, many studies have used drone or satellite images to 
estimate CC using normalized difference vegetation index (NDVI) and 
fractional green canopy cover (FGCC) to correlate CC and yield potential 
at certain times of crop growing stages (Garcia-Martinez et al., 2020; 
Reed et al., 2021; Tenreiro et al., 2021). Discrete monitoring (bi-weekly 
or monthly) of CC using drone or satellite images has been a popular 
method to determine the relationship between CC and yield, but it does 
not account for the duration of maximum CC. Fig. 12a and Fig. 12b 
showed correlation of CCmax with yield (R2 = 0.58) and tmax_canopy with 
yield (R2 = 0.45) when they were individually considered. After con-
ducting a multiple variable regression analysis, by considering CCmax 
and tmax_canopy together, the correlation with yield was improved (R2 =

0.77, Adjusted R2 = 0.62). It should be noted that the multiple linear 
regression of yield among CCmax and tmax_canopy was not significant (p- 
value greater than 0.05) due to the small sample size (n = 5). It should 

Fig. 5. An example of original and processed canopy cover (CC) image collected by CanopyCAM at R-1 on August 28, 2021.  

Fig. 6. An example of original and processed overexposed canopy cover (CC) image collected by CanopyCAM at R-1 on July 22, 2021.  
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also be noted that the improved R2 doesn’t mean CCmax and tmax_canopy 
were correlated with dry bean yield, at least based on this study’s re-
sults. Rather, the results here are used to show CCmax and tmax_canopy can 
be extracted based on CanopyCAM and demonstrate its potential 
applications. 

3.3. Comparison of different canopy sensing design with CanopyCAM 

In recent years, several studies have used image processing and edge- 
computing concept to determine NDVI, canopy cover, and crop condi-
tion (Kim et al., 2019; Chamara et al., 2021; Taylor and Browning, 
2022). Kim et al. (2019) developed a Smart Surface Sensing system (4S) 
that monitor canopy color, vegetation index, leaf area index, and frac-
tion of absorbed photosynthetically active radiation (fPAR) at rice 
paddy site using Raspberry Pi with a camera, multi-spectral spectrom-
eter, and Wi-Fi for processed data transmission. Compared to Kim et al. 
(2019), CanopyCAM used LoRaWAN rather than Wi-Fi. The processed 
results were displayed near real-time at our in-housed website. In 

addition, CC from CanopyCAM achieved higher performance (RMSE and 
R2 were 2.95 % and 0.99 compared to CC derived from LI-COR LAI; R2 

was 0.76 in Kim et al. (2019) compared to Li-COR LAI derived CC). 
Chamara et al. (2021) developed a soybean leaf detection algorithm 

using Deep Convolutional Neural Network (DCNN) and RGB images 
collected in 30 days using Rapsberry Pi based camera devices. The image 
taken from the field was reduced from 1920 × 1080 resolution to 512 ×
512 resolution to reduce image processing time. They also used LoR-
aWAN to transmit processed results. The accuracy of green pixel seg-
mentation using DCNN in Chamara et al. (2021) was 94 %. It was not 
clear how this accuracy value was obtained. While in this study, read-
ings from CanopyCAM were evaluated against a widely used LI-COR 
plant canopy analyzer with good performance. Compared to Chamara 
et al. (2021), using our algorithm and configuration of CanopyCAM, the 
image didn’t need to be compressed (image resolution is 2592 × 1944 
and can be higher if needed, current processing time 2 ~ 3 seconds). The 
higher resolution will also imply other uses in the future, such as disease 
detection, which would require more details from leaves. Furthermore, 

Fig. 7. From top to bottom, original and post-processed canopy cover by CanopyCAM at research plots: R-1 (a), R-2 (b), and R-3 (c).  
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Fig. 8. Original and post-processed canopy cover by CanopyCAM at commercial farms: C-1 (a), C-2 (b), and C-3 (c).  

Fig. 9. A. comparison between canopy cover percentage (CC) estimated from LI-COR LAI2000 (ccLAI) and estimated CC with handheld camera using Crop Canopy 
Image Analyzer (CCHandheld_camera). RMSE = 2.64 %, p < 0.01, n = 41; b. comparison between CCLAI and estimated CC using CanopyCAM (CCCanopyCAM). RMSE =
2.95 %, p < 0.01, n = 41; c. Comparison between CCLAI and estimated daily averaged CCCanopy_CAM (CCave_CanopyCAM). RMSE = 4.05 %, p < 0.01, n = 41. Dotted line is 
1:1 line. 
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compared to Chamara et al. (2021), our algorithm was fully developed 
in house based on different classes of color groups using Mahalanobis 
distance equation and can be easily customized for different situations. 
In addition, LoRaWAN-based data transmission in our study was tested 
in commercial farm settings, where Chamara et al. (2021) tested it in a 
research farm setting. Lastly, our results can be readily displayed at an 
in-house developed website and that be viewed by growers and 
researchers. 

Taylor and Browning (2022) developed a PhenoCAM that automat-
ically classify crop phenology, flooded condition and snow-covered 
fields. Our study focused on continuous monitoring of crop CC rather 
than crop phenology or field conditions, and thus is different than Taylor 
and Browning (2022). Also, it is not clear how hardware was set up in 
Taylor and Browning (2022), or how data was transmitted and 
displayed. 

In summary, compared to previous studies, this research is unique in 
several aspects: 1) CanopyCAM is a complete solution with hardware 
and software that can determine crop CC continuously with high accu-
racy and has been tested at both research and commercial dry bean 
fields; 2) The algorithm of CanopyCAM was fully developed in house 
based on different classes of color groups using Mahalanobis distance 
equation and can be easily adjusted to accommodate different situa-
tions; 3) Canopy cover from CanopyCAM has been compared against 
commercial device (LI-COR plant canopy analyzer) and achieved good 
performance, and 4) The results can be displayed near real-time at our 
in-housed programmed website for visualization. 

4. Conclusions 

This study described the development of software, hardware, and 
visualization for a IoT edge-computing device – CanopyCAM, that could 
monitor dry edible beans CC continuously throughout the growing 
season. The device provided accurate CC readings which could be used 
by growers and researchers for different purposes. The edge-computing, 
IoT enabled capability of CanopyCAM, also provided simple, low-cost 
method to report readings at different user-end interfaces. Key find-
ings were:  

1. CanopyCAM was able to provide automatic, real-time, continuous, 
and accurate CC readings. Among the six deployed CanopyCAM 
devices during the 2021 growing season, the RMSE of post-processed 
CCCanopyCAM for each day was 2.2–7.5 % as compared to CCLAI with 
R2 of 0.99. 
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Fig. 10. An example of estimating t1 using CRG algorithm and constraints at R- 
1 field. Orange line represented increasing CC of the 1st stage, and red line 
represented CC of the 2nd stage. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Estimated average CCmax and tmax_canopy of six fields.  

Loc. t1 t2 Average CCmax, 
% 

tmax_canopy, d Yield, kg 
ha− 1 

R-1 48 (7/ 
18) 

80 (8/ 
19) 

76.6 33 436 

R-2 53 (7/ 
23) 

80 (8/ 
19) 

70.7 28 315 

R-3 61 (7/ 
31) 

75 (8/ 
14) 

78.5 15 329 

C-1 63 (7/ 
28) 

84 (8/ 
18) 

82.2 22 403 

C-2 N/A N/A N/A N/A 322 
C-3 79 (8/6) 93 (8/ 

20) 
53.0 15 268 

t1: days after planting to beginning of maximum canopy cover, and the date 
shown in parentheses. 
t2: days after planting to end of maximum canopy cover, and the date shown in 
parentheses. 
tmax_canopy: duration between t1 and t2. 
Average CCmax: Average maximum canopy cover during tmax_canopy. 

Fig. 11. Maximum canopy cover (CCmax) obtained from CanopyCAMs and yield of the six fields.  
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2. Based on the continuous monitoring of CC, parameters such as CCmax 
and tmax_canopy can be extracted and can be potentially used for 
different purposes. 

Although good performance of CanopyCAM was achieved, there are 
few limitations. CanopyCAM is still a ground-based, point-sourced 
measurement device. For large-scale commercial fields, CanopyCAM 
faces the same challenges as other commercially available ground- 
based, point-sourced devices such as soil moisture sensors in terms of 
field heterogeneities from soil types, management, and other environ-
mental variables. Several future work are proposed: 1) redesign the 
camera casing and add lens hood using 3D printed materials to physi-
cally reduce overexposure of images and increase number of usable 
images; 2) adjust camera settings of CanopyCAM to allow more usable 
images; 3) broaden the use of CanopyCAM to include disease recogni-
tion, weed detection, and crop water use calculation; 4) test CanopyCAM 
for other crops such as corn and sugar beets; 5) improve spatial reso-
lution of CanopyCAM by mounting CanopyCAM on irrigation system 
and integrate with GPS. 
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