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Abstract
In the late twentieth century, global mean surface air temperature especially on land is continuously warming. Our analyses 
show that the global mean of dust increased since 1980, using the Modern-Era Retrospective Analysis version 2 for Research 
and Applications (MERRA-2) reanalysis data. This variation of global dust is mainly contributed by the dust increase out-
side of dust core areas (i.e. high dust mass concentration region). The causes to result in global dust variations are explored. 
In dust core areas, surface wind is the primary driving factor for surface dust, both of which show no remarkable trends of 
increase or decrease since 1980. In areas outside of the core areas, especially in arid and semi-arid areas in North and Mid-
dle Asia, surface air temperature warming is the primary impact factor causing the dust increase. An increase in surface air 
temperature is accompanied by enhancement of atmospheric instability which can trigger more upward motion and bring 
more dust. All 9 Earth System Models (ESMs) for the Aerosol Chemistry Model Intercomparison Project (AerChemMIP) 
reproduce the reasonable spatial distribution and seasonal cycle of dust in the present day. But only a few models such as 
BCC-ESM1 and GFDL-ESM4 simulate the increasing trend of dust similar to MERRA-2. While the primary impact of 
wind in dust core areas, and surface temperature outside of the core areas, especially in middle to high latitudes in Eurasian 
continent, are presented in most ESMs.
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1  Introduction

Recently, severe dust events have occurred frequently world-
wide. For example, there are seven dust events occurred in 
the Sistan and Lake Harmon basin areas in the last 20 years 
(Rami et al. 2022); an extraordinary dust storm engulfed 
the Khuzestan province in Iraq, damaged the electricity 
infrastructure and even triggered the disruption of elec-
tricity supply in cities such as Awash (Ledari et al. 2022); 
three strong dust events occurred in southern Iran in the 
winter and spring of 2018 (MalAmiri et al. 2022); a severe 
sandstorm occurred in the Sahara Desert of North Africa in 
June 2020, affecting an Atlantic hurricane that year (Fran-
cis et al. 2022); three extremely wide-ranging sandstorms 
occurred in Beijing in March 2021 (Filonchyk 2022; Wang 
et al. 2021); and a strong dust event occurred in Iraq on 
April 7–9, 2022 (https://​earth​obser​vatory.​nasa.​gov/​images/​
149695/​dust-​storm-​in-​iraq). Dust increasing may be caused 
by various factors such as surface wind speed, precipitation, 
soil moisture, temperature, and water resources (Gillette 
and Passi 1988; Hamidi et al. 2017; Hamidi 2020; Shi et al. 
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2021; Sissakian et al. 2013). Does the frequent occurrence 
of severe dust events is related to the global warming?

Many studies have shown that the dust variations exist 
in their regional dependence in the twentieth century of 
global warming. The growth of the Earth’s surface tem-
perature can lead to surface evaporation increasing and the 
relative humidity decreasing, which dries the land, acceler-
ates the surface soil disturbance, exacerbates the vegetation 
degradation, and then rises the possibility of dust emission 
(Goudie and Middleton 2001; Middleton and Kang 2017; 
Mirzabaev et al. 2019; Harrison et al. 2001; Munson et al. 
2011; Wu et al. 2020b). There are evident increasing trends 
of dust concentration and dust storm frequency in North 
Africa, the eastern Mediterranean, Arabian Peninsula, and 
Middle East (Hamidi 2020; Middleton 1985; Goudie and 
Middleton 1992; Mbourou et al. 1997; Ganor et al. 2010; 
Notaro et al. 2015; Krasnov et al. 2016; Sissakian et al. 
2013). In addition, the dust aerosol optical depth and dust 
emission flux in East Asia also showed an increasing trend 
from 1986 to 2005 (Zong et al. 2021). However, the fre-
quency of dust activities has decreased significantly for the 
average of North and South Africa, Northeast Asia, Central 
Asia, and northern China, in recent years (Shao et al. 2013; 
Indoitu et al. 2012; Song et al. 2016; Zhu et al. 2008). This 
decrease in dust is explained by the decrease in local wind 
speed (Tsunematsu et al. 2011; Zhang et al. 2003; Zhu et al. 
2008), and it is suggested that the temperature difference 
between the polar and equatorial regions decreases under 
the influence of global warming, so that the pressure gra-
dient decreases, resulting in the reduction of wind speed, 
which may reduce dust emissions and the frequency of dust 
events.

With the development of numerical models in recent 
years, the Earth System Model (ESM) has been a complex 
model system used to describe the formation, emission, 
transportation, gas-phase chemical reaction, deposition, 
and other processes of various aerosols, including dust 
aerosols and atmospheric chemical components (Dunne 
et al. 2020; van Noije et al. 2021; Wu et al. 2020a). The 
ESM is an important tool to study the outbreak of global 
and regional dust events and variations in dust concen-
trations with global warming. The Aerosol Chemistry 
Model Intercomparison Project (AerChemMIP, Collins 
et al. 2017), endorsed by the Coupled Model Intercom-
parison Project (CMIP6, Eyring et al. 2016), designs the 
historical experiment, where the external forcing fields 
used in ESMs include CO2, CH4, N2O, and other green-
house gas concentrations, solar radiation, volcanic activ-
ity, while other chemical species including dust aerosols 

and from anthropogenic emissions. This experiment pro-
vides important simulation data for our study to explore 
the global atmospheric dust concentration changes in 
recent decades.

Therefore, the purpose of this study is to explore the 
regional feature of dust variation since 1950 and the relation-
ships between dust and temperature, wind, and soil moisture. 
The data used in this study are introduced in Sect. 2, the 
main results are shown in Sect. 3, and the summary and 
discussion are presented in Sect. 4.

2 � Data

The monthly MERRA-2 reanalysis data with a resolu-
tion of 0.5° lat × 0.625° lon from 1980 to 2020, includ-
ing dust concentration in the whole column and that near 
the surface (GMAO 2015, https://​disc.​gsfc.​nasa.​gov/​datas​
ets?​proje​ct=​MERRA-2, last access: 20 January 2022), are 
used to explore the global variations of dust. Those are 
the longest global dust series that we can access currently. 
The MERRA-2 data integrates observations from multiple 
sources, such as the Moderate Resolution Imaging Spec-
troradiometer (MODIS), the Advanced Very High Resolu-
tion Radiometer (AVHRR), the Multi-angle Imaging Spec-
tro Radiometer (MISR), and the Aerosol Robotic Network 
(AERONET) (Gelaro et al. 2017; Randles et al. 2017; Rie-
necker et al. 2011). The MERRA-2 reanalysis data provided 
an important basis that is widely used by researchers on 
dust in Africa (Grogan and Thorncroft 2019; Prospero et al. 
2020; Veselovskii et al. 2018), West Asia (Hamidi 2020; 
Roshan et al. 2019; Ukhov et al. 2020; Yousefi et al. 2020), 
East Asia (Qin et al. 2018;  Yao et al. 2020, 2021), and Aus-
tralia (Mukkavilli et al. 2019).

Three sets of 1980–2020 monthly gridded reanalysis 
data are used to analyze the relationships between dust and 
temperature, wind, and soil moisture. They include: (1) the 
global monthly air surface temperature with the resolution 
of 0.5° lat × 0.5° lon from Climatic Research Unit gridded 
Time Series version 4.05 (CRU TS4.05, https://​catal​ogue.​
ceda.​ac.​uk/​uuid/​c26a6​5020a​5e4b8​0b200​18f14​85566​81, 
last access: 19 March 2022), which is based on terrestrial 
observations (Harris et al. 2020, 2021), and widely used to 
study the variation of surface temperature (e.g., Karim et al. 
2020; Xu et al. 2020); (2) global 0.5° lat × 0.5° lon monthly 
data of temperature and wind speed at pressure levels from 
the European Centre for Medium-Range Weather Forecasts 
(ECMWF) Reanalysis v5 (ERA5, https://​www.​ecmwf.​int/​
en/​forec​asts/​datas​ets/​reana​lysis-​datas​ets/​era5, last access: 

https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
https://catalogue.ceda.ac.uk/uuid/c26a65020a5e4b80b20018f148556681
https://catalogue.ceda.ac.uk/uuid/c26a65020a5e4b80b20018f148556681
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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21 March 2022), which is a comprehensive reanalysis data 
using the 4D-Var data assimilation and model forecasts in 
CY41R2 of the ECMWF Integrated Forecast System (Hers-
bach et al. 2019a, 2019b,  2020), and widely used in many 
researches (e.g., Jiang et al. 2021; Zhu et al. 2021); and (3) 
the global monthly upper soil (0–10 cm) water contents with 
the resolution of 2.5° lat × 2.5° lon from the Global Land 
Data Assimilation System (GLDAS, https://​disc.​gsfc.​nasa.​
gov/​datas​ets/​GLDAS_​NOAH0​25_M_​2.1/​summa​ry?​keywo​
rds=​GLDAS, last access: 21 March 2022), which is devel-
oped by NASA's Goddard Space Flight Center (GSFC) in 
conjunction with the National Oceanic and Atmospheric 
Administration (NOAA) and the National Centers for Envi-
ronmental Prediction (NCEP) and using new generation of 
ground and satellite observation systems and advanced land 
surface modeling and data assimilation techniques to ingest 
satellite- and ground-based observational data products 
(Beaudoing et al. 2020; Rodell et al. 2004), providing an 
important and reliable data to study soil moisture (e.g., Fu 
and Wang 2014; Kędzior and Zawadzki 2016). In order to 
validate the impact of the surface temperature, wind speed, 
and soil moisture on dust variation, we also use those data 
from the same source of MERRA-2.

The 1950–2014 monthly gridded data from historical 
simulations of 9 ESMs (listed in Table 1) for AerChemMIP, 
including the dust aerosol mass mixing ratio, air tempera-
ture, surface wind speed, and upper soil (0–10 cm) water 
content, are used in this study to evaluate the performance 
of the ESMs and also verify our diagnostic analyses derived 
from observations.

To facilitate the comparative analysis of each data, all the 
data are interpolated to grid points with a horizontal resolu-
tion of 1° lat × 1° lon in this study.

3 � Results

3.1 � Present‑day climate of dust aerosol simulations 
in ESMs

Figure 1 shows the spatial distribution of the annual mean 
dust aerosol column concentrations of MERRA-2 and the 
9 ESMs and their multi-model mean (MME) from 1995 to 
2014. Dust aerosols have remarkable regional character-
istics in MERRA-2 (Fig. 1a), mainly concentrating in the 
"dust belt" that extends from North Africa to East Asia via 
the Middle East, Central Asia, and South Asia (0°–130° E, 
0°–60° N). High concentration areas are mainly located in 

arid regions, such as the Sahara Desert in Central and North 
Africa, the Arabian Peninsula in the Middle East, and the 
Taklimakan Desert in East Asia. The conclusions above 
are consistent with previous research (Ginoux et al. 2001, 
2012; Zender 2003). All the ESMs can basically reproduce 
the spatial distribution characteristics of dust aerosols with 
high spatial correlation coefficients over 0.67, and the spatial 
correlation coefficient between the MME and MERRA-2 is 
even up to 0.95.

The seasonal cycle of the global (60° S to 90° N) 
mean dust concentrations averaged for the period during 
1995–2014 is presented in Fig. 2. The dust burden in the 
atmosphere from MERRA-2 shows an obvious seasonal 
variation, higher in boreal spring and summer from March 
to June and lower in winter from November to January. Most 
models and the MME can basically capture those seasonal 
variation characteristics, except for MIROC-ES2L (in which 
the high value is in July).

3.2 � Variation in dust since 1950

To analyze the evolution of dust in recent years, Fig. 3 pre-
sents the globally-averaged annual mean of column mass 
density (DstDen, black line) and surface mass concentra-
tion (SurDst, red line) of dust over land since 1950. Their 
year-to-year variations resemble each other. From 1980 
to 2020, MERRA-2 shows a significant increasing trend 
of dust (Fig. 3a). Especially from 1980 to 2010, the Dst-
Den increased by 15 mg m−2 and the SurDst increased by 
6 μg m−3. For the 9 ESMs, only a few can show an analogous 
increasing trend, such as BCC-ESM1 (Fig. 3b) and GFDL-
ESM4 (Fig. 3e), although increases in these models are 
much weaker than in MERRA-2. In most models, the trends 
of dust in the same period are negative, and are opposite 
to the MERRA-2, showing an evident decrease. Especially 
in EC-Earth3-AerChem and CESM2-WACCM, the Dst-
Den decreases by 8–10 mg m−2, and the SurDst decreases 
by 4–5 μg m−3. As for the UKESM1-0-LL, the DstDen of 
UKESM1-0-LL increases by 3 mg m−2 while the SurDst 
decreases by 3 μg m−3 during 1980–2010. The DstDen and 
SurDst of UKESM1-0-LL are consistent before 2000, but 
opposite variations after 2000.

Figure 4 shows the geographical distribution of the linear 
trend of 1980–2010 annual means of SurDst on global land. 
The MERRA-2 data shows a significant growth trend over 
most of the global land, especially in northeastern North 
Africa, the Arabian Peninsula, east of the Taklimakan Desert 
in East Asia, and near the Himalayas in northern South Asia. 

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary?keywords=GLDAS
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary?keywords=GLDAS
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_M_2.1/summary?keywords=GLDAS
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Moreover, the SurDst in regions such as North and South 
America and the coast of Australia also increases signifi-
cantly. The increasing SurDst from MERRA-2 in some 
regions (Fig. 4a) is also caught from other observations data. 
For example, utilizing MODIS images data, Bin Abdulwa-
hed et al. (2019) found that the frequency, spatial extent, and 
intensity of dust storms in the Middle East increases in the 
last 15 years from 1997 to 2012.

As in Fig. 4a, MERRA-2 data also shows a decrease in 
several regions such as in the Sahel of North Africa, North 
China, and central Australia, where the dust exists in the 
period from 1980 to 2010. There are previous studies to 
prove dust decrease in those regions utilized other data. For 
example, using aerosol optical depth (AOD) at 380 nm from 
the Total Ozone Mapping Spectrometer (TOMS), Foltz and 
McPhaden (2008) showed that the dust in the Sahel region 
decreases obviously from 1980 to 2006. Duan et al. (2022) 
used the “dust (storm) data set (v1.0)” established by the 

Fig. 1   Spatial distribution of annual mean dust aerosol column mass density for MERRA-2 (a) and the 9 ESMs (c–k) and MME (b) from 1995 
to 2014. Unit: mg m−2

Fig. 2   The seasonal cycle of global mean dust burden averaged from 
60° S to 90° N for MERRA-2 (black line), 9 ESMs (colorful lines), 
and their MME (red line) during the period of 1995–2014. Unit: mg 
m−2. Considering the low dust burden south of 60° S, global mean 
results in this study refer to the average from 60° S to 90° N
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Fig. 3   The global (60° S–90° N) average of annual mean of dust aer-
osols column mass density (black line, unit: mg m−2) and surface dust 
aerosols mass concentration (red line, unit: μg m−3) for MERRA-2 

(a) and 9 ESMs (b–j). Thick lines show the 5-year smooth for the 
annual data (thin lines)
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Fig. 4   The spatial distribution of linear trend coefficient of surface 
dust aerosol mass concentration (μg m−3 10  year−1) on global land 
from a MERRA-2, and b–j 9 ESMs during the period of 1980–2010. 

Values significant at the 95% level using a student’s t test are stippled. 
Contours show the 1980–2010 averaged mean of monthly surface 
dust aerosol mass concentration (μg m−3)
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Fig. 5   The spatial distribution of linear trend coefficient of surface wind speed (m s−1 10 year−1) on global land from a MERRA-2, and b–j 9 
ESMs during the period of 1980–2010. Values significant at the 95% level using a student’s t test are stippled
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meteorological information center of the China Meteorologi-
cal Administration to suggest the annual number of sand-
dust processes in China decreased significantly from 1960 
to 2020.

The spatial distributions of the linear trend coefficients of 
the SurDst in the 9 ESMs are very different. To some extent, 
BCC-ESM1, GFDL-ESM4, and NorESM2-LM can partly 
capture the increasing trend of surface dust in the middle 
and high latitude regions around the Taklimakan Desert in 
Asia and a decreasing trend in the core areas of high SurDst 
in North Africa.

Some previous studies (Tsunematsu et al. 2011; Zhang 
et al. 2003; Zhu et al. 2008) suggested the global warm-
ing decreases surface wind speed and dust concentration. 
Here, we further explore the distribution of the linear trend 

of 1980–2010 annual means of the surface wind speed from 
ECWMF on global land (Fig. 5). It shows that surface wind 
speed obviously decreased in most part of Europe, and South 
Asia, but increased in most parts of Africa and East Asia. It 
is interesting that 9 ESMs simulated surface wind decrease 
in most regions of global land in the period of 1980–2010 
(Fig. 5b–j). Therefore, the change of surface wind speed 
cannot reasonably account for the SurDst variation in every 
region as shown in Fig. 4.

3.3 � Possible reasons for SurDst changes

As shown in Fig. 6a, the average global mean CRU sur-
face air temperature over land increases significantly since 
1980 (red line, Fig. 6a), increasing by approximately 1 °C 

Fig. 6   Variation of land surface 
dust aerosols mass concentra-
tion (black lines, μg m−3), 
surface air temperature (red 
lines, units: °C), surface wind 
speed (blue lines, m s−1), and 
soil moisture (brown lines, kg 
m−2) averaged for a global (60° 
S–90° N), b dust core areas (the 
1980–2020 averaged mean of 
monthly surface dust aerosols 
mass concentration more than 
400 μg m−3) and c other areas 
during the period of 1980–2020. 
Solid lines show the 5-year 
smooth for the annual data (dot-
ted lines) from 1980 to 2020
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over 41 years, which is consistent with the Sixth Assess-
ment Report of the International Panel on Climate Change 
(IPCC 2022). The increasing trend of SurDst in MERRA-2 
(black line, Fig. 6a) is highly consistent with the warming 
in surface air temperature, and the correlation coefficient 
of their 5-year smoothing series reaches 0.84, which passes 
the 99% significance test. However, the relationship between 
the SurDst and global land averaged surface wind speed of 
ERA5 (green line, Fig. 6a) is insignificant, and the variation 
of wind speed even shows an opposite trend in contrast to 
the SurDst in 1995–2005. It is also unexpected that the soil 
moisture of GLDAS (brown line, Fig. 6a) shows a consistent 
growth trend with the SurDst, especially during 1990–2000 
with the correlation coefficient of the 5-year smoothing 
series of 0.83. It seems that the globally-averaged wind near 
surface and soil moisture do not reasonably account for the 
global mean dust variation.

If we classified the dust core areas as the regions with 
the annual mean SurDst greater than 400 μg m−3 over land, 
their different variations in surface dust concentrations, 
wind, and soil moistures between in dust core areas and 
other regions are clear. This definition of the dust core areas 
is consistent with previous studies based on ground-based 
dust observations and remote sensing data using retrospec-
tive and frequency methods (Ginoux et al. 2010; Middleton 
and Goudie 2001; Prospero et al. 2002; Schepanski et al. 
2012). As shown in Fig. 6b, the interannual variability of 
the SurDst in the core areas (black line, Fig. 6b) is relatively 
large, but it does not show a significant increasing trend and 
basically remains at approximately 520 μg m−3. The interan-
nual variation and trend of the SurDst are closely related to 
the surface wind speed (green line, Fig. 6b), whose correla-
tion coefficient reaches up to 0.79 after detrending, and up to 
0.56 for 5-year smoothing series, both of which pass the 99% 
significance test. Especially in the period from 1980 to 1990, 
the increase in surface wind speed is highly consistent with 
the enhancement of the SurDst in the core areas (Fig. 6b). 
We noted that surface wind speed still keeps a slight increase 
since 1990 in the core areas, but there is no obvious variation 
of dust over there, which is partly caused by the negative 
effect of enhancement in soil moisture to inhibit the dust 
increase. The interannual variations of wind and dust still 
keep a high correlation (0.78) in this period. In other regions 
out of dust core areas (Fig. 6c), the variations of dust, wind, 
and soil moisture since 1980 are basically consistent with 
the global means (Fig. 6a), and there is a high positive cor-
relation between dust mass and the surface air temperature.

Figures 7, 8, and 9 show the spatial distributions of the 
relationship between SurDst and the three key variables 

including surface wind speed, soil moisture, and surface air 
temperature on the “dust belt” (0°–130° E, 0°–60° N) where 
the monthly SurDst higher than 10 μg m−3. As shown in 
Fig. 7, the most significant positive correlation between the 
SurDst of MERRA-2 and the surface wind speed of ERA5 
is in the dust core areas, such as North Africa, West Asia, 
and East Asia. This further verifies the conclusion that the 
SurDst in the core areas is highly correlated with wind speed 
(Fig. 6b). This conclusion can also be reflected in all the 
ESMs. For example, in BCC-ESM1, the significant positive 
correlation between the SurDst and surface wind speed is 
mainly located in the areas where the annual average SurDst 
is higher than 100 μg m−3 from 1950 to 2014, and it reaches 
as high as 0.8 where SurDst is higher than 300 μg m−3 in 
North Africa. The surface wind speed is a variable directly 
related to the dust emission process in the classical dust 
emission mechanism (Gillette and Passi 1988). Since the 
core areas are mostly desert areas with dry underlying sur-
faces, when the wind speed exceeds the critical friction 
velocity, the dust will be blown and enter the atmosphere 
to form the dust aerosol. Therefore, in the core areas, the 
higher the wind speed is, the higher the dust emission and 
the SurDst will be, which explains why the positive cor-
relation between SurDst and surface wind speed is more 
significant there.

The SurDst and soil moisture are negatively correlated 
in most areas of the "dust belt" (Fig. 8). The most signifi-
cant negative correlation in reanalysis data (Fig. 8a) is in 
southern North Africa and South Asia, with the lowest 
correlation coefficient reaching − 0.6. Almost all ESMs 
can verify the significant negative correlation in southern 
North Africa, while in other areas it is evidently differ-
ent among ESMs. For example, in BCC-ESM1, the most 
significant correlation is in the south of high dust con-
centration area in East Asia, while in CESM2-WACCM, 
NorESM2-LM, GISS-E2-1-G, and UKESM1-0-LL, it is 
near South Asia. The negative correlation between the 
SurDst and soil moisture in MIROC-ES2L is significant 
in the entire "dust belt" (Fig. 8g), with the lowest corre-
lation coefficient exceeding − 0.8. The difference in the 
relationship between surface dust and soil moisture in the 
ESMs may be one of the reasons for the difference in the 
dust evolution trends. It is worth noting that previous stud-
ies have shown that soil water content can reduce the wind 
erodibility of land (Chepil 1956; McKenna-Neuman and 
Nickling 1989), which can explain the negative correlation 
between soil moisture and SurDst.

Figure 9 shows the correlation between surface air tem-
perature and dust. The significant positive correlation in 
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Fig. 7   Distribution of correlation coefficients between annual sur-
face dust aerosols mass concentration (unit: μg m−3) and surface 
wind speed (unit: m s−1) for a MERRA-2/ERA5 during the period 
of 1980–2020 and b–j 9 ESMs during the period of 1950–2014. Val-
ues where all monthly surface dust aerosol concentrations are below 

10 μg m−3 are masked, and values significant at the 95% level using 
a Student’s t test are stippled. Contours show the 1980–2020/1950–
2014 averaged mean of monthly surface dust aerosol mass concentra-
tion (unit: μg m−3)
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Fig. 8   Same as Fig. 7, but for correlation coefficients between annual surface dust aerosols mass concentration (unit: μg m−3) and soil moisture 
(unit: kg m−2). Observation data are from MERRA-2 and GLDAS
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Fig. 9   Same as Fig. 7, but for correlation coefficients between annual surface dust aerosols mass concentration (unit: μg m−3) and surface air 
temperature (unit: °C). Observation data are from MERRA-2 and CRU TS4.05
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observation (Fig. 9a) is mainly manifested in the periph-
ery of the dust core areas, such as northeast of the Sahel 
region in North Africa and the middle and high latitude 
regions of the Eurasian continent, where the correlation 
coefficient can reach 0.6, passing the 95% significance test. 
However, the correlation coefficients are negative over 
high SurDst regions in northern and northeastern China, 
and the Sahel region of North Africa. Most models also 
show that it is a significant positive correlation between 
the SurDst and surface air temperature in these arid and 
semiarid areas outside the core areas, especially in BCC-
ESM1, GFDL-ESM4, GISS-E2-1-G, and MIROC-ES2L.

How to understand the in-phase variations for the 
SurDst and surface air temperature, and soil moisture 
(Fig. 6) and their positive correlation in the "dust belt" 
(Fig. 9)? We hypothesize the following connection chain. 
Warmer surface air temperature results in the increase of 
atmospheric instability in the lower troposphere. Increase 
in atmospheric instability will bring more dust emission 
especially in the arid and semiarid areas outside the core 
areas, and increase the lifetime of dust aerosols (and reduce 
the effect of dry deposition and gravitational settling) in 
semi-arid areas where the precipitation is always lacking. 
The studies of Hess and Spillane (1990) and Hess et al. 
(1988) shown that convection is a necessary condition for 
the dust emission process and initial formation of strong 
dust events. Increase in atmospheric instability will trig-
ger more upward motion and bring more dust. However, a 
stronger upward motion may bring more precipitation and 
increase the soil moisture, especially in tropical regions, 
and then reduce the dust burden in the atmosphere. These 
two opposing effects depend on the relative importance of 
different factors on the dust in different regions and will be 
explored in the next section.

In order to test our hypothesis above, the difference 
between the surface air temperature and the air tempera-
ture at the top of layer with 150 hPa thickness above the 
ground is calculated, and is used as the vertical temper-
ature gradient in the lower troposphere to represent the 
instability in the lower troposphere. Figure 10 presents 
the correlation distribution between the MERRA-2 SurDst 
and ERA5 vertical temperature gradient in a part of Asia 
(65° E–130° E, 20° N–60° N). It is clear that the cor-
relation between the SurDst and the vertical temperature 
gradient in Asia is consistent with that between the SurDst 
and surface air temperature. The regions with significant 
positive correlation are mainly in arid and semiarid areas 
outside of dust core areas. Those relations are captured 

by a few models such as two ESMs (BCC-ESM1 and 
GFDL-ESM4).

3.4 � Relative importance of wind, soil moisture, 
and air temperature to impact on dust

The multiple linear regression method suggested by Zhao 
et al. (2022) is used to objectively quantify the relative 
importance of three factors (including surface wind, soil 
moisture, and surface air temperature) on the SurDst in the 
"dust belt" (Fig. 11). The different colors in Fig. 11 represent 
different factors that dominate the SurDst at the grid point 
(surface air temperature (red), surface wind speed (green) 
and soil moisture (blue)), the darker color represents higher 
dominance. Here, only grid points with monthly average 
SurDst higher than 10 μg m−3 and whose regression coeffi-
cients pass the 95% significance test are shown. In MERRA-
2, surface wind speed is the dominant driver of the SurDst in 
the dust core areas (such as western North Africa), while in 
the other areas, especially in the middle and high latitudes 
of the Eurasian Continent, the surface air temperature has 
a greater impact on the SurDst. Soil moisture is relatively 
important to the SurDst in only small-areas of regions, such 
as central South Asia and southern China, which also veri-
fies the previous conclusion that soil moisture may have had 
little effect on the evolution of the SurDst in recent years. All 
the results are derived from different data sources. The rela-
tive importance of the surface temperature, wind speed, and 
soil moisture on the SurDst are verified by MERRA-2, and 
shown in Fig. 12. The consensus conclusions are conducted.

Almost all 9 ESMs can basically show that the surface 
wind speed is the dominant determinant of the SurDst in 
dust core areas. It is worth noting that surface air tempera-
ture is more important to the SurDst in the dust core areas in 
EC-Earth-AerChem, and UKESM1-0-LL shows that surface 
dust is mainly affected by wind in the entire dust belt, which 
is different from MERRA-2 and other models. Some models, 
such as BCC-ESM1, CESM2-WACCM, GFDL-ESM4, and 
GISS-E2-1-G, can verify the important role of surface air 
temperature on the SurDst in the middle and high latitudes 
of Eurasia. Except for MIROC-ES2L, most of the models 
show that soil moisture is the dominant factor to influence 
the SurDst just in some small areas, but these areas greatly 
differ among the models. Precipitation is closely related to 
soil moisture, and the relative importance of precipitation 
to effect on dust variation is consistent to that of the soil 
moisture (Figure omitted).
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Fig. 10   Distribution of correlation coefficient between annual sur-
face dust aerosols mass concentration and surface air temperature 
and temperature vertical gradient on lower atmosphere (the difference 
between the surface air temperature and the air temperature at the 
top of layer with 150 hPa thickness above the ground) in the east of 
Asia for a, b MERRA-2/ERA5 during the period of 1980–2020, c, d 

BCC-ESM1 and e, f GFDL-ESM4 during 1950–2014. Values where 
all monthly surface dust aerosol concentrations are below 10 μg m−3 
are masked, and values significant at the 95% level using a student’s t 
test are stippled. Contours show the 1980–2020/1950–2014 averaged 
mean of monthly surface dust aerosol mass concentration (unit: μg 
m−3)
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Fig. 11   Relative importance for the dominant factor of surface dust 
aerosol concentration (scaled to 0–1). Red masks for surface tempera-
ture, green for surface wind speed, and blue for soil moisture. Data 
used for regressions are 41  years (1980–2020) for MERRA-2/CRU 

TS 4.05/ERA5/GLDAS (a) and 65  years (1950–2014) for 9 ESMs 
(b–j). Values where all monthly surface dust aerosol concentrations 
are below 10 μg m−3 or not significant at the 95% level using a stu-
dent’s t test are masked
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Overall, the surface wind speed is the dominant determi-
nant of the SurDst in the dust core areas. In arid and semi-
arid regions around the core areas, especially in the middle 
and high latitudes of the Eurasian continent, the surface air 
temperature is the most important factor determining the 
SurDst. In these regions, the surface temperature increase 
with global warming may lead to dust increase. In some 
small regional areas only, soil moisture is the dominant fac-
tor of the SurDst. The conclusion above applies in April, 
which is the peak dust season (Fig. 13). Even though some 
models, such as UKESM1-0-LL, do not show the dominant 
role of surface air temperature on the SurDst in annual aver-
age data, it is more significant in April.

4 � Summary and discussion

Using MERRA-2, other reanalysis or observed data, and 
9 ESMs from the AerChemMIP of CMIP6, the variations 
of dust aerosols are explored in this paper. Since 1980, the 
global mean of MERRA-2 dust concentration at surface 
significantly increased, which is mainly contributed by the 
increase of dust outside the core areas of high surface dust 
concentrations, and surface dust does not show an obvious 
trend of increase or decrease variations in the core areas. 
All the 9 ESMs can reasonably reproduce the main char-
acteristics of the spatial distribution of dust aerosol and its 
seasonal evolutions in the period from 1995 to 2014. Only 
a few models (such as BCC-ESM1 and GFDL-ESM4) can 
show a similar dust growth trend of MERRA-2.

Surface wind, air temperature, and soil moisture are 
important factors for dust variation. Their correlations with 

dust variation in the period from 1980 to 2020 are analyzed 
by MERRA-2, ERA-5, GLDAS reanalysis and CRU obser-
vation data sets. The relative importance of wind, air temper-
ature, and soil moisture on dust variations are also explored 
by multiple linear regression. The results are consistent with 
that using all variables from MERRA-2, and show that:

1.	 In the dust core areas, surface dust concentration is 
mainly dominated by the surface wind speed. It is cap-
tured by all ESMs.

2.	 Outside the dust core areas, especially over arid and 
semiarid regions in middle to high latitudes, surface air 
temperature warming is the main factor to account for 
dust increase. As the surface air temperature warming 
causes the increase in the vertical gradient of tempera-
ture, enhances atmospheric instability, and triggers more 
upward motion to bring more dust. The importance of 
air temperature impact on dust over those regions is 
simulated in most ESMs.

3.	 Only in several regions of small areas in low to mid-
dle latitudes, moisture is the primary factor to dominate 
surface dust, such as in East Asia and South Asia, where 
are generally high soil moistures. In ESMs, dominated 
regions of soil moisture impact on surface dust are still 
distributed in several small regions, but there are large 
divergences among ESMs.

The influence of surface air temperature on the dust 
that is suggested in this study, can partially explain their 
significant positive correlation in the regions outside dust 
core areas, but further experiments for verification are still 
needed. In addition, there is still a lack of understanding 
of the reasons for the changes in some local dust, such as 

Fig. 12   Relative importance for 
the dominant factor of surface 
dust aerosol concentration 
(scaled to 0–1). Red masks for 
surface temperature, green for 
surface wind speed, and blue 
for soil moisture. Data used 
for regressions are 41 years 
(1980–2020) for MERRA-2. 
Values where all monthly sur-
face dust aerosol concentrations 
are below 10 μg m−3 or not sig-
nificant at the 95% level using a 
student’s t test are masked
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Fig. 13   Same as Fig. 11, but for data in April
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the decreasing trend of the SurDst in North and Northeast 
China. More observation analyses are needed in the future.
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