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Abstract— The multiangle polarimetric (MAP) instruments

have been a focus of recent satellite missions dedicated to

enhanced detection of global aerosol microphysical properties.

Considering that satellite observations can hardly infer all the

unknowns of atmosphere and surface, it is crucial to know

how many and which aerosol parameters can be accurately

retrieved from these different MAP measurements as well as

their uncertainties. In this study, we present a comprehensive

insight into the information content of POLarization and Direc-

tionality of Earth Reflectance-3 (POLDER-3) and multiviewing,

multichannel, multipolarization imager (3MI) observations for

aerosol retrievals and estimate posterior errors of corresponding

parameters based on the Bayesian theory. The total degree

of freedom for signal (DFS) of aerosol retrievals is around

6–8 from POLDER-3 and is raised by ⇠1.8–3.5 with 3MI. The

retrieval accuracy of volume concentration and effective radius

is high (<4%) in the fine-dominant case for both POLDER-3 and

3MI but gets much lower (⇠8% and ⇠15%) in coarse-dominant

conditions. Furthermore, the advanced 3MI measurements can

upgrade the retrieval uncertainties of POLDER-3 by ⇠50%.

Though additional shortwave infrared bands of 3MI provide

more information regarding coarse particles, the influence of

aerosols on surface bidirectional reflectance distribution func-

tion (BRDF) leads to a decrease in the total DFS. With a

prior assumption that variations of refractive index depend on

wavelength, satellite retrieval accuracy of the real part (MR)

(<0.03) and imaginary part (MI) (<0.003) reaches close levels

with that of ground-based Sun photometers. Our results can

provide a fundamental reference for MAP satellite retrieval of

aerosol microphysical properties.
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(MAP) measurements, posterior errors, retrieval of aerosol

microphysical parameters.

I. INTRODUCTION

A
TMOSPHERIC aerosols are mixtures of small particles
with different sizes and components. By changing solar

radiation and modifying cloud properties [1], these tiny par-
ticles play a critical role in regulating energy balance and
hydrologic cycle of the Earth’s atmosphere system [2], [3].
Moreover, fine particles near surface at a high concentration
have adverse effects on public health, which have been proven
to have a robust correlation with morbidity and mortality
of respiratory and cardiovascular diseases [4]. Due to short
lifetimes (⇠hours to days) and complex emission sources,
the amount as well as physical and chemical properties of
aerosols vary largely over space and time [5], [6]. By now,
the climate and environmental effects of aerosols suffer from
considerable uncertainties due to largely the lack of accurate
information regarding different aerosol types at regional and
global scales [7].

Since the late 1990s, several dedicated satellite instru-
ments, such as Moderate Resolution Imaging Spectroradiome-
ter (MODIS), Multiangle Imaging SpectroRadiometer (MISR),
and POLarization and Directionality of Earth Reflectance
(POLDER), have been launched to monitor global aerosols
over land [8]. The satellite aerosol products have greatly
renewed knowledge of global aerosol emission sources and
hotspots. However, each satellite-measured signal at the top of
atmosphere (TOA) is from two complicated objects of aerosol
and surface, the angular and spectral backscattering of which
both need more than one unknown parameter to constrain.
Thus, priori assumption or simplification is usually adopted
in aerosol/surface scattering modeling and satellite aerosol
retrieval. Because of limited information, multispectral satel-
lite observation mainly retrieves aerosol optical depth (AOD)
with fixed aerosol models in lookup tables and precalculated
surface reflectance or their linear relationships. By contrast,
satellite measurements with additional multiangle polarimetric
(MAP) information can also retrieve aerosol size and refractive
index by optimized fitting with iterative calculation of radiative
transfer model [9]. Despite the obvious sensitivity to aerosol
optical/microphysical properties, it is crucial to determine
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which parameters can be accurately inversed from specific
MAP measurements before establishing retrieval strategy and
priori constraints.

The global measurements of POLDER-3 aboard PARASOL
(Polarization and Anisotropy of Reflectances for Atmospheric
Sciences coupled with Observations from a Lidar) satellite
during 2004–2013 have promoted the development of MAP
retrievals of aerosol optical/microphysical parameters. With
the successful inversion and application of POLDER-3 aerosol
products, new MAP instruments, such as directional polari-
metric camera (DPC) series on Chinese GaoFen-5 satellite,
have been increasing quickly [10]. As an enhanced version
of POLDER-3, the multiviewing, multichannel, multipolar-
ization imager (3MI) mission will have improved spatial
coverage (2200 km), higher spatial resolution (4 km at nadir),
and an expanded spectral range (410–2130 nm) with 9 of
the 12 spectral bands having polarized measurements [11].
Although optimized inversion of the same aerosol parame-
ters can be conducted using these MAP measurements, their
distinct aerosol information content can exert a challenge on
consistency of corresponding accuracy and availability.

While MAP instruments, such as POLDER-3, have shown
great potential in obtaining aerosol microphysical parame-
ters [12], [13], the information content of MAP measurement
can be very different depending on instrument settings and
observation modes. For instance, a single-view and five-band
cloud and aerosol polarimetric imager (CAPI) onboard Chi-
nese Carbon Dioxide (CO2) Observation Satellite can only
provide 3–4.5 pieces of aerosol information, including total
volume, fine mode fraction, and imaginary part (MI) of
refractive index for coarse particles [14]. Also, MAP mea-
surements have distinct sensitivities to different aerosol opti-
cal/microphysical properties. The optimized retrieval using
MAP satellite observations usually includes more than 20
aerosol and surface parameters, and the insensitive ones
selected can transmit the corresponding uncertainties to the
overall inversion [15]. On the other hand, different retrieved
parameters and assumptions are usually adopted in optimized
inversion [16], [17], leading to difficulty in their comparison
and consistency. To ensure a reliable and consistent MAP
inversion of interested aerosol parameters, it is necessary to
make a comprehensive estimation of their information content
and assign a pertinent degree of freedom or constraints.

To explore the optimal detection ability of specific satellite
instruments, it is essential to estimate their information content
or sensitivity with respect to retrieved aerosol and surface
parameters [18]. As the primary error source in retrieval of
greenhouse gases such as CO2, many efforts have been made
to analyze aerosol information content in the hyperspectral
remote sensing of Orbiting Carbon Observatory-2 (OCO-2)/
Greenhouse Gases Observing Satellite (GOSAT) [19], [20]
or from accompanied aerosol detection instrument such as
CAPI. Moreover, retrieval feasibility and potential, such as
aerosol layer height from MAP measurements in oxygen O2
A and O2 B bands, can be tested by the estimation of infor-
mation content and posteriori errors [21]. However, previous
studies mostly focus on satellite instruments not dedicated
for aerosols. By now, to what extent and which aerosol

optical/microphysical parameters can be accurately retrieved
from common MAP measurements such as POLDER-3 and
enhanced 3MI have been rarely fully concerned.

In this study, we present a comprehensive insight into the
information content of typical satellite MAP measurements,
and the degree of freedom and posteriori error of common
aerosol microphysical parameters based on radiative transfer
simulation and Bayes optimization theory. The information
content of POLDER-3 and 3MI observations is estimated
and compared. Section II introduces the theory of informa-
tion and inversion. The configuration of forward simulations,
assumptions, and priori knowledge is described in Section III.
Then, information content and retrieval errors of the aerosol
parameters are analyzed and discussed in Section IV. Finally,
we summarize the main results and conclusions.

II. THEORY OF INFORMATION AND INVERSION

The basic premise of inversion is to establish a forward
model (F) that can describe the physical process from the
Sun and the Earth’s atmosphere to satellite measurements.
Let x represent a state vector that includes n variables to
be retrieved (e.g., aerosol microphysical and surface reflective
parameters) and y represent the observation vector that con-
tains m measurement elements. Then, satellite measurements
can be expressed as

y = F(x)+✏ (1)

where ✏ denotes experimental errors from both satellite mea-
surements and forward model. If ✏ fit the Gaussian probability
distribution function (PDF) and the forward model (e.g.,
usually the radiative transfer model) is linear in the proximity
of the true state, a maximum likelihood solution (also called
retrieval or posteriori) of the state vector according to the
Bayesian optimal estimation theory [22] is

x̂ = xa +
�
K

T
S

�1
✏ K+S

�1
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��1
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T
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�1
✏ (y � Kxa) (2)

where Sa is the error covariance matrix of the prior state vector
xa that provides knowledge of the state before measurement.
S✏ is the measurement error covariance matrix. K is the
m ⇥ n Jacobian matrix consisting of partial derivatives of
each measurement with respect to each state element (@ F/@x).
The retrieval of state vector, x̂ , is usually not unique and
has a fluctuation following Gaussian PDF. The posterior error
covariance matrix Ŝ describes the statistical uncertainties of x̂

due to errors from observation, forward modeling assumptions,
and a prior. The square roots of the diagonals of Ŝ represent
the 1� uncertainties of the retrieved parameters
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The averaging kernel matrix is defined by derivatives of
the posterior state vector with respect to the true state (A =

(@ x̂/@x)), which has been widely used to quantify the infor-
mation obtained via measurement and the sensitivity of the
inversion to the true state. An identity A matrix means a
perfect retrieval, while a null A indicates that the
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measurements obtain no information of the inversion param-
eters. The trace of the A matrix is defined as the degree
of freedom for signal (DFS), denoting independent pieces of
information gained from all the measurements. Correspond-
ingly, the diagonal elements of A represent the sensitivity of
each retrieved parameter to its truth.

Furthermore, the error-normalized (EN) Jacobian matrix is
used to estimate the effective sensitivity of a single measure-
ment to each retrieval parameter

K̃ = S
�

1
2

✏ KS

1
2
a . (5)

EN Jacobian matrix compares the observation error with
the variability of the observation vector that is expressed by
its prior covariance (KS

(1/2)
a ). If the natural variability of

observation vector is less than its error (e.g., K̃i, j < 1), the
measurement yi does not have useful information for retrieving
parameter x j . By contrast, the greater the value when Ki, j > 1,
the more useful information the measurement yi has in the
retrieval of x j . To make the information content analysis and
inversion linear and easy to calculate, both S✏ and Sa are
usually assumed to be independent between measurements and
retrieved parameters, respectively, to get a zero off-diagonal
matrix.

III. SIMULATION OF SATELLITE MEASUREMENTS

A. MAP Satellite Measurements and Observation Vector

POLDER-3 takes MAP measurements at nine bands (443,
490, 565, 670, 763, 765, 865, 910, and 1020 nm) with three
of which are polarized (490, 670, and 865 nm), a swath width
of ⇠1600 km, and a spatial resolution of 5.3 ⇥ 6.2 km at
nadir [23]. POLDER-3 can observe the surface target by up to
16 (14 on average) viewing directions (cross track ±43� and
along track ±51�). As an improved version of POLDER-3,
3MI extends the spectral range by adding deep blue (410 nm)
and shortwave infrared bands (1650 and 2130 nm) to enhance
aerosol detection such as coarse particles. The 1020 nm band
of POLDER-3 is replaced by 1370 nm to improve the detection
of cirrus cloud. Moreover, 3MI measurements are polarized in
most bands except 754, 763, and 910 nm. Besides 14 viewing
angles similar to POLDER-3, 3MI has a larger swath width
of ⇠2200 km and a higher spatial resolution of 4 km.

Compared with polarize radiance or reflectance, degree of
linear polarization (DOLP) has higher accuracy as a relative
quantity

DOLP =

p
Q2 + U 2

I
. (6)

The 910 nm water vapor absorption band is not used in
aerosol remote sensing. Since the two O2 A bands around
765 nm have limited information regarding aerosol verti-
cal distribution over land [24], variation of aerosol height
is not considered here to focus on aerosol microphysical
parameters. The difference between PODER-3 and 3MI in
central wavelengths and spectral response is considered in
their simulations. Thus, the observation vector of single-view
POLDER-3 measurements contains six-band TOA reflectance

and three-band DOLP

yPOLDER�3 2 [I443, I490, I565, I670, I865, I1020

DOLP490, DOLP670, DOLP865]T . (7)

By contrast, the observation vector of single-view 3MI
measurements has eight-band TOA reflectance and their DOLP

y3MI 2 [I410, I443, I490, I555, I670, I865, I1650, I2130

DOLP410, DOLP443, DOLP490, DOLP555

DOLP670, DOLP865, DOLP1650, DOLP2130]T .

(8)

In the single-view experiment, we fix the solar zenith angle
(SZA) at 20� and simulate TOA reflectance and DOLP with
view zenith angle (VZA) from 0� to 75� and relative azimuth
angle (RAA) from 0� to 180�. For multiview measurements,
VZA is set along track from 0� to ±65� with SZA ranging
from 0� to 60� [25]. As a result, the MAP measurements
of POLDER-3 and 3MI include 126 and 224 observation
variables, respectively.

B. State Vector
Consistent with many previous studies [15], [16], aerosols

are assumed to be spherical particles with size distribution
following a bimodal lognormal function:

dV
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=

2X
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p
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#
(9)

where V0 is the total aerosol volume concentration with unit
of µm3 · µm�2, and rv and �g denote the volume geometric
median radius and its geometric standard deviation, respec-
tively. The superscript i = 1 and 2 here represents a fine and
coarse mode, with a size range of 0.01–10 and 0.05–20 µm,
respectively. The effective radius reff can be converted from rv

and �g

reff = rv exp
✓

�
1
2

ln2�g

◆
. (10)

Furthermore, the AOD (⌧a) at specific wavelength (l ) can
be derived

⌧a
�
l

�
=

2X

i=1

3V i
0 Qi

ext
�
l

�

4r i
eff

(11)

where Qext denotes the aerosol extinction efficiency factor,
which is the ratio of extinction cross section and the geometric
cross section. Aerosol loading is set at 0.5 and 1.0 to represent
moderate and heavy pollution, respectively. The fine mode vol-
ume fraction (FMF) is set up at 0.8 and 0.2 to represent cases
dominated by fine particles and coarse particles, respectively.
Considering that different types of size distribution functions
have the same reff and effective variance veff, reff and veff of
the fine and coarse modes are retrieved rather than specific
size bins with more unknowns [26].

The complex refractive index of aerosol particles is a
spectral-dependent optical parameter consisting of real part
(MR) and MI, corresponding to the scattering and absorbing
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TABLE I
AEROSOL MICROPHYSICAL PARAMETERS

ability of ambient aerosols. We take a spectral complex
refractive index of water-soluble aerosols with a relative
humidity of 80% and transported dust from the OPAC (optical
properties of aerosols and clouds) database to represent the
scattering properties of typical fine and coarse particles [27].
Furthermore, to make full use of the multiwavelength measure-
ment information in retrieving spectral-dependent parameters,
we adopt a prior constraint that the complex refractive index is
the function of wavelength with fitting coefficients, including
ar , br , ai , and bi [28]

MR
�
l

�
= ar ⇥ l br (12)

MI
�
l

�
= ai ⇥ l bi . (13)

Specifically, the OPAC database gives the complex refrac-
tive index of each band. We calculate the best fit-
ting of a and b according to (12) and (13) to replace
the wavelength-dependent complex refractive index. Thus,
unknowns MR and MI that have a number twice of the
used satellite bands are streamlined to four coefficients of
wavelength. Table I summarizes the aerosol microphysical
parameters of the two aerosol modes for input of RT sim-
ulations. For the vertical distribution of aerosols, a 2 km
vertical profile is utilized with aerosol extinction decreasing
exponentially with the height.

To characterize the anisotropy of directional surface
reflectance, we select a semiempirical bidirectional reflectance
distribution function (BRDF) with the Ross-Thick/Li-Sparse
kernels that have been widely used in MODIS land prod-
ucts [29], [30]

R
�
l , #v, #0, '

�
= fiso

�
l

�
+ fvol

�
l

�
Kvol(#v, #0, ')

+ fgeo
�
l

�
Kgeo(#v, #0, ') (14)

where fiso(l ), fvol(l ), and fgeo(l ) denote the spectral weight-
ing parameters for the isotropic scattering, Ross-Thick volume
scattering kernel (Kvol), and Li-Sparse geometric scattering
kernel (Kgeo) of certain surface types, respectively. Besides
wavelength l , #v, #0, and ' represent VZA, SZA, and RAA,
respectively. The surface type is assumed to be bare land,

TABLE II
BRDF WEIGHTING PARAMETERS OF EACH BAND

which has a moderate brightness in the visible bands. Table II
gives the detailed spectral BRDF parameters derived from
MODIS products or their approximation. Since the polarized
reflectance of land surface is much smaller than the inten-
sity [31], we take the bidirectional polarization distribution
function (BPDF) parameter of bare land as known.

In summary, the state vector of 3MI inversion consists
of 38 aerosol and surface parameters (32 for POLDER-3):
aerosol column volume concentration Vol (µm3·µm�2), effec-
tive radius reff and its variance veff, and fitting coefficients (ar ,
br , ai , and bi ) of the complex refractive index for the two
aerosol modes as well as spectral BRDF parameters

x3MI 2

h
Vol f , Volc,r

f
eff, v

f
eff, rc

eff, v
c
eff, a f

r , b f
r

a f
i , a f

i , ac
r , bc

r , ac
i , ac

i , fiso(410 nm)

fvol(410 nm), fgeo(410 nm), . . . . . .

fiso(2130 nm) fvol(2130 nm), fgeo(2130 nm)
⇤T

(15)

xPOLDER�3 2

h
Vol f , Volc,r

f
eff, v

f
eff, rc

eff, v
c
eff, a f

r

b f
r , a f

i , a f
i , ac

r , bc
r , ac

i , ac
i , fiso(443 nm)

fvol(443 nm), fgeo(443 m), . . . . . .

fiso(1020 nm) fvol(1020 nm), fgeo(1020 nm)
⇤T

.

(16)

C. Observation Errors and A Priori

As given by formulas (4) and (5), the DFS and retrieval
performance depend on the error quantification for the state
of the observation and a prior. Thus, it is crucial to make a
realistic description of uncertainty. For the observation errors,
we conservatively select a 3% radiometric uncertainty and an
absolute DOLP uncertainty of 0.01 based on existing studies
for POLDER-3 instrument [23]. With a better calibration
accuracy, the radiometric and DOLP uncertainty of 3MI is
set to 2% and 0.005, respectively [11].

Table III shows the a priori errors for all retrieved parame-
ters. For the uncertainties of prior knowledge of state param-
eters, we assume a 100% relative uncertainty for aerosol
column volume concentration and 80% for both reff and veff
[32]. The prior variations of complex refractive index are
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TABLE III
A PRIORI ERRORS FOR ALL RETRIEVED PARAMETERS ⇤

TABLE IV
SETTINGS OF GEOMETRICAL OBSERVATION IN FORWARD SIMULATIONS

calculated based on daily average inversions (level 1.5) in the
Beijing site of Aerosol Robotic Network (AERONET) during
2010–2020, which are 753 records in total. To discriminate
between fine and coarse modes, AERONET fine mode fraction
of AOD (>0.8 and <0.2) is used. The fitting coefficients and
their standard deviation are calculated according to (12) and
(13) as a priori error. The weighting coefficients of surface
BRDF kernels are assumed to have a relative uncertainty of
20% [14], [15].

D. Forward Model

The unified linearized vector radiative transfer model
(UNL-VRTM) is a specific numerical testbed for information
content analysis and optimal inversion in atmospheric remote
sensing [18]. The main modules of UNL-VRTM include
Rayleigh scattering and gas absorption (HITRAN database),
aerosol single scattering (linearized Mie scattering and
T-matrix code), and a surface BRDF. Also, a linearized vector
radiative transfer model (VLIDORT) is integrated to consider
multiple scattering of the diffuse radiation of the stratified
atmosphere. VLIDORT can calculate the Stokes four-vector
parameters (I , Q, U , and V ) and their partial derivatives
(or Jacobian Matrix K) to each atmospheric and surface
parameter. Table IV shows the common scope of satellite
observation geometry. To specify atmospheric type for air
density profile, the mid-latitude summer type is selected.

IV. RESULTS AND ANALYSIS

The aerosol particles can be broadly divided into two
categories: fine particles emitted by anthropogenic activities
such as fossil fuel combustion and biomass burning fires, and
coarse particles mainly from natural sources (e.g., dust and sea
salt). Thus, our study intends to analyze the retrieval ability
of satellite MAP measurements for aerosols dominated by
fine and coarse modes. Fig. 1 shows the simulated spectral
and angular variations of satellite TOA reflectance and DOLP
for fine-/coarse-dominated aerosols at moderate air pollution
(AOD = 0.5) with zero surface reflectance. Strong Rayleigh
scattering is concentrated at large VZAs (>60�–70�) at blue
bands, especially at 410 nm in near backward directions.
While satellite TOA reflectance is at similar levels in visible
spectrum for aerosols dominated by both fine and coarse
modes, the backward scattering intensity of coarse particles
is much higher at near-infrared and shortwave infrared bands.

By contrast, the DOLP of fine particles has high values
(>0.3) except in backward directions. Different from scat-
tering intensity, fine particles have marked polarized sig-
nals even at shortwave infrared bands with DOLP > 0.2.
Despite much lower values than that of fine particles, coarse
aerosols have considerable DOLP ranging between 0.2 and
0.5 in visible bands. Fig. 2 gives the phase function (F11)
and polarized phase function (�F12/F11) of fine and coarse
particles, which can generally explain angular variations of
satellite backward measurements with a scattering angle scope
of 85�–180�. However, inferring aerosol optical properties
by satellite MAP measurements can get complicated with
coupled atmosphere-surface signals (see Figure 1S). Quantita-
tive estimation of aerosol information content and sensitivity
analysis of POLDER-3 and 3MI measurements to aerosol
optical parameters are conducted based on the Bayesian theory.

A. Angular DFS of POLDER-3 and 3MI Aerosol and
Surface Parameters

Fig. 3 shows the angular distribution of the DFS for aerosol
and surface from POLDER-3 and 3MI measurements. In mod-
erate pollution (AOD = 0.5), aerosol DFS of POLDER-3
ranges from 2.5 to 3.5 for a fine-dominated case and increases
to approximately 0.5 for a coarse-dominated case. With
enhanced MAP observation, 3MI has a fine-dominated aerosol
DFS of 4.0–6.0 with an increase of ⇠1.0 for coarse-dominated.
Although the phase function of fine particles is obviously
higher in the backward direction, their scattering cross section
decreases largely with wavelengths. By contrast, the more
scattering information of coarse particles in near-infrared and
shortwave infrared bands leads to higher DFS for coarse-
dominated conditions.

Compared with POLDER-3, the extended spectrum of
3MI substantially enhances MAP detection ability for coarse-
dominated aerosols. With larger aerosol loading (AOD =

1.0), the DFS values increase by ⇠1.0–2.0 due to more
contribution from aerosols. Correspondingly, the DFS of 3MI
surface parameters ranges from 5.5 to 7.0 with AOD = 0.5 and
decreases by ⇠2.0 at AOD = 1.0. Also, the enhanced 3MI
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Fig. 1. TOA reflectance and DOLP in the fine dominant case and coarse dominant case when AOD = 0.5 and SZA of 20�, respectively (consider aerosols
only). The polar radius represents VZA from 0� to 75� and the polar angle is RAA from 0� to 180�. (Scattering angle ranging from 85� to 180�.)

observations have a notable improvement in characterizing
surface BRDF.

To further examine the effective sensitivity of each 3MI
measurement to infer retrieved aerosol parameters, we com-
pute the EN-Jacobian matrix at AOD = 0.5 (Figs. 4 and 5).
As shown in Figs. 4(a1) and 5(a1), satellite spectral radiances
are very sensitive to Vol f at visible bands, even for coarse-
dominated conditions. However, there is little information of
fine particles in longer wavelengths except at large VZAs
(>60�) and small scattering angles (<100�). By contrast,
satellite radiances at 865 and 2130 nm have a stable and
large sensitivity to Volc. While both I and DOLP have
increasing information of Vol f at a coarse-dominated case
as the scattering angle decreases from 140� to 80�, they are
generally not sensitive to Volc at the fine-dominated condition.
Thus, accurate satellite retrieval of Volc or AOD of coarse
mode can be a challenge in thefine-dominated condition even
for 3MI measurements.

While the sensitivity of I to r f
eff gets much lower at fine-

dominated conditions compared with Vol f , DOLP is very sen-
sitive to r f

eff and v
f

eff fortunately. While both I and DOLP have
abundant information of rc

eff and vc
eff, only DOLP is sensitive

to reff and veff of nondominant particles with VZAs >40�. For
the complex refractive index, both I and DOLP have stable EN
Jacobians (⇠2–4) to a f

r and b f
r in a fine-dominated case but

exhibits little information for bc
r in coarse-dominated aerosols.

The sensitivity of I and DOLP to the MI is lower than that
of the MR, especially for the coefficient ai . Consistent with
ground observations [15], [33], the information of complex
refractive index is limited in satellite measurements, and
certain coefficients, such as bc

r and ai , highly depend on
VZAs (>55�). In Fig. 4(i2), the infrared band, which includes
the 1650- and 2130-nm bands where coarse-mode particles
are located, increases as they approach the backscattering
direction: the DOLP increases with increasing ac

r . Accord-
ing to our power function fit relationship, an increase in
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Fig. 2. Phase function of radiance component (F11) and polarization
component (–F12/F11) as a function of scattering angle. (a) F11 phase
function for fine particulate; (b) F11 phase function for coarse particulate;
(c) –F12/F11 phase function for fine particulate; and (d) –F12/F11 phase
function for coarse particulate.

Fig. 3. DFS of aerosol (a–h) and surface parameters (i–p) polar coordinates
plotted for POLDER and 3MI in single-view observation mode for a given
aerosol-dominated modes and AOD. The polar coordinates are defined simi-
larly to Fig. 1.

ac
r represents an enhancement of aerosol particle scattering.

The EN-Jacobian of ac
r at scattering angles less than 140�

mutates to less than 0. This result captures to some extent the
change in the polarization phase function of coarse particles
in the backscattering direction [e.g., Fig. 2(d)], although the
scattering angles do not strictly match.

It should be stated that the fine and coarse mode aerosol is
selected as weak-absorbing and absorbing, respectively, which
can reduce the sensitivity to MI of fine particles and MR
of the coarse aerosols. On the other hand, the information
of nondominated aerosols can increase as AOD. Generally,
the expanded measurement spectrum and the corresponding
polarization can increase aerosol information, though not for
all the parameters and all the view geometries. Thus, it is

necessary to integrate the multiangle measurement information
into the retrieval.

B. Total DFS of Aerosol and Surface in Satellite
MAP Measurement

Fig. 6 shows how the total DFS of aerosol in 3MI and
POLDER-3 measurements changes with SZAs. By integrating
their multiangle observations, the total DFS of 14 retrieved
aerosol parameters increases from no more than 6 to ⇠10–12
for 3MI measurements with AOD = 0.5 or 1.0. By con-
trast, the DFS of the 14 retrieval parameters is improved
from ⇠3.5 to ⇠6–8 for POLDER-3 measurements. Unlike
POLDER-3, the total DFS from 3MI in the fine-dominated
condition is about ⇠3 higher than that in a coarse-dominated
case. Although the expanded spectrum of 3MI can provide
additional information regarding coarse aerosols, these coarse
particles can also reduce the information of surface BRDF
parameters in near-infrared and shortwave bands. Because of
the counteracting effect of aerosol and surface in information
content, there is only a ⇠1 difference in DFS for AOD of
0.5 and 1.0. Contrary to the information content of single-
angle measurements (see Fig. 3), the total DFS from 3MI and
POLDER-3 is higher by ⇠1.5 with an AOD of 0.5 rather
than 1.0.

Meanwhile, large SZAs allow a wider range of scattering
angles and a longer optical path, which in turn contains
more information of aerosols. Compared with POLDER-3, the
enhanced 3MI observation has a higher total DFS by ⇠2–4.
To further explore the DFS components from MAP measure-
ments, the DFS of retrieved aerosol and surface parameters
is analyzed in Figs. 7–12. It can be seen that multiangle
measurements have greatly improved the DFS (⇠0.85–1.0) of
both Vol f and Volc (see Fig. 7), especially for Volc in a fine-
dominated case. The DFS of Vol f and Volc is at similar levels
for POLDER-3 and 3MI, except for an obvious difference in
Volc of fine-dominated case.

Similar to volume concentration, MAP measurements, such
as 3MI and POLDER-3, have a high DFS (⇠0.85–1.0) for
effective radius of both fine and coarse particles (see Fig. 8),
even with a low fraction of AOD (e.g., 0.2). Also, 3MI
has a larger DFS than POLDER-3 for the nondominated
aerosol mode. There is a notable decrease in the DFS of
effective variance for 3MI as well as a much larger magnitude
(⇠0.4–0.5) for POLDER-3. In contrast, the DFS of complex
refractive index highly depends on the ability of MAP mea-
surements and AOD. The MR is more sensitive to satellite
detection ability with 3MI having ⇠0.2–0.3 higher DFS than
POLDER-3. The largest uncertainties are concentrated in the
MI in fine-dominated conditions. Even with the 3MI measure-
ments at a high AOD of 1.0, the DFS of a f

i and b f
i is only

⇠0.5–0.6 and ⇠0.2–0.3 (see Fig. 9), respectively. As men-
tioned above, the strong scattering of fine mode aerosols we
used can be the main cause. Correspondingly, the DFS of
ac

i and bc
i for the absorbing coarse particles in the coarse-

dominated case is much higher (see Fig. 10).
Figs. 11 and 12 show the DFS of surface BRDF parame-

ters at 443 and 865 nm, respectively. Considering the large
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Fig. 4. EN Jacobians of stokes I component and DOLP with respect to retrieved parameters: Vol f (a1 and a2), Volc (b1 and b2), reff f (c1 and c2), reffc
(d1 and d2), veff f (e1 and e2), veffc (f1 and f2), ar f (g1 and g2), br f (h1 and h2), arc (i1 and i2), brc (j1 and j2), ai f (k1 and k2), bi f (l1 and l2), aic
(m1 and m2), bic (n1 and n2). Simulations use fine dominated mode with AOD of 0.5.

contribution of atmosphere in blue bands, surface reflectance
is dominated by isotropic scattering with very weak BRDF
effects. fiso from 3MI measurements has a DFS of around
0.9 for moderate pollution and gets higher at 865 nm. With
no polarization measurement and lower calibration accuracy,
fiso of POLDER-3 has a lower DFS by ⇠0.4. As the
wavelength gets longer at 865 nm, the volume and geo-
metric scattering of soil surface becomes stronger with less
influence by aerosols. In particular, the DFS of the volume

scattering increases largely with the SZAs with the lowest
magnitude.

C. A Posteriori Error of Satellite MAP Retrievals and
Potential Uncertainties

A posteriori error Ŝ quantifies the statistical uncertainties
of each retrieved parameter due to measurement noise and
prior errors. As shown in the right of Figs. 7–12, the retrieval
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Fig. 5. EN Jacobians of stokes I component and DOLP with respect to retrieved parameters: Vol f (a1 and a2), Volc (b1 and b2), reff f (c1 and c2), reffc
(d1 and d2), veff f (e1 and e2), veffc (f1 and f2), ar f (g1 and g2), br f (h1 and h2), arc (i1 and i2), brc (j1 and j2), ai f (k1 and k2), bi f (l1 and l2), aic
(m1 and m2), bic (n1 and n2). Simulations use coarse-dominated mode with AOD of 0.5.

errors of 3MI are much lower than those of POLDER-3
by ⇠50% due to more measurement information and higher
calibration accuracy. Despite a very low retrieval error within
2%–3% for Vol f in fine-dominated conditions, Volc has larger
uncertainties around ⇠3%–10%, especially for high AODs
in a coarse-dominated case. As a key parameter determining
fraction of aerosol and surface contribution to satellite TOA
reflectance, the higher retrieval errors of Volc can be caused
by more influence on spectral surface reflectance from coarse

particles. Meanwhile, the retrieval of effective radius exhibits
similar performance with a positive dependence on AOD for
dominant aerosol sizes [see Fig. 8(e) and (g)]. The retrieval
uncertainties of rc

eff reach as high as 30% and 50% in fine-
dominant conditions for 3MI and POLDER-3, respectively.
By contrast, the retrieval error of vc

eff (⇠15%) is much smaller
than that of v

f
eff (⇠30%) partly due to its large variations.

While the retrieval accuracy of MR is upgraded by ⇠50%
compared with that of POLDER-3, the improvement of MI
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Fig. 6. DFS as a function of SZA for retrieving aerosol parameters (including
volume concentrations, particle size parameters, and complex refractive index
fitting coefficients for both modes, 14 in total) when using aerosol type of
(a) fine dominated and (b) coarse dominated. Four differently colored curves
denote the scenarios for POLDER and 3MI at an AOD of 0.5 and 1.0,
respectively. The histograms give the increase in DFS for 3MI compared to
POLDER for AOD of 0.5 and 1.0.

Fig. 7. DFS components and posteriori errors for retrieving (a) and (c) Vol f
and (b) and (d) Volc , respectively, as a function SZAs. In each panel, the left
is for the fine mode and the right is for the coarse mode. The meaning of the
legend is the same as in Fig. 6.

retrieval is remarkable mainly in high AODs (>1.0) with 3MI
measurements (see Figs. 9 and 10). The retrieval error of MI
from 3MI at AOD = 0.5 is slightly smaller than that from
POLDER-3 at AOD = 1.0. By calculating the mean values of
their absolute errors (see Figure 2S), it is found that satellite
MAP retrieval of complex refractive index has a close accuracy
with the results from ground-based Sun photometer. Retrieval
errors of coefficient ar lead to an uncertainty of MR f and MRc

by ⇠0.02 and ⇠0.01, respectively. The retrieval errors of MR f

and MRc by br are around �0.01 and decrease largely with
the wavelength, which may partly compensate the uncertainties
from ar. There is a high retrieval accuracy (<0.0005) for MIc

with the absorbing assumption. By contrast, retrieval errors of
ai and bi lead to uncertainties of MI f by ⇠0.001–0.002 and
�0.0005 to (�0.001), respectively.

The posterior errors of surface BRDF are very small with
most parameters within 1%–2% (see Figs. 11 and 12). For
the longer bands such as 865 nm, the weighting coefficient of
volumetric scattering kernel has a slightly higher uncertainty
below 3%. It should be stated that a soil surface type with 20%
prior error and moderate pollution is assumed. The retrieval
errors of BRDF factors can be larger for heavy pollution and
other surface types such as vegetation and urban regions.

Our assumptions regarding aerosol and surface cannot fully
cover all the common conditions. Generally, the estimation

Fig. 8. DFS components and posteriori errors for retrieving (a) and (e) reff f ,
(b) and (f) veff f , (c) and (g) reffc , and (d) and (h) veffc as a function SZAs.
In each panel, the left is for the fine mode and the right is for the coarse
mode. The meaning of the legend is the same as in Fig. 6.

Fig. 9. DFS components and posteriori errors for retrieving the fit coefficients
for fine modal aerosol complex refractive index with power-law dependence.
(a) and (e) ar f , (b) and (f) br f , (c) and (g) ai f , and (d) and (h) bi f . In each
panel, the left is for the fine mode and the right is for the coarse mode. The
meaning of the legend is the same as in Fig. 6.

of the retrieval ability of satellite MAP measurements in a
typical case can give a fundamental reference for develop-
ment of inversion algorithm and corresponding uncertainties.
While the enhanced 3MI observations greatly increase the
information content of aerosols and surface, some aerosol
parameters, such as MI of the complex index, remain subject
to considerable retrieval errors. Due to double unknowns
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Fig. 10. DFS components and posteriori errors for retrieving the fit
coefficients for coarse modal aerosol complex refractive index with power-law
dependence. (a) and (e) Ar f , (b) and (f) br f , (c) and (g) ai f , and (d) and
(h) bi f . In each panel, the left is for the fine mode and the right is for the
coarse mode.

Fig. 11. DFS components and posteriori errors for retrieving surface param-
eters in 443 nm, including (a) and (d) isotropic factor, (b) and (e) volumetric
factor, and (c) and (f) geometric-optical factor, respectively.

of the number of spectral bands, a prior assumption of
empirical function between wavelength and MR or MI is
utilized. In the actual inversion, prior information, such as
known aerosol types with fixed MR and MI, can be selected.
In addition, both fine and coarse particles are considered
spherical in our analysis. As shown by Dubovik et al. [34] and
Deuzé et al. [35], the sensitivity of linear polarization is weak
for the MR of refractive index of large nonspherical particles.
Thus, the information content and retrieval accuracy in our
analysis may be degraded for nonspherical coarse particles,
which will be further improved in our future efforts.

Fig. 12. DFS components and posteriori errors for retrieving surface param-
eters in 865 nm, including (a) and (d) isotropic factor, (b) and (e) volumetric
factor, and (c) and (f) geometric-optical factor, respectively.

D. Discussion

The recent POLDER-3 retrievals, such as General Retrieval
of Atmosphere and Surface Properties (GRASP) algorithm,
have exhibited the great potential of MAP measurements in
characterizing aerosol optical/microphysical properties [36].
However, GRASP retrievals, such as POLDER coarse AOD
and single scattering albedo, have considerable uncertainties.
POLDER AOD from GRASP optimized inversion has an
obviously lower accuracy than that from GRASP components
retrieval with fixed aerosol types, which can be caused by
the influence of aerosol parameters with low DFS. On the
other hand, assumptions, such as the same component for both
fine and coarse particles, are utilized in GRASP POLDER-3
retrievals due to limited information content, which can be
quite different from the actual situation. Thus, it is necessary
to consider aerosol information content or DFS in developing
an MAP retrieval algorithm, especially for the emerging MAP
satellite instruments with different spectral channels and cor-
responding polarimetric measurements. Another key problem
in MAP retrieval is to constrain aerosol parameters with low
DFS by effective prior knowledge or assumptions. Considering
the complicated chemical/physical properties of aerosols in
regional and global scales, there is still an urgent need of
clear and sufficient references to better constrain satellite MAP
retrievals.

V. CONCLUSION

With the urgent need in quantifying aerosol climate effects
and aerosol scattering contribution in the retrieval of green-
house gases, a series of dedicated satellite missions with
enhanced MAP instruments will be launched in the near
future. However, different spectrum ranges, spectral bands, and
viewing angles of these satellite instruments exert a marked
challenge in the availability and consistency of their retrieved
aerosol optical/microphysical parameters. To fully explore
the retrieval ability of common satellite MAP instruments,
we estimate information content and posterior errors of each
aerosol optical/microphysical parameters from POLDER-3 and
3MI measurements based on the Bayesian optimization theory.
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Our results show that POLDER-3 observations have high DFS
in retrieving volume concentration and effective radius, with
larger retrieval errors (⇠10% and ⇠15%) for coarse aerosols.
In particular, retrieval uncertainties in effective radius of coarse
particles exceed 50%–60% in a fine-dominated case. Further-
more, the large decline of DFS values in effective variance
of effective radius and aerosol absorption from POLDER-
3 measurements leads to considerable posteriori errors
(>30%–50%), indicating insufficient information content in
inferring all the unknowns.

Compared with POLDER-3, enhanced MAP measurements
of 3MI have higher DFS of aerosols by ⇠1.8–3.5 and decrease
the retrieval errors by nearly 50% for most microphysical
parameters. The extended spectrum and polarimetric measure-
ments in most channels from 3MI provide more information
regarding aerosol optical/microphysical properties. The addi-
tional shortwave infrared bands in 3MI have greatly enhanced
the sensitivity of MAP measurements to volume concen-
tration and scattering ability of coarse particles. However,
aerosol parameters, such as volume concentration and effective
radius of coarse particles, only exhibit notable observational
sensitivity in relatively small scattering angles (<120�) or
large viewing angles (>50�), demonstrating the necessity to
set more directional measurements at large viewing angles.
It should be noted that there are still substantial uncertainties
(⇠30%) in certain 3MI retrievals such as effective radius
of coarse particles in fine-dominated conditions, which usu-
ally appear in downstream polluted regions of dust sources.
Besides upgrading satellite instruments, priori knowledge from
existing observations should be used to constrain retrieved
aerosol optical/microphysical parameters with low DFS.
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