
1. Introduction
Agriculture is the largest water resources consumer, as irrigation constitutes 70% of the world's freshwater with-
drawals; even though, more regions will face water scarcity due to environmental and economic limitations 
(Jeong et  al.,  2020; Michelon et  al.,  2020). Therefore, farmers need to make optimal decisions on irrigation 
scheduling, that is, determining the irrigation timing and amount for both water saving and crop yield increase. 
As more field-specific data are revealed along the crop growing season, real-time irrigation schedules have been 
shown to outperform predetermined irrigation schedules that do not consider the present water requirement and 
water availability for a crop (Jamal et al., 2018, 2019). However, a main challenge of implementing real-time irri-
gation scheduling is to represent the soil-crop-atmosphere dynamics at present and/or future predictions (Hejazi 
et al., 2014). Reliable employment of the dynamics via accurate simulation with consideration of uncertainty is 
crucial for real-time irrigation scheduling. Meanwhile, how to incorporate farmers' experience and knowledge 
in irrigation schedule development is also crucial for the acceptance and utilization of a model-recommended 
irrigation schedule. By resolving these critical issues, this paper addresses the feasibility of a real-time irrigation 
scheduling tool (RTIST) based on weather forecasts, field observations, and human-machine interactions. Rele-
vant studies on the optimality, accuracy, and applicability of an irrigation schedule to real-world practices are 
reviewed as follows.

1.1. Optimality

Various studies employ real-time irrigation scheduling using rule-based approaches, in which the irrigation is 
determined according to the current field conditions and a set of predetermined rules. For instance, Hashemi 
and Decker  (1969) derived irrigation scheduling rules that helped keep the soil moisture above 50%. Mean-
while, several studies showed that incorporating weather forecasts in irrigation scheduling could increase the 
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profitability of irrigated agriculture (Allen & Lambert, 1971; Cai et al., 2011; D. Wang & Cai, 2009). The supe-
riority of weather forecasts in irrigation scheduling lies in applying current decisions while exploiting the infor-
mation from the upcoming weather (e.g., by waiting for a forthcoming rain event rather than applying the  whole 
amount currently needed for irrigation). For example, D. Wang and Cai  (2009) showed superior profits from 
using weather forecasts within rule-based irrigation scheduling in comparison to only using current soil moisture 
in corn fields in Illinois. The irrigation was applied when a set of condition on the soil moisture and the probabil-
ity of rain on the forecast period is met. When the irrigation was applied, the soil moisture was bringed to the field 
capacity. In particular, weather forecasts are incorporated into irrigation scheduling via stochastic optimization 
techniques, which showed the advantage over rule-based techniques and conventional methods in terms of profit 
maximization (Bergez et al., 2002; Jamal et al., 2018; D. Wang & Cai, 2009).

1.2. Accuracy

Irrigation scheduling is mostly based on an agro-hydrological simulation model to evaluate the impacts of 
different irrigation application plans. The simulation approach includes models of soil water balance (Mateos 
et  al.,  2002), water dynamics (Shang et  al.,  2004), and crop simulation (Bergez et  al.,  2002). These models 
are able to describe in detail the crop growth, which enables the evaluation of user-defined irrigation sched-
ules by comparing simulation results of evapotranspiration, crop yield, as well as water consumption. Recent 
studies employed coupled simulation-optimization models to address the irrigation scheduling problem (Allam 
et al., 2016; Jamal et al., 2019; Linker, 2021; Singh, 2012). Within this approach, the coupled models are used 
to determine the optimal irrigation scheduling under given objectives (e.g., maximizing profits) and constraints 
(e.g., limiting irrigation amounts). However, the limited accuracy of these simulation models presents a barrier to 
the use of the models for real-world irrigation scheduling practice.

With growing data availability at the crop field scale from various sources such as remote sensing and in-situ 
sensing, using field observations of the environment (e.g., soil moisture) and the crop status (e.g., leaf area index 
[LAI]) has been shown to improve the modeling accuracy of crop water requirement and availability, crop growth, 
and the soil-crop-atmosphere dynamics (Hu et al., 2019). In particular, data assimilation (DA) is an efficient 
approach to improving state estimation by combining information from field observations and simulation models 
in a real-time manner (Reichle, 2008). While remote sensing and satellite data can work successfully in DA of 
LAI (Charoenhirunyingyos et al., 2011; Ines et al., 2013), soil moisture remote sensing has some limitations in 
terms of temporal and spatial resolution (Jamal & Linker, 2020). In addition, remote sensing does not provide 
data on deep soil layers along the root zone, which is important for crop growth simulations. Furthermore, remote 
sensing cannot penetrate through dense vegetation (Ines et al., 2013). Therefore, direct pointwise sensor obser-
vations installed at several depths (e.g., Dong et al., 2015; Lü et al., 2011) are complementary to remote sensing 
data for crop and environment modeling at the field scale.

1.3. Applicability

Last but not least, despite numerous trials to improve its applicability, real-time irrigation scheduling studies 
are rarely applied in real life. One of the main reasons is that farmers do not like to be replaced but like to be 
involved (Rose et al., 2018). In addition, the experience of farmers implicitly includes many factors which are 
difficult to include in computer-based models, such as responses to policies (Bontemps & Couture, 2002) and 
various impacts of farmers' age, education, attitude, and knowledge toward the irrigation scheduling problem 
(Karami, 2006). Therefore, the involvement of farmers is necessary for not only improving computer-based tools 
in terms of reality but also for the final acceptance for use (Yohannes et al., 2019). However, farmers' sugges-
tions as feedback to the computer-based tools are usually not incorporated into a real-time modeling procedure 
(Rose et  al., 2016; Tapsuwan et  al., 2015). In general, despite the existing efforts to reduce the gap between 
farmers and computers in irrigation scheduling (Pande & Savenije, 2016; van Emmerik et al., 2014), incorpo-
rating farmers' insights and experiences into computer models is still limited (Bierkens, 2015). Therefore, the 
direct incorporation of the farmers' insights and experiences into an irrigation scheduling decision support model 
can contribute to the realism of the model (O'Keeffe et al., 2018). At each decision point, the farmers' involve-
ment with computer-based tools that provide estimations of current and predicted variables (e.g., crop yield) can 
profoundly contribute to the implementation of such tools in real life (Linker, 2021). As adopted by several works 
on agri culture (Rose et al., 2018), reservoir operation systems (Zhang et al., 2020), and others, in this work, a 
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real-time irrigation scheduling model based on “online” human-computer interaction between the model and the 
user is presented.

This study integrates a simulation & optimization model, a DA technique, and a human-computer interaction 
method to generate a RTIST. This integration enables providing the daily optimal irrigation amounts based on 
weather forecasts. This framework will be based on crop and environment simulation models improved by assim-
ilating field observations. The framework will involve farmers in day-by-day irrigation decision-making crossing 
the crop growth season to assure the applicability of the tool. The uniqueness of the framework is thus expressed 
in its optimality, accuracy, and applicability. The performance of the framework is examined by an interactive 
workshop with a group of farmers and in a real-world case study in corn fields in Eastern Nebraska, US.

2. Methodology
2.1. Overview

The proposed RTIST framework consists of four sub-models: (a) stochastic optimization, (b) soil-crop simu-
lation, (c) DA, and (d) human-computer interaction. Daily irrigation amounts are inferred in real-time, based 
on probabilistic weather forecasts, current field conditions, and crop growth predicted by Soil Water Atmos-
phere Plant (SWAP) model (Kroes et  al.,  2017). However, the recommended irrigation amounts by the 
simulation-optimization model are not assumed to be used by default; instead, the actually applied irrigation 
amounts are decided day-by-day via a human-computed interactive method, which combines the computer opti-
mality and farmers' experience, knowledge, and behavior. In this paper, farmers are directly interacting with the 
computer by accepting or modifying the recommended irrigation. The ultimately applied irrigation amount (after 
the interaction with the farmer and his final decision) is used as input for the simulation model enhanced by the 
DA module within a “closed-loop.” This module aims to update the current states, the soil hydraulic parameters 
and LAI related crop parameters of the simulation model as detailed in the remainder.

The RTIST framework is illustrated in Figure 1. The computer model (simulation-optimization) runs by rolling 
daily time windows. In each of the time windows (t), it assimilates the observation of LAI and soil moisture at 
several depths, and adopts the actual irrigation application taken by farmers (which can be the same or different 
from the model's recommended optimal value at time window t) at the end of the time window, and then moves 
to next time window (t + 1) to generate a new recommended irrigation based on the updated soil moisture and 
crop growth status and the weather forecast with a certain length of forecast horizon (e.g., a 3-day period is tested 
in this study). Meanwhile, farmers check the recommended application from the model during each time window 
and decide to take it or use a different one based on their justification. This procedure is continued over all time 
windows till the end of the crop growing season. In this framework, observed data, irrigation farmers' choices, 
and computer models are coupled in the human-computer interactions (Figure 1), and the framework directly 
links framers with a real-time optimization-simulation model. This kind of “online” and “closed-loop” interac-
tion between the model and users rolls over the time windows during the irrigation season.

The proposed method is characterized by several advantages. First, using stochastic optimization rather than 
deterministic optimization takes into account the uncertainty involved in the weather forecast. Second, including 
Soil-Water-Atmosphere-Plant (SWAP) model in the irrigation scheduling as a well-validated hydro-agronomic 
model provides a solid physical basis for the decision process; in particular, including DA adjusts the modeled 
states from time to time to ensure the reliability of the simulated state variables. Third, farmer intervention is 
crucial for the practical application of the tool. Some existing works include stochastic weather forecasts (e.g., 
Jamal et al., 2018; Linker, 2021); some include DA for irrigation scheduling modeling (e.g., Han et al., 2012; 
Ines et al., 2013); some include DA, deterministic optimization, and farmer intervention together with simple 
simulation models (X. Li et al., 2023). The uniqueness of the proposed method of this work lies in the inclusivity 
of all the mentioned advantages in one holistic framework, as shown in Figure 1.

2.2. Real-Time Simulation-Optimization Model

Weather forecasts play an important role in irrigation scheduling, especially the forecasts that extend to more 
than a few days (Cai et  al.,  2011; Jamal et  al.,  2018,  2019). However, since the forecasted weather might 
differ from actual weather, a probabilistic weather forecast can help handle this problem in the context of 
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stochastic optimization with multiple scenarios characterized by probabilities of occurrence. The scenarios can 
be obtained based on probabilistic forecasts (e.g., National Oceanic and Atmospheric Administration probabil-
istic forecasts; D. Wang & Cai, 2009; Cai et al., 2011). In this study, the probabilistic forecasts were generated 
by a mean of Weather Research Forecast (WRF; J. Wang et al., 2022) and a standard deviation that was heuris-
tically calculated based on historical calculation of the error of WRF forecast. Gaussian distribution was used 
for sampling the scenarios of the variables except for the rain where Gamma distribution was used. More details 
are in Section 3.

Optimization methods and algorithms are used to infer the optimal irrigation amounts based on a predefined 
objective function and constraints (Cai & Rosegrant, 2004; J. Li et al., 2020; Wen et al., 2017). In this study, the 
SWAP model is used as a simulation model, which simulates physical processes at a field level related to soil heat 
flow, solute flow, soil water flow, crop growth, macropore flow, and interaction with groundwater and/or surface 
water system. Within the simulation-optimization framework, SWAP is coupled with an optimization algorithm 
in which several irrigation amounts are examined by employing simulations based on current field status and 
future forecasts (Cai et al., 2011; Jamal et al., 2018, 2019). A detailed description of the SWAP model can be 

Figure 1. Overall framework of RTSIT composed of stochastic optimization, soil-crop simulation, data assimilation, and human-computer interaction.
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found in van Dam (2000). SWAP is run using several irrigation amounts on 
day t under each weather scenario and the expected profit is calculated using 
the model outputs, as follows:

𝑃𝑃𝑡𝑡

(

𝐼𝐼𝑘𝑘
)

=

𝑁𝑁
∑

𝑛𝑛=1

Pr𝑛𝑛 ⋅
(

𝑌𝑌𝑡𝑡𝑡𝑡𝑡+𝑡𝑡𝑓𝑓

(

𝐼𝐼𝑘𝑘𝑡𝑊𝑊 𝑛𝑛
𝑡𝑡

)

⋅ 𝑌𝑌𝑝𝑝 − 𝐼𝐼𝑘𝑘
⋅ PWR𝑡𝑡

)

 (1)

𝑌𝑌𝑡𝑡𝑡𝑡𝑡+𝑡𝑡𝑓𝑓

(

𝐼𝐼𝑘𝑘𝑡𝑊𝑊 𝑛𝑛
𝑡𝑡

)

= SWAP
(

𝑠𝑠𝑡𝑡𝑡 𝑝𝑝𝑡𝑡𝑡 𝐼𝐼
𝑘𝑘𝑡𝑊𝑊 𝑛𝑛

𝑡𝑡

)

 

where Pt(I k) is the expected profit at time step t with irrigation amount I k, Prn 
is the probability of occurrence of the nth weather ensemble member, tf is the 
weather forecast length, 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡𝑡+𝑡𝑡𝑓𝑓

(

𝐼𝐼𝑘𝑘𝑡𝑊𝑊 𝑛𝑛
)

 is the expected yield when running 
the SWAP model from time t until t  +  tf using the nth weather ensemble 
member and I k irrigation, st is the state variable at time t (e.g., soil moisture, 
LAI, and yield), pt is the model parameters set at time t, 𝐴𝐴 𝐴𝐴 𝑛𝑛

𝑡𝑡
 is the nth weather 

ensemble member at time step t, Yp is the yield price, PWRt is the water price, 
and N is the size of the weather forecast ensemble. The recommended irriga-
tion amount results in the highest profits:

𝐼𝐼𝑂𝑂
𝑡𝑡 = argmax

𝐼𝐼𝑘𝑘

(

𝑃𝑃𝑡𝑡

(

𝐼𝐼𝑘𝑘
))

 (2)

where 𝐴𝐴 𝐴𝐴𝑂𝑂
𝑡𝑡

 is the optimal (recommended) irrigation amount at time t (day). t 
is basically run from the beginning of the growing season (t = 0) until the 
end of the growing season. Figure 2 describes the simulation-optimization 
framework.

2.3. Data Assimilation

Data assimilation techniques can help estimate the states and model param-
eters of a complex system using observations to adjust the modeled state 
variable value, as well as refining associated parameters. Particle Filter (PF) 
has shown several advantages over other widely used techniques such as 
ensemble Karman Filter in different studies on nonlinear dynamic systems. 
PF estimates states and parameters based on running an ensemble of models 
(or particles) in parallel, and each particle is associated with a weight that 
indicates for its probability to represent the posterior distribution (Douc & 
Cappé, 2005; Moradkhani et al., 2012).

Nonlinear dynamic systems in a discrete formation are described as follows:

𝑥𝑥𝑡𝑡 = 𝑓𝑓 (𝑥𝑥𝑡𝑡−1, 𝑢𝑢𝑡𝑡, 𝜃𝜃𝑡𝑡) + 𝜔𝜔𝑡𝑡

𝑦𝑦𝑡𝑡 = ℎ(𝑥𝑥𝑡𝑡) + 𝜈𝜈𝑡𝑡
 (3)

where f(·) denotes the model, h(·) denotes the operator of the observations, xt denotes the state variable at time t, 
ut is the forcing data at time t, θt is the vector of the model parameters at time t, and yt is the vector of the obser-
vations at time t. ωt and νt are the process and observations noises, which are usually assumed to be white noises 
with covariance Qt and Rt, respectively.

When observations become available, the posterior of the states and parameters are calculated based on the 
Bayesian theorem as follows:

𝑝𝑝(𝑥𝑥𝑡𝑡, 𝜃𝜃𝑡𝑡∕𝑦𝑦1∶𝑡𝑡) ∝ 𝑝𝑝(𝑦𝑦𝑡𝑡∕𝑥𝑥𝑡𝑡, 𝜃𝜃𝑡𝑡) ⋅ 𝑝𝑝(𝑥𝑥𝑡𝑡∕𝜃𝜃𝑡𝑡, 𝑦𝑦1∶𝑡𝑡−1) ⋅ 𝑝𝑝(𝜃𝜃𝑡𝑡∕𝑦𝑦1∶𝑡𝑡−1) (4)

Figure 2. The simulation-optimization framework. The framework is 
composed of three loops with time (t, crossing the irrigation season), weather 
forecast scenarios (n), and water applications (k).
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An analytical solution for the posterior is only feasible for specific cases such as a linear process with Gaussian 
noise and therefore the need for posterior approximation. PFs estimate the posterior based on the ensemble of 
particles and their corresponding weights. The weights are calculated based on the Bayesian theorem as follows:

𝑤𝑤𝑖𝑖
𝑡𝑡 =

𝑤𝑤𝑖𝑖−
𝑡𝑡
⋅ 𝑝𝑝
(

𝑦𝑦𝑡𝑡∕𝑥𝑥
𝑖𝑖
𝑡𝑡
, 𝜃𝜃𝑖𝑖

𝑡𝑡

)

∑

𝑤𝑤𝑖𝑖−
𝑡𝑡
⋅ 𝑝𝑝
(

𝑦𝑦𝑡𝑡∕𝑥𝑥
𝑖𝑖
𝑡𝑡
, 𝜃𝜃𝑖𝑖

𝑡𝑡

) (5)

where 𝐴𝐴 𝐴𝐴𝑖𝑖−
𝑡𝑡

 is the weight of the ith particle in the prior distribution, and 𝐴𝐴 𝐴𝐴
(

𝑦𝑦𝑡𝑡∕𝑥𝑥
𝑖𝑖
𝑡𝑡
, 𝜃𝜃𝑖𝑖

𝑡𝑡

)

 is the likelihood. The prior 
weights are equal to the posterior weights from the previous time step. When applying resampling the weights 
are set to be equal.

Well-known problem of PFs are filter degeneracy and sampling impoverishment, in which low weights of the 
particles and low sample diversity occur, respectively (Abbaszadeh et al., 2018; Moradkhani et al., 2012). Among 
the newest versions of PF that alleviate these problems is the version provided by Jamal and Linker  (2020). 
This method consists of a PF combined with Markov Chain Monte Carlo (MCMC) and evolutionary operators 
of crossover and mutation with the PF. Integrating MCMC with PF helps eliminate the low weights particles 
and maintain particles that have higher weights and probabilities of survival. This operation can help solve the 
problem of filter degeneracy. However, this method only eliminates particles with low weights without generat-
ing new particles with high weights. Therefore, evolutionary operators are used to ensure the sampling of new 
particles based on the high weights particles. As shown in Jamal and Linker (2020), this integration can alleviate 
the impoverishment problem.

In this study, DA is applied on daily basis to improve the estimations of the current states and the model param-
eters, which leads to improved future predictions. At each time step (daily), soil moisture at several depths and 
crop LAI (from sensors) are used to update the field-level state and the model parameters. The updated state and 
parameters are related to the soil and crop that are highly correlated to the observations. The soil parameters 
are the van Genuchten–Mualem model parameters, and the crop parameters are the maximum relative increase 
in LAI, lower threshold temperature for the aging of leaves, light use efficiency for real leaf, and efficiency of 
conversion into leaves. More details are in Section 3. Note that LAI and soil moisture play an important role in the 
crop yield estimation by controlling several processes such as plant canopy interception and evapotranspiration, 
and by linking soil, atmosphere, and plant together (Bai and He, 2015; Charoenhirunyingyos et al., 2011; De Wit 
& Van Diepen, 2007).

DA will not only connect field observation and modeling but also close the loop between the simulation-optimization 
model and farmers' decisions by assimilating new field observations of soil moisture and LAI that are updated 
with farmers' actual irrigation application at the present day to the model for updating the water and crop simu-
lation, as detailed in the following.

2.4. Human-Computer Interaction: Graphical User Interface and Experiments

The essential difference between the method presented in this work and the direct use of optimization lies in 
the “online” incorporation of farmers' choices, which brings in farmers' experiences, knowledge, and behav-
iors on irrigation. Farmers' irrigation decision and their willingness to follow the model-suggested solution 
vary by person, crop, and area. To address this issue, some studies used machine learning methods and histor-
ical records to train a “mental model” that attempts to mimic irrigation scheduling decisions (Sun et al., 2017; 
Yang et al., 2020); however, limited understanding and representation of farmers' behaviors hinder the effec-
tive use of such a computer-based mental model. The construction of a computer-based human mental model 
to mimic irrigation farmers' behaviors is not the purpose of this paper. Instead, RTIST provides a framework 
for farmers to interact with a computer model directly. RTIST allows farmers to decide if they want to adopt 
the model-recommended water application or use their choice based on their experiences and priorities with 
consideration of the model recommendation. Framers' choices can involve multiple factors, including crop types, 
personal experiences, and responses to policies and regulations. The human-machine interaction is designed for a 
specific irrigated crop in a particular area, with consideration of farmers' experiences on the land.

A Graphical User Interface (GUI) is designed to facilitate the human-machine interaction, as shown in Figure 3. 
At the beginning, farmers are asked to provide some inputs such as if they conduct irrigation with fertilization 
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at the beginning of the season, what are the variable and constant water application costs, and how much is the 
seasonal irrigation amount limit if existing. Following that, at the interaction for a particular day, farmers are 
provided with several pieces of information based on observation, forecast and model simulation, including 
the status of the field, irrigation application up to the day, rain in the past several days, and weather forecast in 
the  next several days. Following reviewing these information pieces, farmers are given the model-recommended 
irrigation amount for the day; they decide whether to accept the recommendation or do something different 
by choosing different amount of irrigation application (including no irrigation on that day). Whenever irri-
gation is applied, farmers provide other inputs such as current variable water cost, which will enable more 
realistic cost assessment of an irrigation application. At the end of an interaction, farmers can choose to have a 
no-irrigation period (a number of days following the current day), in which the tool assumes no-irrigation and 
no farmers' intervention. The computer model keeps simulating the water and crop states based on observation 

Figure 3. The flowchart of the Graphical User Interface designed for the human-machine interaction. The window number at each stage is shown in bold red.
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and forecast during the period and interacting with farmers in some days chosen by farmers. For any day with 
farmer-computer interaction, farmers will be asked to choose the “no-irrigation period” after the current day, 
and the interaction will come back at the end of the no-irrigation period. Such interactions continue to the end 
of the irrigation season. The final window shows farmers the total amount of water application, crop yield, and 
profit.

Thus, the human-computer interaction enables farmers to learn and make their choices based on the information 
and recommendation provided by the model. DA plays a key linkage between farmers' decisions on irrigation 
applications and the simulation-optimization model. Via the DA, the state variables (soil moisture and LAI) and 
parameters of the SWAP simulation model are updated using the real-time field observation of soil and crop, as 
well as daily updated weather forecast, which provides more reliable support for generating the optimal irrigation 
application in a specific day crossing the entire irrigation season. Furthermore, it is assumed that farmers have 
some recapitulation about their choices during the interactions with the computer model and bring some learning 
to the next irrigation season. This learning process is further discussed in the following.

Experiments are designed to test RTIST with irrigation farmers to have their feedback about the usefulness of 
the tool and the improvement needed. This can be conducted via a “fire drill” of a virtual irrigation exercise 
(VIE). In a workshop set up for the experiments, RTIST modelers and invited farmers go over the interactions 
described above through a hypothetical, computer-generated VIE. Being analogy to the so-called virtual drought 
exercises (VDEs, Loucks and van Beek, 2005), a good VIE will raise important issues and provide experiences 
that can be applied in real irrigation practices. The VIE follows the three stages of VDE as described in Loucks 
and van Beek (2005)—briefing, gaming and debriefing. The briefing will define the objectives of the exercise 
and provide a brief tutorial about the interaction process including some explanation of the windows (Figure 3). 
The gaming portion of VIE allows participants (modelers and irrigation farmers) to play a “dry run” of the mode-
ling tool. A single farmer or a small group of farmers can participate in one experiment, where the groups can 
discuss their responses to the model outputs and make a choice together. The same experiment will be conducted 
simultaneously with multiple individual farmers or farmer groups so that the results from different farmers can 
be compared. Through this gaming stage, it is important for participants to perform “self-observation,” that is, 
knowing the consequence of their decisions (e.g., no-irrigation may end with soil dryness; an irrigation appli-
cation may coincide with a major rainfall event in the next few days). Such self-observation will contribute to 
the final debriefing stage that translates participants' actions and perceptions into “lessons learned” via some 
recapitulation of their choices during the experiments. In addition, for modelers to refine RTIST, a survey can be 
conducted at the end of the workshop, asking for users' feedback on the experiments including their experiences 
in irrigation scheduling decisions and suggestions to improve RTIST (see Appendix for the survey questions and 
responses).

3. Case Study
RTIST was tested on two maize fields located in east Nebraska (98.22°W, 42.02°N; 98.2°W, 41.95°N) in the 
crop season of 2019. Current weather was collected daily from Elgin station of the Automated Weather Data 
Network operated by the High Plains Regional Climate Center, located at 98.19°W, 41.94°N. The real-time 
weather forecast was made using the Weather Research and Forecast model with Chemistry (WRF-Chem, Fast 
et al., 2006; Grell et al., 2005), which provides 72-hr prediction of meteorology and air quality for the study 
domain at 4 km resolution, four times per day. The WRF-Chem configuration we have here followed our past 
studies (Ge et al., 2014, 2017; J. Wang et al., 2013, 2022; Zhang et al., 2020). The 1° × 1° National Center for 
Environmental Prediction Final Analysis data at 0000, 0600, 1200, and 1800 UTC were used in real time for 
initializing and specifying the temporally evolving lateral boundary conditions. For each model run (i.e., four 
times per day), the prediction was made for the following 72 hr, and the hourly outputs were archived. Therefore, 
for a given hour on a given day, there are multiple realizations of the forecasts made in the past 72 hr at the interval 
of every 6 hr (J. Wang et al., 2022). Assuming equal weights for all the simulations, the average value for all the 
simulated minimum temperature, maximum temperature, relative humidity, and wind speed and the summation 
of the simulated precipitation and the radiation were calculated and used as the mean of the WRF forecast. A 
standard deviation of the WRF was calculated as the difference between the forecasted values (from WRF) and 
the observed values in 2018. The obtained standard deviations are 0.31 mm, 0.54 mJ m −2, 0.23°, 0.14°, 0.12%, 
0.37 m s −1 for the rain, minimum temperature, maximum temperature, relative humidity, and wind speed. Then, 
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10 scenarios were sampled from Gaussian distribution for all the weather variables, except for rain where Gamma 
distribution was used.

Daily soil water content and LAI observations were assessed at the field. The soil water content observations 
were collected directly from the study fields using three time-domain reflectometry probes and data loggers 
that were installed at three sampling zones at each of the testing fields. On each of the sampling locations, three 
probes were vertically installed at soil depths of 10 and 18 inches. The probes were installed at the location with 
the lightest soil type (and therefore the lowest water content in the field), so that the irrigation amounts at these 
locations would be sufficient for other locations. Data loggers were automated to constantly collect soil moisture 
data at a temporal resolution of 30 s, which are aggregated to a daily time period. The LAI observations were 
collected using a remote sensing product iLAI-2200C plant canopy analyzer (model LAI-2270, LICOR Biosci-
ence, Lincoln, Nebraska, USA), which are updated every 2 weeks. Each field was divided to three sampling 
zones, and five samples were collected from each zone. The average of all samples is used as the final LAI meas-
urement. Polynomials with a degree of six were fitted to the available LAI observations in three periods with an 
equal length to interpolate the daily observations. The three periods were chosen as corresponding periods of the 
time from emergence to the full canopy, full canopy to the beginning of leaf senescence, and leaf senescence to 
maturity (about 40 days each). The observations of soil moisture and LAI are used in the DA to update the crop 
and soil state and parameters that are highly correlated to the observations. The state includes several variables 
such as LAI, soil moisture at the whole soil profile, and root depth. The soil parameters are the van Genuchten–
Mualem model parameters, and the crop parameters are the maximum relative increase in LAI, lower threshold 
temperature for the aging of leaves, light use efficiency for real leaf, and efficiency of conversion into leaves.

According to the reports of California Soil Resource Lab at UC Davis and UC-ANR (Walkinshaw et al., 2021), 
the soils of the test fields are sandy-loam to loamy-sand soils of seven layers, with less than 6% slopes with any 
of the soil layers. The soil hydraulic parameters in the SWAP model were initialized according to the soil reports, 
and the soil slopes were assumed as 0%. The crop parameters were used as the default parameter set provided in 
the SWAP model. The planting date is 25 April 2019. The fields are irrigated with sprinklers. The average water 
price is 40 USD/in-acre and the crop price is 3 USD/Bushel.

Using these test fields, the tool performance was assessed. A workshop for the model experiments was organized 
by the Agriculture Extension of the University of Nebraska at Lincoln to test the interactions with farmers. Ten 
farmers from Nebraska attended the workshop (Table A1). A survey was conducted during the workshop to seek 
feedback from farmer participants (Table B1).

4. Results
This section first discusses the RTIST performance by comparing the optimized irrigation schedule (without 
human intervention) to the actual applications, with detailed result analysis on the influence of the DA on soil 
moisture and LAI. Following that, the results from the RTIST experiment workshop are presented and the influ-
ence of human-machine interactions are discussed.

4.1. Tool Performance

4.1.1. Data Assimilation

Here the effectiveness of DA is shown by comparing the estimations of LAI and soil moisture with and without 
using DA. In this test, the actual field irrigation schedule and the actual observations were used. The irrigation 
schedules together with the precipitation amounts are presented in Figure C1 in Appendix C. The error difference 
is used as a comparison indicator, which constitutes of the difference between the error with and without using 
DA under each of the two cases. For LAI, the error difference is calculated according to the difference between 
the absolute error of estimation of LAI (the absolute difference between the estimated LAI and the measured 
LAI) with DA and without DA; for soil moisture, the error difference is calculated as the absolute difference 
between the average (over the number of observations) error of the estimation of soil moisture (the absolute 
difference between the estimated soil moisture and the measured soil moisture) with DA and without DA. The 
results of the current state estimations are presented in Figure 4. Values below 0 indicate a lower error with 
the  tool with DA than the case without. The results are shown only after the LAI assimilation has begun (i.e., 
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after the crop emergence), as leaves do not exist in the early days and the assimilation process did not commence. 
The improvement of the estimations of both LAI and soil moisture over time is clearly shown. At most of the 
time steps, both LAI and soil moisture are better estimated with DA. The results of soil moisture are similar on 
both fields, while better LAI estimations were observed on Field A using DA. This is due to the lower LAI in 
early periods (days 50–60) in Field A and the lower errors of DA, which led to a better convergence of DA with 
more accurate estimations in comparison to Field B (see Figure D1 in Appendix D). However, the convergence 
of LAI is more consistent than soil moisture due to two reasons. First, the negligible LAI correlation with other 
measured state variables. For example, a slight modification of LAI within the assimilation process can lead to 
a direct change of the estimated LAI which can easily match the estimated LAI with the measured LAI. On the 
other hand, the state of measured soil moisture at one depth has a high correlation with the state of measured 
soil moisture at other depths. Due to this correlation, the correction of the soil moisture at one depth using DA is 
accompanied with changing the value of correlated soil moisture at other depths. Therefore, an improvement in 
the estimation of the state of soil moisture at one depth might be accompanied by a degradation at other depths 
which may result in no improvement in the whole soil moisture estimation (see Figure D2 in Appendix D). 
Hence, in general, estimating soil moisture on  the whole soil profile can be more challenging than LAI. Second, 
soil moisture improvement is highly dependent on the changing dynamics with the changing irrigation amounts 
and precipitation. For example, when low irrigation amount and precipitation occur (as the case in days 90–110), 
new (low, in comparison to past periods) dynamics exist and no information is available for improving the estima-
tions. A sufficiently long period for DA is required to improve the accuracy of the simulation model and converge 
to satisfactory estimations.

Since the SWAP model is used for predictions within RTIST, it is important to examine the accuracy of 
the predictions provided by the simulation model. The prediction capability of both soil moisture and LAI 
state in a future period (i.e., 3 days ahead, as used in this study) using the DA enhanced SWAP modeling is 
examined, where the daily average error difference is also used. Overall, using DA, the estimations in most 
of the growing period are superior to the method with no assimilation in both fields (as shown in Figure 5, 
all error differences are below 1.0). The results of the predictions follow the results of the current state esti-
mations as shown in Figure 4 to some extent. For LAI, the current estimation was better than the prediction 
at the beginning, as the direct influence of the modification of the current LAI using crossover and mutation 
can be higher than the influence of modifying the crop parameters on LAI during the assimilation process. 
This direct LAI modification, as the driver of the improvement in LAI, might hinder the parameter estima-
tions. This can be alleviated by lowering the amplitude of the crossover and mutation parameters applied to 
LAI (Jamal & Linker, 2020). The values of soil moisture at different depths and the LAI are presented in 
Figures D3 and D4 in Appendix D.

Figure 4. The error difference for (a) soil moisture and (b) leaf area index estimated at the current time step.
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4.1.2. Optimization

The RTIST was tested on two fields (namely field A and field B) in east Nebraska and the optimized irrigation 
schedules from the simulation-optimization model are compared to the actual schedules which were applied by 
farmers in the real fields, as shown in Figure 6 together with the rain during the crop growing season. In both 
fields, the optimized and the actual schedules both have irrigation applications mainly in the second part of the 
growing season, as the evapotranspiration increases. However, the optimized applications occur over a relatively 
narrow range with especially low rainfall. This emphasizes the importance of exploiting the rainfall possibilities 
from some incoming days using weather forecasts. This also indicates that in the real world, farmers' decisions 
might not be well informed by weather forecasts. In addition, the low amplitude of the optimized irrigation appli-
cations shows that an accurate timing might substitute for applying large irrigation amounts (Table 1). Increasing 
the crop yield while decreasing the water usage with the optimized schedule shows the possibility to improve the 
actual schedule. However, it is not realistic for farmers to fully accept the optimized schedule due to the impacts 

Figure 5. The error difference for (a) soil moisture and (b) leaf area index, predicted for the future time periods.

Figure 6. The conventional and optimized irrigation schedules with rainfall events in (a) Field A and (b) Field B.
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of farmers' behaviors, policies, as well as incomplete knowledge and limited 
knowledge delivery to farmers (Rose et al., 2018).

It should be noted that a 3-day probability-based weather forecast is used 
for the current simulation-optimization model. The stochastic optimi-
zation approach is compared with a deterministic approach, in which a 
single-scenario weather forecast, rather than multiple probabilistic WRF 
forecasts, is used. No improvement is observed between the two approaches, 
owing to the low uncertainty of the forecasts with a short period of 3 days. 
The importance of the stochastic approach is manifested by longer forecast 
periods and higher uncertain conditions (Cai et al., 2011; Hejazi et al., 2014). 
A future work may include forecasts that have heading time of up to 2 weeks, 
as suggested by Cai et al. (2011) and Hejazi et al. (2014).

4.2. Human-Machine Interaction

Multiple runs of RTIST and the GUI were conducted with invited farmers via a VIE that took place at the Univer-
sity of Nebraska-Lincoln with farmers from different sites in Nebraska. In this workshop the farmers interacted 
with the tool through the GUI by running a test field case study from the site in east Nebraska (the same site as 
Field A and Field B, but a different field). The experimental results, discussions between modelers and farmers 
during the human-machine interactions, and the survey at the end of the experiments show the interest, involve-
ment, learning, and feedback for the tool improvement from the farmer participants. Each of the VIE took about 
1 hr.

4.2.1. Farmers Intervention

The test field was run in the workshop with two groups of farmers, with each group including 4 farmers. Here the 
final irrigation schedules from two groups (named Group 1 and Group 2) are compared to the schedule without 
any intervention (i.e., assuming farmers accept all model recommendations), and shown in Figure 7. Further-
more, the irrigation schedule that was applied in the real field is presented. Group 1's choices were closer to the 
model recommendations than Group 2, but both groups modified the recommendations. Both groups chose to 
irrigate toward the end of the growing season. Group 2 started to irrigate earlier than the model and Group 2. 
In addition, both groups decided to irrigate in the first week, which differs from the model recommendation of 
no-irrigation. This is because both groups of farmers have experience of combined fertilizer and water application 
during the seed stage. Based on this result, RTIST was modified to add a choice of applying water and fertilizer in 
the seed stage (see more about the tool modification based on farmers' feedback in Section 4.2.3).

The total irrigation amounts, crop dry matters, and profits, together with the 
average no-irrigation period lengths, total no-irrigation days and the number 
of rejections are presented in Table 2. Overall, the results of the modeled 
schedule (without interaction) and of the human-machine interactions with 
Group 1 and Group 2 is better than that of the actual field practices, in terms of 
saving water, increasing dry matter, and increasing profits. However, Group 
1 tended to be more conservative and used less water than the model, while 
Group 2 used more water. When the human-machine interaction is finished 
for a particular day, farmers are asked to tell how many days they will wait for 
considering the next irrigation application. It is found that both groups chose 
periods of less than a week (6.4 days for Group 1 and 4.1 days for Group 2), 
with a close total no-irrigation days in the entire season (76 days for Group 1 
and 86 days for Group 2). Both groups showed high agreement with the tool 
(less than 10% rejections); yet one group rejected three times more than the 
other group. However, similar dry matter was obtained from all the cases; the 
highest profit was achieved for Group 1 due to less water application and cost 
than the model and Group 2. The difference in the choices of the two groups 
indicates the complexity of anticipating farmer behavior, which emphasizes 
the necessity of involving farmers in the decision-making process.

Field Method
Irrigation 

(inch)
Dry matter 

(bushel/acre)
Profit 

(USD/acre)

Field A Actual 8.1 324 648

Optimized 3.1 365 971

Field B Actual 6.9 335 729

Optimized 3.4 373 983

Table 1 
Seasonal Irrigation Amount, Dry Matter and Profit Using Optimized and 
Actual Methods for Field A and Field B

Figure 7. Irrigation schedules based on the model recommendations (without 
interactions), human-machine interactions with two groups of farmers, and 
field records.

 19447973, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035810 by U

niversity O
f Iow

a, W
iley O

nline L
ibrary on [15/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

JAMAL ET AL.

10.1029/2023WR035810

13 of 22

4.2.2. Debriefing

In the debriefing stage following the gaming stage (i.e., the human-machine interactions), farmers and modelers 
discussed the experiments. In general, the participating farmers thought the tool was informative, encouraging, 
exciting, and conceptually great. They expressed the willingness to use the tool, after it is finalized, as a decision 
assistance tool, especially in the form of as mobile phone app. They also provided very helpful suggestions based 
on their experiences and expectation to refine the tool shown in the VIEs. Some suggestions are highlighted 
below to show the diverse requirements from irrigation farmers. Some farmers said they were challenged by the 
water use permit and the timing of applications, which often enforces constraints on their irrigation scheduling. 
Water cost is also a concern for some farmers since it varies with the energy market. The tool in the experiment 
assumed farmers made a decision for the current day but some farmers sometimes also like to make a decision in 
a number of consecutive days (e.g., 5 days).

A specific discussion between the farmers and modelers is about the late irrigation applications appearing in the 
model recommended schedule (Figure 7). The model determines an irrigation application on a particular day 
according to the current soil moisture, crop growth status, and the weather forecast. In particular, the threshold 
soil moisture plays a critical role. In the real world, this threshold varies by farmers. Some farmers in the work-
shop said they tried to keep the soil close to saturated status all time, however, this wastes water and may not 
be necessary for crop growth either. For both modelers and farmers, adjusting the threshold soil moisture is a 
trial-and-error learning process that will be supported by real-world practices.

In addition, some farmers may only consider the current soil and crop status and not the weather forecast, and 
they may irrigate right before a rainfall event. Thus, farmers may build their trust to the weather forecast via the 
human-machine interactions over a number of consecutive seasons.

At the end of a dry run, some farmers told the modelers that they might do it differently regarding the model 
recommendations if they took the experiment again; farmers from different groups exchanged their choices and 
thoughts during the VIEs. In future real-world use of the established tool, farmers are expected to learn from 
the interactions season by season so that their decisions can be more informed, especially whether to accept the 
model recommended application at a particular time; if they decide to apply amount of water different from the 
model recommended, how different it should be, etc.

The survey conducted at the end of the VIE workshop provides some feedback from farmer participants, as 
presented in Table B2 in Appendix B. Most of the farmers grow corn and other crops, with a wide range of 
farm scales, which makes the farmers good representatives of the (especially corn) farmers in Nebraska. Most 
of the farmers rely basically on current weather conditions. This highlights the importance of the current infor-
mation in the field (D. Wang & Cai, 2009). In particular, one farmer mentioned that his decision was based on 
soil moisture probes (PREC University of Nebraska - Lincoln). However, most farmers still showed interest in 
using forecasts. They suggested showing them the actual weather in the past 3 days to 1 week so that they could 
have a sense of how reliable the forecasts were and to what extent they should trust the forecast (Shafiee-Jood 
et al., 2021); they also wondered about the effectiveness of relatively long weather forecast up to one to 2 weeks 
(Hejazi et al., 2014).

In general, the debriefing results indicate the readiness of farmers to accept scientifically-based tools in irriga-
tion scheduling and their excitement to get involved in human-machine interactions to obtain support in their 
decisions. In particular, RTIST was demonstrated for corn/maize only during the workshop, and the participants 

Case
Irrigation 

(inch)
Dry matter 

(bushel/acre)
Profit 

(USD/acre)
Total no-irrigation 

days (day)
Average no-irrigation 
period length (day)

Number of 
rejections (out of 
115 days) (day)

Model 2.71 237 602 – – –

Group 1 2.29 235 613 76 6.4 3

Group 2 3.65 237 565 86 4.1 9

Actual field 7.00 240 440 – – –

Table 2 
Seasonal Irrigation Amount, Dry Matter, and Profit Resulting From the Various Irrigation Schedules
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expected to see the tool for other major crops. Meanwhile for the RTIST modelers, farmers' feedback led to a 
more realistic and more effective tool, as discussed in the following.

4.2.3. Tool Modifications Based on Farmers' Feedback

Some comments from the VIEs are related to the threshold soil moisture, which the model uses to decide an 
irrigation application, variable water cost, maximum applicable water in an application, seasonal and monthly 
water use permit, relevance of soil moisture to crop stress, and joint fertilization and water applications. These 
comments are constructive for technical improvement and led to modification of RTIST right after the workshop, 
as summarized in Table B2, Appendix B. Some comments are related to the provided information, as the farmers 
showed interest in more information from the model such as water stress, weather forecast reliability, crop growth 
stages, seasonal results, and excessive water events. Part of the required information is not easily measured (e.g., 
water stress and growth stage) and can be estimated by the simulation model. Even so, the farmers still thought 
the information was valuable after the VIE workshop. This highlights the importance of the human-machine 
interaction in terms of the learning for both the modelers and the participating farmers.

RTIST is under further refinement and modification. As some farmers in the VIEs expected, the final goal is to 
deliver a smart phone app based on RTIST that is accessible for farmers during the irrigation season.

5. Conclusions
In this study, a simulation model, a DA technique, and a human-computer interaction method are integrated into 
an optimization framework to support real-time irrigation scheduling regarding optimality, accuracy, and applica-
bility of the RTIST. The principle of the RTIST is to engage farmers directly into computer modeling and support 
farmers' irrigation scheduling decisions jointly based on model provided information and their own justification. 
This is different from many existing studies that try to mimic farmer's behaviors and decision processes, which is 
however not realistic for real world applications. RTIST does not propose an “automatic” tool to replace irrigation 
farmers to conduct irrigation scheduling decisions, but to provide model-based information to support farmers 
to make the decisions themselves. Meanwhile, in the human-computer interaction framework, farmers' feedback 
improves the computer model of crop growth with real world irrigation applications.

This integration can help track optimal crop profits based on probabilistic weather forecasts while involving field 
observations to assure reliable environment and crop simulations in the optimization process. In particular, it is 
shown that human-computer interaction is important for facilitating the practical application of the tool through 
farmer's engagements. The tool was tested on maize fields in east Nebraska via VIEs with real world farmers. The 
accuracy of present estimation and future prediction of soil moisture and LAI is improved by field observation 
and DA, and the optimization and assimilation procedures are validated with increased crop yield, profit, and 
water saving. The human-computer interaction of the tool was tested on one field via a workshop with invited 
farmers. High interest in applying the tool was shown by the farmers, to a large extent due to the informativity of 
the tool, for example, about the status of crop and field environment. The VIEs show that RTIST with farmers' 
direct engagement results in increased crop yield, profit, and water saving in comparison to traditional practices. 
In addition, farmers' feedback from the debriefing stage of the VIEs provides meaningful suggestions to improve 
the tool (especially the GUIs) for real-world application. The VIEs highlight the necessity for the direct interven-
tion of the farmers in the irrigation scheduling modeling process.

The proposed decision support tool can be affected by non-accurate information due to possible systematic errors 
with both the model structure and parameterization. However, several features of the proposed framework could 
help alleviate this issue. First, a reliable and widely used simulation model (i.e., SWAP) was used to simulate soil 
moisture and crop growth in a real crop field, enhanced by assimilating field observations to reduce modeling 
errors. Furthermore, the interactions with farmers enable the link between the computer model and the real field 
condition, which ultimately reflects farmers' actual decisions based on both model recommendation and farmers' 
experience and justification. Future work should include using more data to validate the crop model simulation 
(e.g., dry matter) and conduct more interactive experiments with farmers for various crops at various sites.
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Appendix A: Workshop and Survey
The workshop windows and survey, which were introduced to farmers, are presented in this appendix (Figure A1).

Figure A1. Snapshots of the windows of the workshop.

# Questions

1 How many acres of land do you farm or consult?

2 What are the major crops you plant on your farm?

3 For the crop you have (corn in particular), by average, how many irrigation applications do you have in one crop 
season, or how many inches of water do you apply?

4 Do you use weather forecast (like the public 10-day forecast) in your irrigation decisions?

5 How do you decide when to irrigation and how much to apply? Please choose one or more of the following choices:

(1) Use my own justification based on observation of plants and soil moisture and weather forecast

(2) Follow what my neighbors do

(3) Follow suggestions from crop advisors, district associations, etc.

(4) Others (please specify)

6 Please describe any positive or negative things (if any) about the real-time irrigation scheduling tool tested in the 
experiment today

7 Please describe any suggestions you may have for our irrigation scheduling tool

Table A1 
Survey Questions
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Appendix B: Workshop Results
The results of the survey and the feedback of the farmers in the workshop are presented in this appendix.

Farmer # Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 150 C, B 12–14″ Rely more on 
current 
weather

1 It is difficult to 
coordinate weather to 
results

–

2 160 C, B, A, O, R, 
S, G

Once a week Yes 1, 4: water allotment amount and 
time from ditch company

Good tool, need variable 
rate

Increase water 
amount in an 
application. 
Provide when 
leach happens

3 330 C, A 12″ Rely more on the 
current rain

1 Very exciting and 
will validate our 
real-world work

Fertilizing 
scheduling is 
also required

4 450 C, S, B 20 applications, 
10″–18″

Yes 1 A good tool to manage 
irrigation

–

5 800 B 14″ Yes, on the early 
irrigation 
period

1, 4: soil monitor A different tool –

6 85 A, C, B 5–7 applications, 
5″–7″

Yes 1, 4: information from Panhandle 
Research and Extension 
Center probes. There is a 
problem in decision-making 
that it is made with other 
farmers who share the land

Disappointed from 
previous programs. 
The concept is great 
and needed especially 
as it is data-based and 
informative

Keep up the great 
work

7 5,500 C, S, B 24 applications, 
15″–19″

Yes 1 Soil moisture needs more 
relevance to actual 
moisture for crops

–

8 1,800 C, W, S 13–16″ Yes 1, 3, 4: climate view Very informative –

Note. C, Corn; B, Beans; A, Alfalfa; O, Oats; R, Rye; S, Sugar beets; G, Grass; W, Wheat.

Table B1 
Survey Results

Comment Modification

Change the soil moisture scale to give information on the water stress Water stress was added as the estimated relative transpiration

In the beginning, some amount of water should be applied with fertilizer Fertilization on the first day was added as an optional choice together with the 
corresponding irrigation amount

Increase maximum one-time irrigation to 0.8″ or 1″ Maximum irrigation amount was increased to 1″

Add note on the weather forecast reliability (e.g., equal probability for all 
scenarios)

A note that the scenarios have equal probability was added to the figure of the 
weather forecast

Show crop growth stages Instead of LAI, an estimated growth stage was added

Show the actual rainfall during the past 3–7 days A figure of the actual rainfall for the past 3 days was added

Show crop yield and irrigation at end of the growing season A window showing the final yield, used water, and profit was added

Farmers were interested in the total budget and monthly budget of water for the 
growing season as they said it varies from area to area

The variable water cost can be modified each time the irrigation is applied. The 
total water limit is added to be specified as well

Irrigation is not allowed before a specific date in some cases No—irrigation period can be chosen anytime during the growing season

Water cost varies from area to area and from month to month User-defined fixed and variable water cost can be chosen

The time of water leaching out should be provided Water leaving the field as runoff was added on daily basis

Table B2 
Modifications of the Tool Based on the Farmers' Comments

 19447973, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035810 by U

niversity O
f Iow

a, W
iley O

nline L
ibrary on [15/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

JAMAL ET AL.

10.1029/2023WR035810

17 of 22

Appendix C: Precipitation and Irrigation for DA
The irrigation schedules together with the precipitation amounts that were used in the DA case study are presented 
in this appendix.

Appendix D: DA Results
DA results for current and predicted estimations are presented in this appendix.

Figure C1. Precipiration and irrigation schedules for field A (left) and field B (right) in the DA case study.

Figure D1. Current leaf area index (LAI) estimations.
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Figure D2. Current soil moisture estimations.
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Figure D3. Predicted soil moisture estimations.
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Figure D4. Predicted leaf area index (LAI) estimations.
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Data Availability Statement
The software used for the workshop and the case study are available on Mendeley (Case study (Jamal et al., 2023a) 
and Workshop (Jamal et al., 2023b)).
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