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Abstract
Artificial light at night (ALAN) is a growing environmental hazard with economic, ecological, and public health implica-
tions. Previous studies suggested a higher burden of light pollution and related adverse effects in disadvantaged communities. 
It is critical to characterize the geographic distribution and temporal trend of ALAN and identify associated demographic 
and socioeconomic factors at the population level to lay the foundation for environmental and public health monitoring and 
policy-making. We used satellite data from the Black Marble suite to characterize ALAN in all counties in contiguous US 
and reported considerable variations in ALAN spatiotemporal patterns between 2012 and 2019. As expected, ALAN levels 
were generally higher in metropolitan and coastal areas; however, several rural counties in Texas experienced remarkable 
increase in ALAN since 2012, while population-level ALAN burden also increased substantially in many metropolitan areas. 
Importantly, we found that during this period, although the overall ALAN levels in the USA declined modestly, the temporal 
trend of ALAN varied across areas with different racial/ethnic compositions: counties with a higher percentage of racial/
ethnic minority groups, particularly Hispanic populations, exhibited significantly less decline. As a result, the differences in 
ALAN levels, as measured by the Black Marble product, across racial/ethnic groups became larger between 2012 and 2019. 
In conclusion, our study documented variations in ALAN spatiotemporal patterns across America and identified multiple 
population correlates of ALAN patterns that warrant further investigations. Future studies should identify underlying factors 
(e.g., economic development and decline, urban planning, and transition to newer lighting technologies such as light emitting 
diodes) that may have contributed to ALAN disparities in the USA.
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Introduction

Over the past century, global nightscapes have been drasti-
cally changed by the rapid growth of electric lighting. It 
is estimated that ALAN has grown by up to 20% annu-
ally in many urban areas since the mid-twentieth century 
(Hölker, Moss et al. 2010). A more recent analysis using 
data gathered by the Visible Infrared Imaging Radiometer 
Suite Day-Night Band (VIIRS DNB) reported that not only 
have the total lit areas (defined as radiance>5  nWcm−2  sr−1) 
expanded considerably around the globe between 2012 and 
2016, brightness levels in areas that were already continu-
ously lit increased by 2.2% per year during this period 
(Kyba, Kuester et al. 2017). According to one estimate, more 
than 99% of the US population now live in areas with light-
polluted skies (Falchi, Cinzano et al. 2016).
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Although electric lighting has tremendous benefits, 
including promoting commercial activities, social interac-
tions, and public safety, these benefits are also accompanied 
by negative economic, ecological, and public health conse-
quences. Higher levels of ALAN cause higher energy cost, 
greater greenhouse gas emissions, and detrimental effects 
to the natural environment and ecosystems (Falchi, Cinzano 
et al. 2011, Cao and Bai 2014, Gaston, Visser et al. 2015, 
Ou, Liu et al. 2015, Li, Elvidge et al. 2017, Román, Wang 
et al. 2018, Song, Wang et al. 2021). Moreover, as pointed 
out by an expert panel convened by the National Toxicology 
Program, ALAN can both directly affect human circadian 
regulation and enable nighttime activities that disrupt natu-
ral sleep-wake and eating-fasting cycles (Lunn, Blask et al. 
2017). Indeed, growing evidence from basic and clinical 
studies have linked excessive ALAN with a wide range of 
adverse health outcomes, including obesity, diabetes, car-
diovascular disease, cancer, and cognitive and mental disor-
ders (Lunn, Blask et al. 2017, Mason, Boubekri et al. 2018). 
Given that ALAN is one of the most ubiquitous environ-
mental exposures with a wide societal impact, it is critical 
to monitor its geographic distribution and temporal trend to 
provide fundamental knowledge and lay the foundation for 
lighting-related policy-making.

Several recent studies investigated global patterns of 
ALAN, and some specifically focused on the USA (Fal-
chi, Cinzano et al. 2016, Kyba, Kuester et al. 2017, Falchi, 
Furgoni et al. 2019, Elvidge, Hsu et al. 2020). However, 
only one of these studies reported the ALAN levels at the 
administrative units (e.g., county) (Falchi, Furgoni et al. 
2019), where key socioeconomic and public health statis-
tics are typically reported and where policy change often 
occurs, and this study did not focus on temporal trends. 
Moreover, at least one earlier study reported higher levels 
of exposure among racial/ethnical minority groups and low 
socioeconomic (SES) populations, suggesting that ALAN is 
an environmental justice (EJ) issue (Nadybal, Collins et al. 
2020). However, to the best of our knowledge, no study has 
examined whether and how temporal trends of ALAN vary 
across different demographic and socioeconomic groups. 
Taken together, there is a need for studies that character-
ize both the temporal trend and geographic distribution of 
ALAN, and that examine the correlating population-level 
attributes in the USA. Findings from such investigations 
will help identify communities with high ALAN exposures 
and rapid increases in ALAN, motivate further investigation 
of the underlying causes of unequal ALAN patterns, guide 
monitoring efforts, and provide evidence to support policy 
change.

The primary objectives of this study are (1) to derive 
yearly ALAN measures for all US contiguous counties 
between 2012 and 2019, (2) to identify counties with the 
highest and lowest average ALAN exposures and with the 

largest increases and decreases in ALAN during this period, 
and (3) to study the associations of multiple demographic 
and socioeconomic factors (i.e., population, gross domestic 
product (GDP), racial/ethnic composition, and poverty rate) 
with ALAN spatiotemporal patterns.

Methods

Satellite‑based ALAN quantification

Yearly, ALAN in the contiguous US between 2012 and 2019 
was measured using NASA’s fourth nighttime lights product 
in the Black Marble suite (VNP46A4) (Román, Wang et al. 
2018, Wang, Shrestha et al. 2022), which provides annual 
composite measures of ALAN based on daily nighttime vis-
ible measurements from the VIIRS DNB sensor aboard the 
Suomi NPP satellite. VIIRS DNB is a panchromatic sensor 
that is ultrasensitive in low-lit conditions and can detect light 
in the visible and near-infrared spectrum at a resolution of 
~750 m. Nighttime was defined as the solar zenith angle 
of 108° or larger. The black marble algorithm was applied 
to the VIIRS DNB observation to produce cloud-free and 
atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray 
light-corrected radiance data in 15 arc-second linear lati-
tude and longitude grid (~500 m in mid-latitude). Because 
recent studies have shown that ALAN measure is affected 
by the blockage and vertical visibility effects of buildings 
(Tan, Zhu et al. 2022), we used the annual composite data-
set (VNP46A4) consisting of averaged observations from 
all angles upon snow-free land surface throughout the year. 
The VNP46 product enables the detection of ALAN change 
at different temporal levels, from daily to annual changes 
(Román, Wang et al. 2018).

The shapefile containing annual ALAN information was 
mapped onto all counties in the contiguous US. All data 
processing and mapping were performed using R (Voelkel, 
Hellman et al. 2018). County-level ALAN data are now 
published and publicly available (https:// disc. gsfc. nasa. gov/ 
datas ets/ ALAN_ VIIRS_ CONUS_1/ summa ry).

Characterizing county‑level ALAN spatiotemporal 
patterns

We derived two measures of ALAN for each county and 
year: county-level average ALAN and population-level 
ALAN burden. The former was derived as the average of 
ALAN of all grids within a county’s geographical boundary, 
while the latter was calculated as the former multiplied by 
the total population size of the county given a specific year, 
i.e., ALAN × population (1000). We then calculated aver-
age values for both indicators for the period of 2012–2019.

https://disc.gsfc.nasa.gov/datasets/ALAN_VIIRS_CONUS_1/summary
https://disc.gsfc.nasa.gov/datasets/ALAN_VIIRS_CONUS_1/summary
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We used a mixed-effect multivariable linear regression 
model to provide model-based estimates of the tempo-
ral changes in ALAN by county between 2012 and 2019. 
County-level ALAN was highly skewed to the right, so we 
performed the log transformation to improve normality for 
both outcome variables. Specifically, let yi[s]t denote the 
ALAN radiance (on log scale) for county i in state s (hence, 
the notation i[s]) for year t. We modeled the time series of 
yi[s]t with:

where α was the intercept, βs the fixed effect of the mean 
ALAN radiance for a specific State  (States), and βt the fixed 
effect of the mean ALAN radiance for a specific year  (Yeart). 
To capture the county level variation of the average ALAN 
level and temporal change, we included the random intercept 
β0i and temporal slope β1i assuming normal distributions 
with respective variances. The residuals ϵi[s]t were assumed 
to have independently and identically distributed normal 
distributions. The county-specific coefficient for year was 
exponentiated to measure % annual changes in ALAN. To 
determine the population exposure to ALAN change within 
a county, we multiplied the annual rate of ALAN change 
with the average population (1000) within a county between 
2012 and 2019.

Determining the relationship between demographic 
and socioeconomic factors and ALAN

To study population-level demographic and socioeconomic 
factors in relation to ALAN, we focused on two variables 
with a well-established relationship with ALAN (GDP and 
population size) and several variables that have not been 
extensively studied in relation to ALAN (% of racial/ethnic 
minority population, % of Black population, % of Hispanic 
population, and % of population living under the federal pov-
erty level). For the former group, we presented county-level 
GDP and population size with average ALAN and changes 
in ALAN for descriptive purposes. We also calculated the 
correlation coefficients between GDP and population size 
and ALAN, as well as the % variance in ALAN explained by 
these two factors. For the latter group, the objective was to 
determine average levels and temporal trajectories of ALAN 
across counties with different racial/ethnic compositions and 
poverty rates. We used the aforementioned linear mixed 
model that additionally included the county-year specific 
demographic or socioeconomic variable (e.g., poverty rate) 
and an interaction term between this variable and the year. 
We presented coefficients for both the main effect and the 
interaction term, and we plotted the predicted least squares 
means of ALAN (back transformed from log(ALAN) to geo-
metric means) to demonstrate different ALAN trajectories 

yi[s]t = � + �sStates + �tYeart +
(

�0i + �1iYeart
)

+ �i[s]t,

for each quintile of the demographic or socioeconomic vari-
able of interest.

Results

Figure 1A presents a composite nighttime image of the USA 
and neighboring countries in 2019. Average ALAN levels 
between 2012 and 2019 in all counties in the contiguous 
US are presented in Figure 1B. We observed substantial 
spatial variation in ALAN levels among US counties. Over-
all, ALAN levels were higher in the east regions than the 
west and particularly high in counties along the coasts. As 
expected, ALAN levels were higher in large metropolitan 
areas while lower in rural counties.

Table 1 lists the top ten counties with the highest average 
ALAN levels and population-level ALAN burden (defined 
as ALAN × population (1000)) separately (Supplementary 
Table 1 presents average ALAN and population-level ALAN 
burden for all counties). When ranked by average ALAN 
levels, the top 10 counties were primarily located in large 
metropolitan areas on the east coast, with Washington DC 
ranking the highest. When ranked by the population-level 
ALAN burden, the highest was Cook County in Illinois 
(including the City of Chicago), followed by Harris County 
in Texas (including the City of Houston). Counties with the 
lowest average levels of ALAN and population-level ALAN 
burden are presented in Table 2. Catron County in New 
Mexico had the lowest level of the average ALAN, while 
Petroleum County in Montana had the lowest ALAN burden. 
All counties listed in Table 2 were rural counties located 
in midwestern, southwestern, and western states, includ-
ing New Mexico, Montana, Colorado, Nebraska, Michigan, 
Texas, and Oregon.

Between 2012 and 2019, the ALAN in the contiguous US 
decreased by ~3% per year (β (95% CI), −0.029 (−0.030, 
−0.027)). Temporal changes in ALAN in all US states are 
presented in Supplementary Figure 1, with most states show-
ing a stable trend or slight decreases. Temporal changes in 
ALAN at the county level are presented in Figure 2. Most 
counties across the country showed a modest decrease in 
ALAN. However, some counties, particularly several in the 
western Texas, showed a large increase.

Table 3 presents the top ten counties with the largest 
annual increases in ALAN and population exposure to 
ALAN (defined as annual change in ALAN × population 
(1000)), separately (Supplementary Table 1 presents annual 
change in ALAN and population exposure to ALAN change 
for all counties). Strikingly, when ranked by annual increase 
in ALAN relative to all other counties, all top 10 counties 
were in Texas. The highest increase was observed in Lov-
ing County, Texas, with an average rate at 50.46% per year, 
and the rest all had an annual rate of increase higher than 
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Fig. 1  Artificial light at night 
levels (ALAN) in the USA. A 
Satellite image of the contigu-
ous US at night in 2019, using 
NASA’s Black Marble Product 
based on data gathered by the 
Visible Infrared Imaging Radi-
ometer Suite Day-Night Band. 
B Eight-year (2012–2019) 
average of mean ALAN in 
US counties. Abbreviations: 
CONUS, contiguous US; DNB, 
Day-Night Band

Table 1  US counties with the highest ALAN exposure (2012–2019)

a Defined as ALAN × population (1000) in each county
Abbreviations: ALAN artificial light at night, GDP gross domestic product

State County Average ALAN 
(nW/cm2/sr)

Average population-level 
ALAN  burdena

Average popula-
tion (1000)

Average GDP 
(1000$ in 2012 
dollars)

Top 10 counties based on ALAN, 2012–2019 average
District of Columbia District of Columbia 92.47 60,197.45 651.87 117,933,678
 New York New York 80.44 130,773.98 1625.41 586,685,001
 Missouri St. Louis 70.31 22,198.74 315.55 27,253,558
 Maryland Baltimore 66.64 41,249.49 618.92 43,988,986
 New Jersey Hudson 61.58 40,708.69 660.66 42,125,135
 Pennsylvania Philadelphia 58.89 91,619.70 1556.09 103,482,052
 Virginia Alexandria 57.43 8610.92 150.01 13,933,571
 New York Bronx 52.52 74,769.07 1423.90 40,441,612
 New York Kings 48.23 124,464.67 2581.41 84,221,163
 New York Queens 45.39 103,843.00 2288.54 87,934,066
Top 10 counties based on population-level ALAN  burdena, 2012–2019 average
 Illinois Cook 30.38 158,605.64 5220.30 351,200,412
 Texas Harris 35.17 154,458.04 4389.87 361,278,873
 California Los Angeles 14.29 143,109.09 10,011.07 661,763,125
 New York New York 80.44 130,773.98 1625.41 586,685,001
 New York Kings 48.23 124,464.67 2581.41 84,221,163
 New York Queens 45.39 103,843.00 2288.54 87,934,066
 Pennsylvania Philadelphia 58.89 91,619.70 1556.09 103,482,052
 Texas Dallas 34.84 87,028.47 2498.04 220,169,207
 New York Bronx 52.52 74,769.07 1423.90 40,441,612
 California Orange 22.74 70,795.87 3112.03 213,231,652
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Table 2  US counties with the lowest ALAN exposure (2012–2019)

a Defined as ALAN × population in each county
Abbreviations: ALAN artificial light at night, GDP gross domestic product

State County Average ALAN (nW/
cm2/sr)

Average population-level 
ALAN  burdena

Average population Average GDP 
(1000$ in 2012 
dollars)

Bottom 10 counties based on ALAN, 2012–2019 average
 New Mexico Catron 0.00090 3.25 3595.25 81,735
 Montana Petroleum 0.00124 0.61 477.38 29,996
 Montana Garfield 0.00144 1.57 1089.13 52,204
 Colorado Hinsdale 0.00155 1.30 844.38 36,912
 Montana Carter 0.00156 2.00 1276.63 81,872
 Nebraska McPherson 0.00164 0.67 411.88 33,337
 Michigan Keweenaw 0.00168 3.64 2164.50 44,038
 New Mexico Harding 0.00192 1.10 566.25 124,564
 Texas Jeff Davis 0.00199 4.50 2259.50 74,301
 Oregon Wheeler 0.00216 2.94 1363.63 32,527
Bottom 10 counties based on population-level ALAN  burdena, 2012–2019 average
 Montana Petroleum 0.00124 0.61 477.38 29,996
 Nebraska McPherson 0.00164 0.67 411.88 33,337
 New Mexico Harding 0.00192 1.10 566.25 124,564
 Colorado Hinsdale 0.00155 1.30 844.38 36,912
 Montana Garfield 0.00144 1.57 1089.13 52,204
 Nebraska Arthur 0.00370 1.68 453.00 22,016
 Montana Carter 0.00156 2.00 1276.63 81,872
 Texas King 0.00950 2.57 266.63 194,572
 Nebraska Blaine 0.00485 2.65 544.25 44,892
 Colorado Mineral 0.00350 2.66 771.75 55,881

Fig. 2  Yearly changes in ALAN 
between 2012 and 2019 in all 
counties in the contiguous US
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20%. When ranked by increase in population exposure to 
ALAN, all top 10 counties were from large metropolitan 
areas, led by Los Angeles County, followed by four other 
counties in California (Orange, Riverside, San Diego, San 
Bernardino), three in Texas (Harris, Dallas, Tarrant), one 
in Arizona (Maricopa), and one in Florida (Miami-Dade). 
Table 4 lists the top counties with the largest decreases in 
ALAN and population exposure to ALAN. When ranked 
by changes in ALAN, Divide County, North Dakota, had 
the largest decrease of 16.83%. Most of these counties were 
rural counties from midwestern and southern states. When 
ranked by population exposure to ALAN change, Pima 
County in Arizona showed the largest decrease, primarily 
driven by its large population size. Other counties ranked 
among the top 10 list were small metropolitan and nonmet-
ropolitan urban areas.

We studied the association between ALAN and popula-
tion size, GDP, racial/ethnic composition and poverty rate at 
the county level. Overall, there was high correlation between 
average ALAN and population size and GDP (Spearman’s 
rank correlation coefficient ρ = 0.80 and 0.78, respectively). 
Moreover, there was moderate correlation between changes 

in ALAN and changes in population size (Pearson correla-
tion coefficient r = 0.37) and changes in GDP (r = 0.40). 
Together, population and GDP explained 23.1% of the total 
variance in annual changes in ALAN across all counties. We 
found that racial/ethnic compositions and poverty rate were 
also associated with average and changes in ALAN (Table 5 
and Figure 3). Specifically, ALAN trajectories varied sig-
nificantly across counties with different racial/ethnic com-
positions: counties with the lowest concentration of racial/
ethnic minority groups had the largest decline in ALAN over 
the study period, while counties with the highest concentra-
tion had the smallest decline (Figure 3A). Notably, in 2012, 
counties with a higher concentration of minority groups 
had lower levels of ALAN; however, this pattern reversed 
after 2014, and the gap in ALAN levels across quintiles of 
racial/ethnic composition continued to grow. As a result, in 
2019, counties in the highest quintile of minority concentra-
tion had the highest ALAN levels. Analyses by % of Black 
(Figure 3B) and Hispanic (Figure 3C) populations showed 
that this pattern of reversed and widening gaps of ALAN 
across racial/ethnic concentrations was primarily driven 
by differences in ALAN trajectories across counties with 

Table 3  US counties with the largest increase in ALAN exposure (2012–2019)

a Measured as annual change in ALAN (%) × average population (1000)
Abbreviations: ALAN artificial light at night, GDP gross domestic product

State County Annual change in 
ALAN, %

Population exposure to 
ALAN change a

Total change in 
population, %

Total change in 
GDP, %

Average 
population 
(1000)

Top 10 counties based on annual increase in ALAN, 2012–2019
 Texas Loving 50.46% 0.05 15.29% 1252.59% 0.091
 Texas Winkler 45.14% 3.42 10.23% 187.67% 7.57
 Texas Culberson 45.01% 1.03 −7.21% 803.48% 2.29
 Texas Reeves 43.61% 6.29 13.86% 1079.15% 14.42
 Texas Martin 39.04% 2.07 17.59% 325.95% 5.30
 Texas Reagan 35.46% 1.28 11.29% 279.51% 3.60
 Texas Borden 35.22% 0.23 −4.52% 73.86% 0.66
 Texas Upton 32.61% 1.13 10.88% 147.13% 3.46
 Texas Glasscock 32.35% 0.42 20.32% 171.72% 1.30
 Texas Ward 22.56% 2.54 8.90% 89.71% 11.24
Top 10 counties based on population exposure to ALAN  increasea, 2012–2019
 California Los Angeles 3.39% 339.40 2.45% 22.70% 10011.07
 Texas Harris 3.58% 157.00 13.28% 14.44% 4389.87
 California Orange 4.17% 129.66 4.84% 20.51% 3112.03
 Arizona Maricopa 2.59% 105.21 12.68% 23.63% 4065.41
 Florida Miami-Dade 3.87% 101.91 7.45% 28.18% 2635.40
 California Riverside 4.40% 101.53 9.96% 30.12% 2307.51
 California San Diego 3.09% 99.78 6.95% 23.27% 3225.12
 Texas Dallas 3.30% 82.42 9.57% 24.37% 2498.04
 California San Bernardino 3.87% 81.10 5.29% 29.05% 2097.96
 Texas Tarrant 3.83% 74.09 12.96% 15.88% 1932.50
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different Hispanic populations. In contrast, the association 
between % Black population and ALAN trajectories was 
less pronounced. Finally, although there was a statistically 
significant association between % poverty rate and ALAN, 
the effect sizes were small, and ALAN trajectories appeared 
to be largely similar across counties with different poverty 
levels (Figure 3D).

Discussion

We created yearly ALAN measures for all counties in con-
tiguous US between 2012 and 2019 and reported substantial 
variation in both the geographical distribution of and tempo-
ral trend in ALAN during this period. As expected, average 
levels of ALAN were higher in large metropolitan areas and 
coastal regions and were strongly correlated with GDP and 
population size. During this period, although the ALAN at 
the national level decreased slightly since 2012, there existed 
considerable differences in ALAN trend over time across 
the country. Several rural counties in Texas experienced a 
remarkable increase in ALAN, while substantial increases in 

population exposure to ALAN were also observed in many 
metropolitan areas. Overall, changes in GDP and popula-
tion size were important predictors of ALAN change, but 
the majority of variability in county-level ALAN trends was 
not explained by these two variables. Finally, we found that 
counties with the highest concentration of minority groups, 
especially Hispanics, experienced the least decrease in 
ALAN levels. As a result, racial/ethnic disparities in ALAN 
have grown wider since 2014 across the USA.

A number of earlier studies examined geographical dis-
tributions of ALAN levels globally and in the USA (Falchi, 
Cinzano et al. 2016, Kyba, Kuester et al. 2017, Falchi, Fur-
goni et al. 2019, Elvidge, Hsu et al. 2020). Like ours, most of 
these used data from the VIIRS DNB, which provides cali-
brated, high-resolution nighttime images with large dynamic 
range. At least one study (Falchi et al. 2019) examined 
county-level ALAN in the USA using 2014 VIIRS observa-
tions. Although the study used a somewhat different measure 
of ALAN (light flux from emitting sources), it produced 
county rankings of ALAN levels almost identical to ours. 
The study also revealed a dramatic difference (200,000-
fold) between counties with the highest and lowest levels 

Table 4  US counties with the largest decrease in ALAN exposure (2012–2019)

a Measured as annual change in ALAN (%) × average population (1000)
Abbreviations: ALAN artificial light at night, GDP gross domestic product

State County Annual change in 
ALAN, %

Population exposure to 
ALAN change a

Total change in 
population, %

Total change in 
GDP, %

Average 
population 
(1000)

Top 10 counties based on annual decrease in ALAN, 2012–2019
 North Dakota Divide −16.83% −0.38 11.46% −28.82% 2.28
 Texas Wheeler −13.53% −0.75 −1.40% −50.23% 5.53
 Virginia Rappahannock −12.42% −0.92 −0.83% 28.04% 7.41
 North Dakota Billings −11.27% −0.10 10.02% 50.09% 0.92
 Iowa Davis −11.06% −0.97 2.32% 13.88% 8.80
 Iowa Van Buren −10.41% −0.77 −5.49% −12.31% 7.38
 Louisiana Catahoula Paris −9.95% −1.01 −6.18% −19.27% 10.14
 Oklahoma Roger Mills −9.78% −0.36 −0.30% −19.80% 3.72
 Louisiana Union Parish −9.66% −2.18 −1.24% 10.66% 22.52
 Illinois Pope −9.54% −0.41 −4.46% −49.98% 4.32
Top 10 counties based on population exposure to ALAN  decreasea, 2012–2019
 Arizona Pima −0.53% −5.33 4.71% 15.29% 1002.14
 Wisconsin Polk −6.48% −2.82 −1.49% 14.55% 43.61
 Louisiana Union Parish −9.66% −2.18 −1.24% 10.66% 22.52
 Pennsylvania Crawford −2.42% −2.11 −3.19% 3.45% 87.19
 Pennsylvania Bradford −3.21% −1.99 −2.66% 38.99% 61.95
 Wisconsin Dunn −3.91% −1.73 2.22% 2.68% 44.22
 Minnesota Fillmore −7.60% −1.59 0.33% 4.11% 20.87
 Minnesota Mower −4.10% −1.61 1.77% −0.09% 39.37
 New York Allegany −3.37% −1.61 −4.40% 6.18% 47.84
 Michigan Sanilac −3.72% −1.56 −4.18% 14.20% 42.00
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of ALAN, an estimate similar to that observed in our study 
(102,744-fold difference in average ALAN levels comparing 
Washington DC to Catron, New Mexico). Besides average 
ALAN, we also estimated population-level ALAN burden, 
a metric often used to assess public health impact of envi-
ronmental contaminants such as air pollution (Moschandreas 
2011), and reported a ~260,000-fold difference comparing 

counties with the highest and lowest population exposure 
(Cook, Illinois and Petroleum, Montana, respectively). Such 
vast differences in ALAN exposures suggest that the popu-
lation-level health risks associated with ALAN are likely to 
vary widely across the country.

Although our study, to the best of our knowledge, is 
the first to provide comprehensive data on ALAN tempo-
ral changes at the county level in the USA, several previ-
ous studies estimated changes in ALAN in different world 
regions. For example, one paper summarized older studies 
using data from various sources to estimate ALAN change 
in the second half of the twentieth century and showed an 
annual increase rate between 2.5 and 19% in several urban 
areas in the USA, Europe, Asia, and Central America 
(Hölker, Moss et al. 2010). A more recent analysis by Kyba 
et al. estimated that the global expansion of artificially lit 
outdoor area was at an annual rate of 2.2% between 2012 
and 2016, and for continuously lit areas (defined as average 
ALAN (2012–2016) ≥ 5 nW/cm2/sr), the level of brightness 
on average also increased by 2.2% per year (Kyba, Kuester 
et al. 2017). Interestingly, this paper found that the USA had 
a stable trajectory in ALAN during this period, along with a 
few other high-income countries in Europe. We also found 
a largely stable and slightly downward trend in national 
ALAN level; however, this average trend does not reveal 
the substantial differences in ALAN temporal changes across 
different counties. Moreover, it is worth noting that patterns 
in changes in ALAN and in population-level ALAN burden 
were drastically different, with the latter largely influenced 
by population size. This difference is important to consider 
because different metrics of change may have different clini-
cal and public health implications. For example, in rural 
areas such as Loving, Texas, the tremendous increase in 
ALAN levels may have a large impact on each individual 
in spite of the small population size. On the other hand, in 
more populated areas such as Los Angeles, California, even 
a small increase in ALAN levels may have a sizable public 
health impact due to its sheer population size. Finally, it 
is worth noting that the observed decline in certain areas 
may not reflect a true decline in ALAN levels. In the recent 
decade, the use of light emitting diodes (LED) technology 
has increased in many areas across the USA. Many LEDs 
emit light with a peak emission in the 400–500 nm range. 
However, the VIIRS DNB system lacks light sensitivity to 
wavelengths outside 500–900 nm and thus may severely 
underestimate ALAN in areas with a high level of LED 
lighting (Wang, Shrestha et al. 2022). Future studies need 
to use data from other imaging systems with broader spectral 
sensitivity, such as the images taken by the International 
Space Station and other satellites, to accurately characterize 
temporal trends in ALAN.

It is well established that ALAN is an indicator of eco-
nomic and population growth (Levin, Kyba et al. 2020). As 

Table 5  Associations of county-level racial/ethnic composition and 
poverty rate with average levels and temporal changes of ALAN in 
contiguous US (2012–2019)

log (ALAN)

beta (95% CI)

Mean (SD) Main effect Interaction w/ year

% Racial/ethnic minority
 Q1 −1.49 (1.38) Ref Ref
 Q2 −1.09 (1.52) −0.05 (−0.066, 

−0.035)
0.013 (0.010, 0.016)

 Q3 −0.62 (1.64) −0.049 (−0.071, 
−0.027)

0.018 (0.015, 0.022)

 Q4 −0.26 (1.69) −0.029 (−0.057, 
−0.001)

0.019 (0.015, 0.023)

 Q5 −0.21 (1.94) −0.045 (−0.079, 
−0.011)

0.026 (0.022, 0.030)

% NH Black
 Q1 −2.34 (1.50) Ref Ref
 Q2 −1.35 (1.32) −0.015 (−0.025, 

−0.005)
0.004 (0.002, 0.007)

 Q3 −0.55 (1.31) −0.024 (−0.038, 
−0.01)

0.008 (0.005, 0.011)

 Q4 0.30 (1.38) −0.011 (−0.031, 
0.008)

0.010 (0.007, 0.014)

 Q5 0.22 (1.46) 0.041 (0.011, 0.072) −0.001 (−0.005, 
0.003)

% Hispanic
 Q1 −1.28 (1.41) Ref Ref
 Q2 −0.87 (1.37) −0.028 (−0.040, 

−0.015)
0.007 (0.005, 0.010)

 Q3 −0.60 (1.64) −0.057 (−0.073, 
−0.041)

0.014 (0.011, 0.017)

 Q4 −0.30 (1.79) −0.083 (−0.104, 
−0.063)

0.023 (0.019, 0.026)

 Q5 −0.65 (2.10) −0.072 (−0.100, 
−0.043)

0.033 (0.030, 0.037)

% Under poverty
 Q1 −0.93 (1.97) Ref Ref
 Q2 −0.82 (1.73) 0.005 (−0.005, 0.015) −0.002 (−0.004, 

0.001)
 Q3 −0.69 (1.72) 0.014 (0.002, 0.026) −0.004 (−0.007, 

−0.001)
 Q4 −0.51 (1.52) 0.021 (0.007, 0.034) −0.006 (−0.008, 

−0.003)
 Q5 −0.74 (1.44) 0.032 (0.017, 0.048) −0.009 (−0.012, 

−0.005)
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expected, we found a positive correlation between changes 
in ALAN and changes in GDP and population size at the 
county level. However, we also found that trends in GDP 
and population only explained less than one-fourth of the 
total variability in temporal trends in ALAN in 2012–2019, 
suggesting other factors are in play. For example, we found 
that many rural counties in Texas experienced a dramatic 
increase in ALAN, and this pattern is most likely to be 
explained by increases in oil and gas drilling activities, par-
ticularly the bright light emitted from gas flares (Elvidge and 
Zhizhin 2021). The identification of specific driving forces 
underlying temporal changes is critical to developing ALAN 
surveillance programs and policy interventions.

Decades of EJ research focusing on characterizing the 
uneven distribution of environmental exposures in the 
population has long documented disproportionately high 
exposure levels to many environmental pollutants in dis-
advantaged populations. A recent EJ analysis using a one-
time measurement of ALAN in 2014 reported that minority 
populations in the USA had a higher population-weighted 
mean exposure to light pollution when compared to non-His-
panic White Americans (Nadybal, Collins et al. 2020). We 
expanded this line of research by, for the first time, reporting 
different trajectories of ALAN across counties with different 
racial/ethnic compositions. Counties with the highest con-
centration of White populations experienced the most rapid 
decline in ALAN, while counties with a higher % of minor-
ity populations, particularly Hispanic populations, experi-
enced significantly less decline between 2012 and 2019. The 
reduced decline in ALAN among Hispanic populations may 

be explained by the larger Hispanic populations residing 
in areas with stable or even an increase in ALAN, such as 
counties in California and Texas. This finding suggests that 
the disparities in ALAN are dynamic, and thus, character-
izing temporal changes is key to a better understanding and 
predicting ALAN burdens across the population. The wid-
ening gaps in racial/ethnic disparities in ALAN are alarm-
ing and warrant further investigation. In particular, future 
studies should focus on identifying underlying contributing 
factors, including economic development, urban planning, 
and the transition to LED technology, and quantifying the 
potential economic, social, and public health implications 
of ALAN disparities.

Growing attention has been directed to the negative 
impacts of light pollution on energy consumption, green-
house gas emissions, ecology, evolution, and human health. 
The US Energy Information Administration estimated that 
in 2021 lighting accounted for about 5% of total US electric-
ity consumption (Duncan, Geigert et al. 2018), and efforts 
in curbing light pollution often point to reducing energy 
expenditure and cost as a main motivation to develop more 
efficient artificial lighting. However, the emphasis on energy 
expenditure of lighting technology alone ignores the myriad 
unintended consequences of lighting itself. Almost all spe-
cies on Earth possess an endogenous circadian timing sys-
tem, which plays a critical role in orchestrating numerous 
biological processes and represents a fundamental adapta-
tion to the 24-h cycle of the natural lighting environment on 
our planet (Albrecht 2010). Light pollution alters the natural 
light-and-dark cycle, disrupts circadian rhythms, and has 

Fig. 3  ALAN trends (2012–
2019, expressed in geometric 
means) in the contiguous US 
by A percent of racial/ethnic 
minority, B percent of Blacks, C 
percent of Hispanics, and D per-
cent with a household income 
below the federal poverty line at 
county level. Q1–Q5 represent 
quintiles of each sociodemo-
graphic factors in each panel
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been shown to have adverse effects on the survival, repro-
duction, migration, communication, and general health and 
well-being of many taxa, including both nocturnal and diur-
nal organisms (Jägerbrand and Bouroussis 2021).

In humans, pervasive exposure to ALAN suppresses 
melatonin, a key hormone in circadian regulation, and ena-
bles nighttime activities that are misaligned with the internal 
circadian clock (Lunn, Blask et al. 2017). Both melatonin 
suppression and misaligned nighttime activities can lead to 
circadian disruption and sleep deficiencies, which are impor-
tant risk factors for a wide range of adverse health outcomes 
(Roenneberg and Merrow 2016). Epidemiological studies 
have linked excessive ALAN with a wide range of health 
conditions (Lunn, Blask et al. 2017, Mason, Boubekri et al. 
2018), including mental disorders (Paksarian, Rudolph et al. 
2020), weight gain (Park, White et al. 2019), obesity risk 
(Zhang, Jones et al. 2020), postmenopausal breast cancer 
(Hurley, Goldberg et al. 2014, James, Bertrand et al. 2017, 
Xiao, James et al. 2020, Xiao, Gierach et al. 2021), and pan-
creatic, thyroid, and prostate cancers (Kim, Lee et al. 2017, 
Xiao, Jones et al. 2021, Zhang, Jones et al. 2021). Although 
the observational nature of these epidemiological investiga-
tions makes it challenging to establish causal relationships 
between ALAN and health outcomes, the role of ALAN in 
disease risk is further supported by numerous laboratory 
studies in both animal models and human subjects that con-
vincingly show a mechanistic link between misaligned light 
exposure, circadian disruption, and adverse health effects 
(Opperhuizen, Stenvers et al. 2017, Fleury, Masis-Vargas 
et al. 2020, Mason, Grimaldi et al. 2022). Taken together, 
ALAN is an important environmental exposure with signifi-
cant consequences in public health and other areas, and thus, 
it is imperative to generate comprehensive and up-to-date 
ALAN data to enable better assessment of the population 
burden of ALAN exposure.

It is worth noting that although there are significant 
implications of our current analysis, an important limi-
tation of mapping ALAN using satellite imagery in the 
context of public health is the uncertainty about how well 
satellite-based ALAN estimates capture actual light expo-
sure experienced at the individual level. Satellite-based 
measures are primarily driven by outdoor ALAN levels 
and may not accurately reflect indoor light exposure that 
may have a larger and more direct health impact for most 
individuals. Indeed, two previous studies reported mini-
mal correlation between the satellite-based estimates and 
individual-level measures of LAN (Rea, Brons et al. 2011, 
Huss, van Wel et al. 2019). Moreover, the validity of using 
satellite-based LAN estimates as a proxy measure of indi-
vidual-level LAN exposure can be influenced by individual 
lifestyle and occupational factors (e.g., window treatment, 
sleep habits, nighttime social activities, shift work) and 
can vary among groups with different sociodemographic 

and geographic characteristics. Therefore, the field will 
benefit from large-scale validation study aimed at compar-
ing satellite-based estimates of LAN with individual-level 
measures and in-depth investigation into how population 
attributes may influence the validity of satellite-based 
LAN measure in the context of public health research.

Another limitation of the current study is that by analyz-
ing average ALAN at the county level, the results do not 
reflect within county variation in the spatiotemporal distri-
bution of ALAN and thus cannot be used to identify smaller 
geographic areas (e.g., census tract, block, small neighbor-
hood) with high levels of and/or rapid increase in ALAN 
exposures. We chose county as the unit of analysis for the 
current study because it corresponds to the administrative 
level for public health monitoring and policy-making. How-
ever, it would be important for public health researchers and 
practitioners to recognize the potentially vast difference in 
ALAN exposure within a county to accurately identify vul-
nerable communities and employ policy interventions. In 
addition, another factor that may have an important influence 
on the population burden of ALAN is the mobility pattern, 
which determines the cumulative exposure to ALAN and its 
long-term health effects. Although studying the impact of 
mobility pattern on ALAN exposure is beyond the scope of 
this study, the field will benefit from future studies that track 
ALAN exposure levels over time in a population.

In summary, our analysis demonstrated substantial 
differences in both geographic distribution and temporal 
trends of ALAN in US counties. The results also high-
lighted evolving disparities in ALAN exposure across dif-
ferent racial/ethnic groups. Given the broad implications 
of ALAN, including its well-established public health con-
sequences, future studies should closely monitor ALAN 
exposure, evaluate attributable health burdens, and provide 
evidence for developing targeted policies to ameliorate the 
negative societal impact of ALAN.
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