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ABSTRACT

This paper presents designing sequence-to-sequence recurrent neural network (RNN) architectures for a novel
study to predict soil NOx emissions, driven by the imperative of understanding and mitigating environmental
impact. The study utilizes data collected by the Environmental Protection Agency (EPA) to develop two distinct
RNN predictive models: one built upon the long-short term memory (LSTM) and the other utilizing the gated
recurrent unit (GRU). These models are fed with a combination of historical and anticipated air temperature, air
moisture, and NOx emissions as inputs to forecast future NOx emissions. Both LSTM and GRU models can capture
the intricate pulse patterns inherent in soil NOx emissions. Notably, the GRU model emerges as the superior
performer, surpassing the LSTM model in predictive accuracy while demonstrating efficiency by necessitating
less training time. Intriguingly, the investigation into varying input features reveals that relying solely on past
NOx emissions as input yields satisfactory performance, highlighting the dominant influence of this factor. The
study also delves into the impact of altering input series lengths and training data sizes, yielding insights into
optimal configurations for enhanced model performance. Importantly, the findings promise to advance our grasp
of soil NOx emission dynamics, with implications for environmental management strategies. Looking ahead,
the anticipated availability of additional measurements is poised to bolster machine-learning model efficacy.
Furthermore, the future study will explore physical-based RNNs, a promising avenue for deeper insights into soil
NOx emission prediction.

KEYWORDS
Soil NOx emission; long-short term memory; gated recurrent unit; sequence-to-sequence

Nomenclature

GHG Greenhouse gas
NOx Nitrogen oxide
ANN Artificial neural network
RNN Recurrent neural network
DL Deep learning
LSTM Long short-term memory
GRU Gated recurrent unit
MAE Mean absolute error
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RMSE Root-mean-square deviation
R2 Coefficient of determination

Symbol

c cell state
C cell input activation vector
f forget gate’s activation vecto
h hidden state
r reset gate vector
t time step t
x input vector
y candidate activation vector
z update gate vector
σg sigmoid function
σh hyperbolic tangent function

1 Introduction

The primary greenhouse gases (GHG), including CO2, N2O, O3, and CH4, can directly contribute
to warming the earth’s atmosphere. Additionally, several other gases, especially nitrogen oxide (NOx
= NO + NO2), can indirectly affect atmospheric warming because NOx emission contributes to
the formation of tropospheric ozone (O3), a greenhouse gas. It has been shown that the increase of
tropospheric O3 is the third-largest indirect radiative forcing of climate change [1]. On the other hand,
NOx is an essential form of N trace gas that can be released from soils [2], especially fertilized soils.
“Smart”agriculture is expected to minimize NOx emission for GHG mitigation while maximizing crop
productivity under the constraints of NOx budget and energy consumption. Therefore, it is crucial to
predict soil NOx emissions.

Several works have been done to model and estimate soil NOx emissions based on satellite obser-
vations and chemistry transport models (CTMs). Yienger et al. [3] developed a widely used algorithm
to calculate global soil NOx emission in a temperature- and precipitation-dependent empirical model.
Also, they considered synoptic-scale modeling of NOx “pulsing” caused by the wetting of dry soil
and a biome-dependent scheme to estimate canopy recapture of NOx. Hudman et al. [4] presented
a parameterization of soil NOx emissions and implemented this mechanistic model within a global
chemical transport model (GEOS-Chem). In another work, Rasool et al. [5,6] developed a community
multiscale air quality (CMAQ) model, introducing a mechanistic, process-oriented representation of
soil emissions of N species. In addition, Wang et al. [7] improved soil NOx emission estimation using
a new observation-based temperature response that led to better CTM simulation to match NOx
observations.

Machine learning (ML), including supervised learning and reinforcement learning (RL),
has boosted data-driven research in many domains, including materials science [8] and robotics.
Verma et al. [9] proposed a fabricated heat exchanger using corrugated and non-corrugated pipes
and estimated the heat transfer performance. They also modeled an artificial neural network (ANN)
for predicting heat coefficient, Nusselt number, and Reynolds number.

Some data-driven models for estimating industrial NOx emissions have been reported. Xie
et al. [10] studied low NOx emission control in power plants. They proposed a sequence-to-sequence
dynamic prediction model to predict a future sequence of NOx emission from a selective catalytic
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reduction (SCR) system in the next time horizon. In another work, Yin et al. [11] developed a predictive
model to predict the NOx emission concentration at the outlet of boilers under different operating
conditions, including steady-state and transient-state conditions. Recently, Wang et al. [12] utilized
datasets from the distributed control system of a coal-fired power plant and developed a hybrid model
for accurate and reliable NOx concentration prediction. They employed complete empirical ensemble
mode decomposition adaptive noise (CEEMDAN) to decompose the original historical data into a
set of constitutive sequences. Then, a recurrent neural network (RNN) model was applied to predict
each component separately before integrating the results for the final prediction.

Since NOx emission data is time series data, employing RNNs [13] in the prediction models as
a data-driven approach is common. However, a naïve RNN suffers from issues of exploding and
vanishing gradients. If the neural network’s weights are updated too quickly (i.e., exploding), a slight
change in inputs may lead to high output variation. In contrast, if the weights are updated too slowly
(i.e., vanishing), it may stop the network from learning anything new. An improved RNN, called
long-short term memory (LSTM), was designed to resolve these issues [14] by learning long-term
dependencies between the network’s input and output. In other words, an LSTM could remember
both long-term and short-term patterns in the data. Therefore, the works mentioned above [10–12] in
predicting industrial NOx emissions mostly utilized LSTMs for estimating industrial NOx emissions.
On the other hand, Cho et al. [15] proposed a gated recurrent unit (GRU), maintaining the advantages
of LSTM but with fewer gates, which could be trained faster.

While the studies mentioned earlier have predominantly concentrated on industrial NOx emis-
sions, it is important to note that soil NOx emissions exhibit distinct patterns compared to their
industrial counterparts. These patterns are characterized by observable NOx emission pulses [2].
The complexity of these patterns might present challenges for conventional RNNs to recognize
effectively. This paper takes a pioneering step by introducing the concept of sequence-to-sequence
RNN architectures, aiming to predict soil NOx emissions. This initiative is driven by the pivotal
objective of understanding and mitigating the environmental impacts associated with such emissions.
Remarkably, this study marks the first-ever attempt to leverage the potential of deep learning (DL)
techniques for accurately predicting soil NOx emissions.

In addition to employing LSTM, we have developed and examined a novel neural network
architecture that incorporates GRU cells with attention mechanisms [16]. It is worth noting that the
proposed neural networks utilize an encoder-decoder model [10], where the encoder captures the
information of all input elements into a fixed-length context vector. At the same time, the decoder
learns contextual dependencies from the previous cells in the sequence. Therefore, this approach
enhances the model’s understating of contextual information by allowing the decoder to assign weights
to the context vector.

This paper is organized as follows: Section 2 describes the studied dataset and pre-processing.
Section 3 describes LSTM and GRU and presents RNN architectures with the attention mechanism.
The results are discussed in Section 4 with the studies of various input features, input series lengths,
and training data sizes, followed by the conclusions and future works.

2 Date Set and Pre-Processing

The data set we use in this study has been collected in Iowa by the Environmental Protection
Agency (EPA). The EPA deploys around 360,000 sensors in the United States to monitor air quality,
including criteria gases, particulates, meteorological, toxins, ozone precursors, and lead. Iowa has
three monitoring locations: the city of Des Moines, the city of Davenport, and a forest located at
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40°41’42.3” N, 92°00’22.7” W. It shall be noted that an essential factor in NOx emission is the soil
nitrogen content. However, the soil nitrogen content can be significantly varied because of using
nitrogen fertilizer, which depends on the agricultural management and farmer’s expertise. Therefore,
we choose the data from the forest to avoid interference from human factors.

Each data sample consists of the following features: Latitude, Longitude, Date GMT, Time
GMT, Sample Measurements, and Units of Measure. The measurements include air temperature
(Fahrenheit), air moisture (percent relative humidity or RH) NOx emission, CO emission, O3 emission,
and SO2 emission (parts per billion). While the dataset comprises numerous attributes, this study
selectively narrows down the features to be utilized based on the available measurements. Notably,
soil NOx emissions are prominently influenced by factors such as soil properties, soil temperature,
and soil moisture [7]. Unfortunately, the current dataset lacks these specific details. Given that air
temperature and moisture measurements can be correlated with soil temperature and humidity, our
study opts to employ these two variables in conjunction with NOx emissions as the primary features.

The data has been collected every 60 min, i.e., one hour, since 1980. We select the data from
January 2020 to September 2022 in this study. However, some data samples are missing due to sensor
malfunctions. We try to use averaging or data imputation to replace the missing data, but they smear
the NOx emission pulses. Since the whole data set is large enough, we drop the missing data and only
keep the data consecutive for long periods to generate data sequences. Consequently, we have a total
of 24096 data samples. Furthermore, we use data from 2020 to 2021, January to June 2022, and July to
September 2022 as the training, validation, and testing datasets, respectively. Fig. 1 shows the testing
set that has a total of 2116 data samples. It can be seen that there exist pulses that have been commonly
observed in soil NOx emissions [2].

Figure 1: Testing data from July to September 2022

3 Methodology

Recurrent Neural Networks are widely used in DL [16] to process sequential or time-series data.
However, the naïve RNN has difficulty in capturing long-term dependencies [17] because the gradients
tend to either vanish or explode during model training. Two main RNN variants, LSTM and GRU,
have been developed to address this issue.

3.1 LSTM

Long-short term memory was proposed initially by Hochreiter et al. [14] in 1997. Compared with
the naïve RNN model, the LSTM model introduces a cell state calculated from the previous cell state
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and the current forget and input gates. Generally, an LSTM cell takes the input vector xt at the current
time t and the hidden state ht−1 and the cell state ct−1 calculated from the previous time t−1. It outputs
the hidden state and the cell state, i.e., ht and ct, for the next time t + 1. Its basic structure is illustrated
in Fig. 2a. The operation formulas of an LSTM cell are presented below:

ft = σg(Wf ∗ xt + Uf ∗ ht−1 + bf ) (1)

it = σg(Wi ∗ xt + Ui ∗ ht−1 + bi) (2)

ot = σg(Wo ∗ xt + Uo ∗ ht−1 + bo) (3)

Ct = σh(WC ∗ xt + UC ∗ ht−1 + bC) (4)

ct = ft ⊗ ct−1 + it ⊗ Ct (5)

ht = ot ⊗ σh(ct) (6)

where ft is the forget gate’s activation vector, and it and ot are the activation vectors of input and
output gates, respectively. Ct denotes the cell input activation vector, σg (x) = 1/(1+e−x) is the sigmoid
function, and σh (x) = tanh (x) = (ex − e−x)/(ex + e−x) is the hyperbolic tangent function. In addition,
W , U , and b are weight matrices and vector parameters that need to be learned during training.

Figure 2: Basic structure of (a) a LSTM cell and (b) a GRU cell
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3.2 GRU

The concept of GRU was proposed by Cho et al. [15] in 2014. Fig. 2b illustrates the network
architecture of a GRU cell. Similar to LSTM, GRU also controls the information flow by “gates”.
However, a GRU cell has one less gate than an LSTM cell, and it decomposes a gating signal into
two components: a reset gate and an update gate. Since a GRU cell has only one forget gate without
the output gate, it has fewer parameters and is more straightforward to implement than LSTM. In
addition, it is easy to converge with limited data.

According to the principle of GRU, a typical mathematical model to process a data sequence can
be presented below:

zt = σg(Wz ∗ xt + Rz ∗ ht−1 + bz) (7)

rt = σg(Wr ∗ xt + Rr ∗ ht−1 + br) (8)

yt = σh(Wh ∗ xt + Rh ∗ (Rt ⊗ ht−1) + bc) (9)

ht = (1 − zt) ⊗ σh−1 + zt ⊗ yt) (10)

where zt denotes the update gate vector at time step t, rt is the reset gate vector, yt is the candidate
activation vector. In addition, σg and σh denote the sigmoid and hyperbolic tangent functions. W and
R are weight matrices, and bz, br, and bc are bias vectors. Similar to the LSTM cell, the input to this
GRU cell includes xt and ht−1 while the output is the hidden state ht that will be passed to the next
GRU cell. However, a GRU cell has no cell state, differing from an LSTM cell.

3.3 Encoder-Decoder

The RNN encoder-decoder is also used in this study. The encoder encodes the source time-series
sequence to a fixed-length vector, and the decoder maps the vector back to the target time-series
sequence [18]. The role of an encoder in the process is to handle the input sequence and condense
its information into a singular vector, commonly referred to as the “context vector”. Specifically, the
encoder operates repeatedly through the input sequence(s), adjusting its hidden state at each stage
based on the current input and the preceding hidden state. Once the entire sequence has been processed,
the final hidden state of the RNN encoder is utilized as the context vector, which intends to encapsulate
the input sequence’s information.

The decoder takes the context vector generated by the encoder(s) and transforms it into the target
sequence. The initial hidden state of the decoder is set to be the context vector from the encoder. The
decoder then generates the output sequence in a step-by-step manner, in which each step takes the
previous hidden state, i.e., the previously generated output [15], as the input.

3.4 Model Architecture and Training

Initially, we considered three input features in the DL models, including past and future air
temperature, past and future air moisture, and past NOx emissions, to predict future NOx emissions.
In order to reduce the interference of the NOx pulse on the prediction accuracy of the model, we used
four days of data as a training unit to forecast the coming NOx data in the next six hours. Therefore,
the temperature and moisture sequences consist of 96 past timesteps and 6 future timesteps, and the
input NOx emission sequence encompasses 96 past timesteps. The output sequence, i.e., the forecasted
future NOx emission sequence, has 6 timesteps. It shall be noted that the timestep is one hour in this
study.
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The architecture of our model is depicted in Fig. 3. The generated DL models consist of a single
hidden layer with 32 neurons (or units) representing the memory cells in the LSTM or GRU structure.
It shall be noted that we utilize grid search to find the optimal neural network. Some other neural
networks with more hidden layers and neurons can achieve similar performance but longer training
times. Since the lengths of temperature and moisture sequences differ from the length of the NOx
emission sequence in the input, the models include two encoders and one decoder, as described in
Section 3.3. We also implement an attention mechanism [19]. The reason for using attention is that it
allows the models to focus on different parts of the input for each step of the output sequence, thereby
improving their ability to capture dependencies between inputs and outputs. We also investigate the
performance of DL models that use past NOx emissions as the only input feature. In such an instance,
the encoders and decoders are not necessary.

Figure 3: The sequence-to-sequence-attension model architecture

We utilize the Keras library in conjunction with the Adam optimizer to train neural networks
using a learning rate of 0.002 and a batch size of 128. The training processes are conducted over 1000
epochs. In this study, we conduct the model training and testing using Python as the programming
language, hosted on a machine equipped with an Intel Core i7-12700 K processor, NVIDIA GeForce
RTX 3070 Ti graphics card, and 32 GB RAM.

4 Results and Discussions

In this section, we assess the performance of GRU and LSTM on the testing dataset and select
the model with better performance as our major experimental model. Then, we investigate the
performance of DL models using different input features and sequence lengths. We also study the
impact of training dataset size on the DL model performance. The mean absolute error (MAE),
the root-mean-square deviation (RMSE), and the coefficient of determination (R2) are used to evaluate
the model performance as different look-back values. The smaller the MAE and RMSE values, the
more accurate the forecast result is. On the other hand, R2 = 1 means the perfect fitting.

It shall be noted that future temperature and moisture must be predicted for the testing data before
evaluating model performances. Taking temperature prediction as an example, a simple LSTM model
is employed to take the temperature within the past 96 h as the input and predict the temperature in the
next 6 h. The predicted temperatures of the part of the testing data (from July 01, 2022 to July 31, 2022)
are compared to the actual ones in Fig. 4. We also use support vector machines for air temperature
and moisture predictions, and the models perform similarly well.
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Figure 4: The prediction of temperatures as part of the testing dataset. The top panel shows two months
of the results, while the bottom panel provides a zoom-in view of two weeks

After predicting the future temperature and moisture, we train LSTM and GUR models to predict
NOx emission. Fig. 5 illustrates the prediction from the GRU model, compared to the actual output
of the testing dataset. It can be seen that the GRU model can efficiently recognize the NOx emission
patterns, especially predicting the NOx emission pulses. The LSTM model also demonstrates good
performance, but the results are worse than the ones of the GRU models. After comparing the training
time and the MAE, RMSE, and R2 results, as shown in Table 1, we decide to use the GRU model for
other studies in this paper.

The original model uses past and future air temperatures, past and future air moisture, and past
NOx emissions as input features. The lengths of input air temperature and moisture sequences are
102 h, including the past 96 h (i.e., four days) and the future 6 h. Correspondingly, the length of the
input NOx emission sequence is 96 h from the past four days only. In addition, the original model
forecasted NOx emission in the next 6 h. We also employ the same GRU model to predict NOx
emission for the next 24 h. The MAE, RMSE, and R2 are 0.0522, 0.1053, and 0.90, respectively, similar
to the results in Table 1.
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Figure 5: The prediction of NOx emission in the testing dataset using the GRU sequence-to-sequence
attention model

Table 1: Comparison of GRU and LSTM models

Training time MAE RMSE R2

GRU model 15 min 0.0584 0.1002 0.9503
LSTM model 21 min 0.0672 0.1086 0.9348

We extend the original model to two variants using different input features. The first model uses
air temperature and moisture only, while the second model takes past NOx emission as the only
input. Both models do not use encoders because the input features have the same sequence length.
We also vary the input sequence length considering the past 3 days (i.e., 72 timesteps or hours) and
the past 7 days (i.e., 168 timesteps or hours) to investigate model performances. The same testing
dataset described above is utilized, and the comparisons are listed in Table 2. Here, we present the
NOx emission predictions generated by the DL model using air temperature and moisture as the sole
inputs, as depicted in Fig. 6. The comparison involves the actual outputs of the testing data recorded
between September 15 and 30, 2022. While the emission pattern is largely recognizable, it is important
to note that there are significant errors in predicting the magnitudes of NOx emission pulses. On
the other hand, Table 2 also shows that the NOx emission history plays an essential role in NOx
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emission predictions. Even taking NOx emission history as the only input, the model performances
are acceptable, compared to the original model, and much better than the DL models that use air
temperature and moisture as the inputs.

Table 2: Comparison of GRU models with different input features

Input features Length of past data sequences MAE RMSE R2

Air temperature and moisture 3 days (72 timesteps) 0.2005 0.2323 0.5915
4 days (96 timesteps) 0.2036 0.2411 0.6128
7 days (168 timesteps) 0.2048 0.2327 0.5798

NOx emission history 3 days (72 timesteps) 0.0594 0.1149 0.8921
4 days (96 timesteps) 0.0636 0.1122 0.8950
7 days (168 timesteps) 0.0619 0.1130 0.8871

Air temperature/moisture and 3 days (72 timesteps) 0.0598 0.0994 0.9236
NOx emission history 4 days (96 timesteps) 0.0584 0.1002 0.9503

7 days (168 timesteps) 0.0601 0.0932 0.9127

Figure 6: The prediction of NOx emission in the testing dataset using air temperature and moisture as
the only inputs

Initially, we use the data of 2020 and 2021, i.e., 24 months, as the training set. In this study, we also
investigate the size effect of the training set on model performance. Two different data sizes are utilized
for the training sets: 12 months (the year 2021 only) and 6 months (June to December 2021). The
validation and testing sets remain the same, as described in Section 3. After training, the DL models
are employed to predict NOx emission in the next 6 h in the testing set, and the results (MAE, RMSE,
and R2) are calculated in Table 3. The R2 score of the DL model, trained using 12 months of data,
notably reaches a high value of 0.8269. The predictive capability of this DL model is visually evident
in Fig. 7, where it demonstrates accurate forecasting of NOx emission pulses, akin to the original
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model showcased in Fig. 5. As a result, we can confidently infer that employing a 12-month dataset
for training yields satisfactory outcomes.

Table 3: Various sizes of the training set

Size of the training set MAE RMSE R2

24 months (17544 data) 0.0584 0.1002 0.9503
12 months (8760 data) 0.0624 0.0950 0.8269
6 months (4380 data) 0.0700 0.1162 0.6445

Figure 7: The prediction of NOx emission in the testing dataset using 12 months of data for training

5 Conclusion and Future Works

In this paper, we have introduced sequence-to-sequence attention neural network architectures
tailored for soil NOx emission prediction. Through a thorough comparison between the GRU and
LSTM models, we have demonstrated that the GRU model consistently outperforms the LSTM
counterpart in terms of forecasting accuracy. Moreover, our investigations into different input features
and various dataset sizes have yielded valuable insights. Notably, we have found that the model can
achieve commendable accuracy when trained on a 12-month data subset. A significant observation
from our research is the dominant role of NOx emission history in predicting future emissions. Our
DL model, which exclusively relies on past NOx emission records as input, has produced credible
predictions, even in the absence of air temperature and moisture data. This underscores the pivotal
importance of historical emission trends in shaping the accuracy of our predictions.

In our ongoing research, we will endeavor to expand our dataset to encompass fertilized soil data,
recognizing the pivotal role of nitrogen content in influencing NOx emissions. While our present study
has suggested that air temperature and moisture exhibit less significance as input features compared to
NOx emission history, we remain committed to delving deeper into the influence of soil temperature
and moisture. This exploration will be undertaken as new data sources become available, potentially
enriching our understanding of these factors.
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Our future efforts will also involve incorporating data related to irrigation and precipitation.
We believe that this supplementary information can significantly enhance our model’s predictive
capabilities, particularly in capturing NOx emission pulses with heightened precision and accuracy.
As we expand the number of available features, we will adopt feature selection strategies such as
leveraging Pearson correlation coefficients to ascertain the degree of inter-feature correlation [20].
Moreover, we are excited about the prospect of crafting a hybrid model that merges the strengths of
chemical transport models with data-driven approaches like physics-informed neural networks. This
innovative fusion offers an alternative avenue to improve our predictive accuracy. By integrating these
enhancements and novel techniques, we anticipate the development of a more refined predictive model
for soil NOx emissions, with a heightened focus on capturing intricated NOx pulse patterns.
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