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A B S T R A C T   

The multi-angle polarimetric (MAP) satellite measurements provide abundant information concerning aerosol 
optical/microphysical properties. In this study, we present a robust and flexible aerosol retrieval algorithm for 
MAP measurements based on physics-informed deep learning (PDL) method. Different from optimized inversion 
that needs iterative Radiative Transfer (RT) calculations of all the unknowns, the PDL method can model the 
whole MAP observations with each retrieved aerosol parameter separately with the pre-training of RT simula-
tions. Furthermore, the training of PDL can make full use of the prior information from ground-based aerosol 
inversions and satellite surface products, and provides an effective constraint to avoid unphysical values. To 
examine performance of PDL algorithm, we retrieve aerosols over eastern China from POLDER-3 measurements 
during 2007–2009. Comparison with AERONET products shows high correlations (R > 0.91) for both POLDER-3 
PDL Aerosol Optical Depth (AOD) and fine AOD. Despite lower correlations caused by a small portion of poor 
retrievals, PDL coarse AOD and Single Scattering Albdeo (SSA) is very consistent with AERONET results. Also, 
PDL retrievals perform well as the best estimates of optimized methods such as GRASP (Generalized Retrieval of 
Aerosol and Surface Properties). With an outstanding performance in accuracy and efficiency, the flexible PDL 
algorithm exhibits great potential for operational retrieval of MAP satellite measurements.   

1. Introduction 

Atmospheric aerosols play a crucial role in the Earth’s climate, air 
quality and public health (Kaufman et al., 2002; Pope et al., 2002). As a 
complex mixture originating from diverse emission sources including 
both nature processes and anthropogenic activities, these particles have 
different sizes, shapes, and chemical components. Owing to a short 
lifetime spanning a few hours to several days, the concentration and 
properties of atmospheric aerosols have large variations over space and 
time and are subject to dynamic meteorological cycles. By now, accurate 
estimation of aerosols’ effects remains a challenge in associated climate 
and air quality studies at regional and global scales (Chen et al., 2022a; 
Forster et al., 2021). Moreover, aerosols are a primary source of 

uncertainties in satellite remote sensing of greenhouse gases and surface 
properties in visible and shortwave infrared bands (Sanghavi et al., 
2020). Therefore, global observation of aerosols is a fundamental 
requirement for exploring their emissions and corresponding climate 
and environmental effects. 

The necessity of global aerosol observations has motivated a series of 
dedicated satellite instruments such as Moderate-resolution Imaging 
Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer 
(MISR), and Polarization and Directionality of the Earth’s Reflectances 
(POLDER) since late 1990s (King et al., 1999). Since satellite observa-
tions can hardly infer all the unknowns of the coupled atmosphere and 
surface, how to make full use of the distinct information content from 
different satellite measurements has been the key question of aerosol 
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remote sensing (Xu and Wang, 2015). For multi-spectral or multi-angle 
measurements, MODIS and MISR algorithms utilize fixed aerosol models 
or their mixtures pre-calculated in look-up tables (LUT) (Hsu et al., 
2013; Levy et al., 2013; Lyapustin et al., 2018; Kahn and Gaitley, 2015). 
Despite an advantage of simplicity and efficiency, the LUT-based re-
trievals are usually subject to the large spatial and temporal variations of 
aerosol properties (Tao et al., 2019, 2020). 

By contrast, the multi-angle polarimetric (MAP) measurements from 
POLDER with abundant information content make it possible to retrieve 
more aerosol optical/microphysical properties. By fitting MAP mea-
surements with iterative online RT calculations under prior constraint, 
the usually used optimized inversion methods can simultaneously 
retrieve aerosol and surface parameters (Dubovik et al., 2011; Hase-
kamp et al., 2011; Waquet et al., 2009; Xu et al., 2017). The recent 
GRASP (Generalized Retrieval of Aerosol and Surface Properties) and 
SRON RemoTAP (Remote Sensing of Trace gas and Atmosphere Prod-
ucts) algorithm have achieved great advancements in MAP retrieval of 
particle size and absorption (Chen et al., 2020; Fu and Hasekamp, 2018; 
Li et al., 2019, 2022). More advanced MAP instruments such as 
Multi-Angle Imager for Aerosols (MAIA) and Multi-Viewing Multi--
Channel Multi-Polarization Imaging (3MI) have been in plan to enhance 
global observation of aerosol and greenhouse gases (Diner et al., 2018; 
Fougnie et al., 2018). 

Since optimized inversions need iterative RT calculations of all 
aerosol/surface unknowns together, aerosol or surface parameters with 
low information content in satellite measurements can transmit their 
uncertainties to the whole retrievals (Dubovik et al., 2019; Xu and 
Wang, 2015). Moreover, future MAP instruments such as MAIA and 3MI 
have more spectral and polarimetric bands, higher spatial resolution, 
and larger swath width (Diner et al., 2018; Fougnie et al., 2018). The 
huge increase in MAP measurement information and data volume have 

exerts a very high requirement on computational efficiency of aerosol 
algorithms to implement operational retrievals. 

With the powerful non-linear modeling ability and high computa-
tional efficiency, the Deep Learning (DL) methods have been increas-
ingly utilized in both forward RT calculations and satellite retrievals 
(Chen et al., 2022b; Di Noia et al., 2015). By training relationship be-
tween spectral reflectance at top of atmosphere (TOA) with ground- 
based observations using DL methods, satellite retrievals of AOD and 
fine mode fraction exhibit a good accuracy (Kang and Kim, 2022). 
Nevertheless, performance of these data-driven DL retrievals relies on 
the availability and representativeness of ground observations. On the 
other hand, RT simulations are trained by DL methods to accelerate 
optimized estimation or to construct functions of satellite TOA reflec-
tance and AOD (Jia et al., 2022; Shi et al., 2020). In particular, 
exploratory study from airborne MAP observations shows that aerosol 
microphysical parameters can be well retrieved by training RT simula-
tions with DL methods (Gao et al., 2021; Di Noia et al., 2017). By now, 
whether DL methods can improve the current optimized inversion of 
MAP satellite measurements has been rarely concerned. 

In this study, we present a robust and flexible retrieval algorithm for 
aerosol optical/microphysical properties from MAP satellite measure-
ments by combining the advantages of physical constraints from atmo-
spheric RT simulations and modeling ability of DL methods. Section 2 
gives a brief introduction of POLDER-3 and AERONET (Aerosol Robotic 
Network) measurements and their products. The whole framework of 
our aerosol retrieval algorithm is introduced in section 3. Then, per-
formance of our algorithm are analyzed by ground-based validation and 
inter-comparison with existing satellite products in section 4. Section 5 
summarizes the main conclusions. 

Fig. 1. a) Geographic location of AERONET sites (red) in MODIS true color image of eastern China. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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2. Satellite and ground measurements 

2.1. POLDER-3 data 

The POLDER instrument crossing the equator at 13:30 local time 
measures the intensity and polarization of backscattered sunlight of the 
Earth-atmosphere system with 9 spectral bands from different view di-
rections (up to 14–16 viewing angles). While POLDER 1–2 instruments 
onboard ADEOS satellites since 1996 and 2002 have a limited lifespan of 
8 and 7 months, POLDER-3 on the PARASOL satellite from December 
2004 operates up to the end of 2013 (Tanré et al., 2011). With a swath 
width of 1600 km and nadir spatial resolution of ~6 km, POLDER-3 
measures scattering intensity of aerosols and clouds at 6 channels 
(443, 490, 565, 670, 865 and 1020 nm) with additional polarimetric 
observations at 490, 670, 865 nm. Moreover, the other three channels 
(763, 765 and 910 nm) are used to measure gaseous absorption of ox-
ygen A-band and water vapor. We utilize degree of linear polarization 
(DOLP) for aerosol retrieval, a relative quantity with higher accuracy 
than polarized radiance or reflectance: 

DOLP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Q2 + U2

√

I
(1) 

Here I, Q, and U are the first three of the Stoke parameters. 
Considering some values are missing in large viewing angles, only 
POLDER-3 measurements at viewing angles 2–12 are selected in our 
retrieval. 

As an optimized algorithm without LUTs, GRASP can simultaneously 
retrieve aerosol and surface properties (Dubovik et al., 2021). According 
to different configurations and assumptions, POLDER-3/GRASP has four 
types of retrievals: Optimized, Optimized with High-Precision (HP) RT 
calculation, Models, and Components. By assuming fine and coarse 

aerosols have the same component, GRASP/HP retrievals include vol-
ume size distribution at five bins, spectral complex refractive index, 
fractions of spherical particles, aerosol layer height (ALH), surface 
bidirectional reflectance distribution function (BRDF) and bidirectional 
polarization distribution function (BPDF) parameters (Dubovik et al., 
2011). GRASP/Models method takes aerosols as an external mixture of 
several aerosol components, and their respective concentrations 
together with ALH and surface parameters are retrieved (Chen et al., 
2020). By contrast, internal mixture of several components in fine and 
coarse mode separately is utilized in GRASP/Components with similar 
retrievals (Li et al., 2019). Meanwhile, a priori constraints such as 
BRDF/BPDF are spectrally smooth are utilized. While ground valida-
tions of GRASP/HP aerosol microphysical parameters show reliable 
accuracy, GRASP/Moldes performs better in the total AOD retrieval 
(Chen et al., 2020; Li et al., 2022; Zhang et al., 2021). Here we select 
these POLDER-3 GRASP products with quality-assured filtering for inter- 
comparison with our retrievals. 

2.2. AERONET measurements 

AERONET is a ground-based aerosol remote sensing network estab-
lished since 1990s, which provides long-term and continuous aerosol 
observation with well-calibrated sun-sky photometers (Holben et al., 
1998). By measuring direct solar irradiance every 5–15 min, spectral 
AODs derived from AERONET observations have a very high accuracy 
(~0.01–0.02) (Giles et al., 2019). Combined with directional almu-
cantar observations of sky radiance at 440, 675, 870 and 1020 nm, 
AERONET operational inversion retrieves 22 bins of particle size dis-
tribution, spectral, and nonsphericity with similar optimized method as 
POLDER-3/GRASP (Dubovik and Holben, 2002). To ensure a reliable 
accuracy, quality control of AERONET complex refractive index requires 

Fig. 2. The flowchart of PDL aerosol algorithm for multi-angle polarimetric measurements.  
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AOD440 > 0.4 and solar zenith angle (SZA) >50◦. The Version (V) 3 
AERONET inversions introduce a new hybrid sky measurement to 
maximize the range of scattering angles, and extend the threshold of SZA 
to 25◦ (Sinyuk et al., 2020). Surface reflectance has minimal influence 
on AERONET sky radiance, and is considered with MODIS BRDF 
products. 

We select the V3 AERONET Level 2.0 products for the validation of 
our retrievals. Consistent with previous studies (Chen et al., 2020; 
Ichoku et al., 2002), spatial mean values of POLDER-3 retrievals within a 
radius of ~25 km around AERONET site are matched with temporal 
mean of AERONET observations within ±30 min of satellite passing 
time. For microphysical parameters such as complex refractive index, 
the temporal window is expanded to ±1 h. Fig. 1 shows locations of the 
11 AERONET sites used in this study. 

3. MAP aerosol retrieval with physics-informed DL (PDL) 
method 

A reliable atmospheric RT model can provide a high-accuracy 
calculation of satellite TOA reflectance and DOLP from the coupled at-
mosphere and surface system at various viewing geometries. Thus, a 
clear physical mapping relationship exists between simulated MAP 
measurements and corresponding RT inputs (aerosol optical/micro-
physical parameters and surface BRDF/BPDF). Then, a DL method can 
be utilized to train the complicated non-linear relationship between 
MAP satellite measurements and aerosol parameters. Different from 

optimized inversion depending on absolute physical quantities, DL 
methods make feature learning of probability distribution of the training 
datasets. Furthermore, with the physical constraints of RT simulations, 
DL method can model the whole used MAP measurement with each 
aerosol parameter separately without having to retrieve all aerosol/ 
surface unknowns together. 

3.1. Atmospheric RT model 

The UNified and Linearized Vector Radiative Transfer Model (UNL- 
VRTM) is a numerical testbed for atmospheric remote sensing (Wang 
et al., 2014), which is mainly composed of several modules including a 
linearized vector radiative transfer model (VLIDORT), aerosol scattering 
(Mie/T-Matrix code), Rayleigh scattering and gas absorption, and sur-
face reflectance model (BRDF/BPDF). UNL-VRTM supports a flexible 
setting of the functions such as aerosol size distribution, vertical profiles, 
and surface BRDF/BPDF models. Up to two aerosol modes and their 
respective loading (AOD or volume concentration) and microphysical 
properties (particle size and complex refractive index) can be inputted. 
Spherical aerosols with a bimodal lognormal distribution are assumed in 
this study: 

dV
dlnr

=
∑2

i=1

V i
0̅̅̅̅̅

2π
√

lnσi
g
exp

[

−

(
lnr − lnri

v

)2

2ln2σi
g

]

(2) 

V0 denotes total volume concentration (μm3μm− 2); the superscript i 
= 1, 2 refers to fine and coarse mode aerosols with assumed size range of 

Fig. 3. Comparison of RT simulations of TOA spectral reflectance and DOLP with corresponding POLDER-3 measurements at 490, 670 and 865 nm for typical 
viewing angles. The red and dashed lines are fitting and 1:1 lines. Correlation coefficient (R), Root Mean Square Error (RMSE), and number (N) of simulation- 
measurement matchups are also shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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0.01–10 μm and 0.05–20 μm respectively, which both cover >99.9% of 
the idealistic particle sizes. rv and σg represent volume median radius 
and its geometeic standard deviation. Effective radius 

(
reff

)
can be 

calculated by rv and σg: 

reff = rvexp
(

−
1
2

ln2σg

)

(3) 

Then AOD (τa) at a specific wavelength (λ) can be obtained: 

τa(λ) =
∑2

i=1

3V i
0Qi

ext(λ)
4ri

eff
(4) 

The extinction efficiency factor, Qext, is the ratio of extinction and 
geometric cross section. For surface BRDF, we select a widely used 
semiempirical model that relies on a linear weighted sum of isotropic 
scattering, Ross-Thick volume scattering (Kvol), and 

R(λ,ϑ0,ϑv,φ) = fiso(λ)+ fvol(λ)Kvol(ϑ0,ϑv,φ)+ fgeo(λ)Kgeo(ϑ0,ϑv,φ) (5) 

Li-Sparse geometric scattering (Kgeo) (Lucht and Schaaf, 2000). fiso, 
fvol, and fgeo are spectrally-dependent weighting parameters. Here ϑ0, ϑv 

and φ are solar zenith, view zenith, and relative azimuth angles. Since 
BPDF has very little variations with surface types, we select a fixed 
model with only one parameter (Maignan et al., 2009). 

3.2. Deep Belief Network (DBN) 

As one of the competitive and effective Deep Neural Networks (DNN) 
methods, DBN with a probabilistic generative model has a striking 
advantage in solving complicated and non-linear regression questions. 
By combing stacked Restricted Boltzmann Machine (RBM) and a Back- 
Propagation net (BP), DBN firstly starts an unsupervised pre-training 
of each RBM and then makes a supervised fine-tuning of its 

parameters with error back-propagation algorithms (Hinton et al., 
2006). RBM is a type of generative stochastic neural network that does 
feature learning of probability distribution of the input datasets. The 
typical two-layer neural network of RBM contains a visible layer to input 
the training data and a hidden layer as feature detectors with connec-
tions between but not within layers. Thus, the hidden units in each RBM 
layer can be trained efficiently to capture higher-order features of the 
datasets from visible layer using contrastive divergence method. After a 
layer-by-layer greedy training of the RBMs, the generative weights are 
restricted in a favorable scope for global training and provide a reliable 
initial guess for the following supervised fine-tuning. In this study, we 
utilize DBN method to model the physics-informed relationship among 
MAP measurements, aerosol, and surface from RT simulations. 

3.3. The PDL aerosol algorithm framework 

As shown in Fig. 2, PDL algorithm framework includes three key 
modules: 1) generating training datasets with RT simulations; 2) 
modeling the relationship between simulated MAP measurements and 
each interested aerosol parameter separately with DBN; 3) POLDER-3 
aerosol retrieval with the trained models. The detailed process of each 
module is as follows: 

(1) First, UNL-VRTM is used to generate the training datasets by 
simulating POLDER-3 TOA reflectance at six bands (443, 490, 565, 670, 
865 and 1020 nm) and DOLP at three polarized ones (490, 670, 865 nm) 
as used in GRASP inversions under various atmospheric and surface 
conditions. The aerosols are assumed to be a mixture of fine and coarse 
mode with dynamic sizes. Volume concentration, effective radius, 
effective variance, and spectral complex refractive index of each mode 
are the main input aerosol variables for RT simulation. Aerosol profiles 
are assumed to follow a fixed Gaussian distribution with AOD peak at 
~1.5 km. For atmospheric profiles, the mid-latitude summer and winter 

Fig. 4. The comparison of PDL retrievals and true values of AOD, fine AOD, coarse AOD at 550 nm, and SSA at 443, 670 and 865 nm from synthetic test data. The 
black and dashed lines are expected error (EE) envelop of ±(0.05 + 15%) and 1:1 line. 
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ones are utilized for simulations at close time respectively. 
Since random combinations of aerosol or surface parameters can 

generate numerous factitious samples that do not exist in the real world, 
we make use of the prior information from existing ground measure-
ments and satellite products. The AERONET site in Beijing is influenced 

by local urban/industrial emissions, long-range transport of airborne 
dust and fire smoke as well as their mixtures. Considering the same 
complex refractive index is assumed for fine and coarse particles in 
AERONET inversion, we retrieve their respective microphysical pa-
rameters from 10-year (2011− 2021) Sun photometer observations in 

Fig. 5. Ground-based validations of POLDER-3 PDL, GRASP/HP, GRASP/Models, and GRASP/Component AOD with AERONET results at 550 nm (top), probability 
density functions of their bias (POLDER-AERONET) (middle), and Ångström exponent (AE) at 440–865 nm (bottom). 

Fig. 6. Same as Fig. 5 but for validation of PDL fine AOD (top) and coarse AOD (bottom).  
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Beijing site with an optimized algorithm by Xu et al. (2015). Moreover, 
we select one-year collocated MODIS Deep Blue AOD, BRDF, and 
POLDER-3 BPDF in eastern China during 2007 to combine with the 
aerosol microphysical parameters. Compared with POLDER-3 mea-
surements, UNL-VTRM simulations in AERONET Beijing site show a 
robust and reliable performance (Fig. 3). Both simulated TOA reflec-
tance and DOLP are closely concentrated along the 1:1 line with 
matched single-pixel POLDER-3 measurements, and their correlation 
coefficients are ranging within 0.854–0.967. It should be stated that 
DBN makes feature learning of probability distribution functions of the 
training datasets rather than calculates absolute physical quantities, 
which has good generalization and anti-noise capabilities and can learn 
features from even raw data. 

(2) The RT simulations from UNL-VTRM provide a physics-informed 
training dataset between MAP measurement and aerosols. Considering 
there are too many unknowns of the fine and coarse mode aerosols, we 
convert their optical/microphysical parameters to AOD, fine and coarse 
AOD, and Single Scattering Albedo (SSA), which are also the main 
products of GRASP. It should be noted that here simulated MAP mea-
surements are taken as input and aerosol parameters are taken as un-
known output. The observation geometry is still an input as constraint 
condition. Then, we train the function relationship of simulated 
POLDER-3 TOA reflectance and DOLP with corresponding AOD, fine and 
coarse AOD at 550 nm, and spectral SSA using DBN method, respec-
tively. A 20% subset of the sample datasets that does not participate in 
the training is selected randomly as test dataset to validate the trained 
models. 

It should be noted that here we only train and retrieve aerosols. 
Different from optimized inversions that need iterative RT calculations 
of all aerosol/surface unknowns together, PDL method directly models 

satellite measurements with each retrieved parameter respectively. 
Surface parameters need to be modeled with satellite measurements 
separately by PDL method if required. With the full physical constraints 
among satellite observations, aerosol, and surface in RT simulations, 
retrieval accuracy of surface properties mainly depends on their infor-
mation content. 

Fig. 4 shows comparison of PDL retrievals from the test dataset with 
the “true” values of aerosol optical/microphysical parameters. Based on 
the trained DBN models, PDL AOD, fine and coarse AOD exhibits a very 
high accuracy with correlation coeffients (R) >0.95. Despite a lower R, 
most PDL SSA values are well concentrated along 1:1 lines of retrievals 
and true values. 

(3) By utilizing the trained DBN models, we make retrieval of cor-
responding aerosol parameters from single-pixel POLDER-3 measure-
ments over eastern China during 2007–2009. Considering PDL 
algorithm does not depend on absolute physical quantities, we do not 
make quality control for our retrievals. 

4. Results and analysis 

4.1. Validation of PDL aerosol retreivals from POLDER-3 measurements 

To evaluate the retrieval accuracy of PDL algorithm in eastern China, 
we make a validation of POLDER-3 PDL AOD and GRASP/HP, Models, 
and Component retrievals with AERONET products (Fig. 5). The 
POLDER-3 PDL AOD agrees very well with AERONET results with a 
slightly higher correlation coefficient (R = 0.917) and lower Root Mean 
Square Error (RMSE = 0.202) than GRASP results. On the other hand, 
percent of PDL AOD (59.71%) within expected error (EE) envelope of 
±(0.05 + 15%) is lower than that of GRASP/Models (64.92%), which is 

Fig. 7. Scattered plots of POLDER-3 PDL, GRASP/HP, GRASP/Models, and GRASP/Component SSA and AERONET inversions at 443, 670, and 865 nm.  
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mainly caused by the overestimation under low-AOD (<0.2) conditions. 
By contrast, the bias of PDL AOD (>0.2) relative to AERONET obser-
vations generally follows a similar Gaussian distribution as that of 
GRASP/Models. The POLDER-3 PDL Ångström exponent (AE) values at 
440–865 nm are concentrated along the 1:1 line, indicating high con-
sistency between spectral AODs from different DBN models. 

Meanwhile, POLDER-3 PDL retrievals exhibit a good accuracy in 
inferring particle size (Fig. 6). Compared with the total AOD, PDL al-
gorithm has a more significant advantage in the retrieval of fine AOD. 
Ground-based validation with AERONET products shows a high accu-
racy of PDL fine AOD with R = 0.926 and RMSE = 0.17. Moreover, 
percent of PDL fine AOD within EE exceeds 65%, which is higher than 
that of GRASP/Models (58.23%) and Component (63.35%). Despite a 
large decrease in the accuracy of coarse AOD for both GRASP and PDL, 
PDL retrievals are more reliable with R = 0.565 and RMSE = 0.072 and 
have much fewer abnormal values with 74.72% values within EE of 
±(0.05 + 15%). GRASP/HP and Models retrievals tend to overestimate 
coarse AOD with a few abnormally high values. By comparison, GRASP/ 
Component has a lower R = 0.396 but better RMSE (0.105) with 68.25% 
retrievals within EE. 

POLDER-3 PDL retrievals of spectral SSA exhibit consistent 

variations with AERONET inversions (Fig. 7). Different from global 
validations (Chen et al., 2020), GRASP/Models retrievals of SSA obvi-
ously perform better than GRASP/HP and Component results in eastern 
China. Despite R and RMSE of PDL SSA is at very close levels with those 
of GRASP/Models retrievals in AERONET validation, GRASP/Models 
SSA is closer to 1:1 lines. PDL retrievals tend to underestimate high-SSA 
(>0.90) and overestimate low-SSA (<0.90) values. The complex 
refractive index of fine and coarse mode aerosols is retrieved separately 
from AERONET measurements, and then converted to SSA of the total 
aerosols for PDL training. Information content of coarse particles is 
lower than that of fine mode aerosols in AERONET measurements (Xu 
and Wang, 2015). Since fine mode aerosols are predominant in eastern 
China (Fig. 6), the limited information content of coarse particles with 
low values (<0.2) further leads to considerable uncertainties in retrieval 
of their refractive index (Dong et al., 2023), Which can be the main 
source of the bias in PDL SSA. 

Generally, the PDL algorithm exhibits a robust and reliable perfor-
mance in retrieving aerosol optical/microphysical parameters from 
POLDER-3 measurements. Compared with optimized inversions, accu-
racy of PDL retrievals is at very close levels with the best one of the three 
GRASP products, and possess marked advantage in characterizing 

Fig. 8. Annual mean of POLDER-3 AOD, fine AOD, coarse AOD at 550 nm, and SSA at 670 nm for PDL, GRASP/HP, GRASP/Models, and GRASP/Component al-
gorithm in eastern China during 2008. 
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particle size. Also, PDL method can make full use of the prior informa-
tion of aerosol/surface parameters from ground-based observations and 
satellite products, which can avoid very abnormal values. With the 
physical constraints among satellite measurements, aerosol, and surface 
from RT simulations, aerosol/surface parameters can be selected flexibly 
and modeled with the whole MAP measurements separately with a high 
utilization efficiency of observational information. In particular, the PDL 
method has a very high computational efficiency at minute level on 
average for retrieval of one POLDER-3 image using common persional 
computers (PC). 

4.2. Inter-compariosn of POLDER-3 PDL and GRASP products 

To have an overview of the performance and robustness of PDL al-
gorithm at regional scales, we examine the annual map of POLDER-3 
PDL retrievals during 2008 and make an inter-comparison with 
GRASP products (Fig. 8). Spatial distribution of PDL aerosol parameters 
in eastern China have very self-consistent patterns with anthropogenic 
emission sources and topography. The PDL AOD and SSA have a high 
consistency with GRASP/Models retrievals that have their best perfor-
mance in validations with AERONET inversions. The high values of PDL 

coarse AOD in Gobi deserts agree well with the hotspots of dust activities 
(Tao and Chen, 2022). By contrast, GRASP/HP and Models tend to 
overestimate the coarse AOD and GARSP/Models also underestimate the 
fine AOD, which exhibit lower accuracy than GRASP/Component 
(Fig. 6). On the other hand, GRASP/Models SSA at 670 nm is around 
0.95 and 0.80 in the Gobi deserts and southeast coastal area respec-
tively, where PDL SSA is ~0.90. The notable differences between PDL 
and GRASP SSA values in clean background regions can be caused by 
their retrieval errors and distinct constraints in condition of low infor-
mation content. Additionally, PDL retrievals over the coastlines of 
eastern China are less influenced by bright surface of the shallows. 

Moreover, the spatial patterns of PODER-3 PDL and GRASP retrievals 
are very consistent in seasonal scales (Fig. 9). PDL fine AOD during 
spring 2008 reveals a few hotspots of urban emissions ove large cities 
such as ShijiaZhuang and Zhengzhou in northern China. Owing to the 
overestimation of coarse AOD for GRASP/HP and Models, PDL and 
GRASP/Component AOD agree better in northern China. While PDL 
coarse AOD gets lower from north to south, GRASP/Component re-
trievals have several high-value (>0.4) areas in central China and the 
Sichuan Basin. Moreover, PDL coarse AOD over Gobi deserts is closer 
with GRASP/HP retrieval. All GRASP coarse AODs exhibit an obvious 

Fig. 9. Same as Fig. 8 but for seasonal mean during spring in 2008.  
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overestimation over eastern China during summer (Fig. 1S), due largely 
to their different assumptions. 

To further check the stability of PDL retrievals, a typical dust event 
over northern China on March 31, 2007 is analyzed (Fig. 10). The 
POLDER-3 PDL aerosol products can well capture spatial distribution of 
the dust plumes. Moreover, PDL retrievals can clearly discriminate dust 
plumes dominated by coarse particles and haze pollution in the southern 
part with high values of fine AOD. Spatial variations of coarse AOD from 
PDL in northern China show that the main part of dust plumes has 
moved to the Yellow sea. Compared with the dense dust plumes in 
northeastern China with high PDL SSA values around 0.95, absorption of 
the dust particles over northern China gets stronger with lower PDL SSA 
at ~0.92, which can be caused by dust-pollution mixing. 

For the detection ability of aerosol absorption, we examine PDL re-
trievals in a biomass burning event in northern China on May 28, 2007 
(Fig. 11). The agricultural straw fires during the harvest season emit 

large amounts of smoke, and have been blown northeasterly by the 
airflows. Similar as GRASP/Models and Component products, PDL SSA 
at 670 nm exhibits very low values around 0.80–0.85 over the fire 
emissions. However, PDL SSA values quickly go up to 0.90–0.95 in the 
transport, due possibly to a mixture with other anthropogenic emissions 
and aging of the fresh smoke. In addition, GRASP products tend to 
overestimate the coarse AOD of the fire smoke. 

4.3. Application potential and uncertainties of the PDL algorithm 

The PDL method has a a robust and reliable performance in ground 
validation and inter-comparsion with GRASP retrievals. By combining 
the physical constraint from RT simulations and modeling ability of DL 
methods, PDL can model the whole MAP measurements with each 
interested aerosol/surface parameter individually. Thus, PDL method 
can not only make full use of the observation information, but also avoid 

Fig. 10. POLDER-3 AOD, fine AOD, coarse AOD at 550 nm, and SSA at 670 nm for PDL (top), GRASP/Models (middle), and GRASP/Component (bottom) in northern 
China on March 31, 2007. 
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error propagation among aerosol/surface parameters with different in-
formation content in iterative RT calculations. Moreover, PDL can well 
take advantage of the prior information from existing ground-based 
observations and satellite surface products. The flexible framework of 
PDL supports a free selection of retrieved parameters and be applied to 
other satellite instruments conveniently by making corresponding RT 
simulations, 

Since RT simulation is only needed in the pre-training stage once for 
each atmosphere/surface scenario, PDL retrievals avoids time- 
consuming iterative RT calculations for each satellite pixel. By taking 
satellite measurements as input variables of the trained DBN model, PDL 
retrievals have a very high computational efficiency. For instance, 
POLDER PDL aerosol retrievals of one cloud-free image can be imple-
mented at one minute level by using common PC. Compared with the 
multi-pixel GRASP retrievals, PDL results derived from single-pixel 
measurement can reflect finer features such as small urban/industrial 
hotspots in northern China (Fig. 12). 

Although accuracy of POLDER-3 PDL AOD and fine AOD is very close 

to that of the retrievals from test dataset (Fig. 4), coarse AOD and SSA 
still have considerable uncertainties. Considering the similar perfor-
mance of GRASP inversions, the limited information content from 
POLDER-3 measurements could be the main reason (Dong et al., 2023). 
For PDL SSA, the high values of retrieval bias are concentrated in low- 
AOD (<0.5) conditions (Fig. 2S), when information content is not suf-
ficient for accurate retrieval of aerosol absorption. To introduce prior 
constraints such as known aerosol types with fixed complex refractive 
index in GRASP/Models can be a favor. POLDER-3 PDL AOD has slight 
overestimation at low values (<0.2), which can be partly caused by the 
positive bias of coarse AOD (Figs. 5 and 6). Also, high values (>1.0) of 
PDL AOD become obviously scattered, indicating that aerosol micro-
physical properties at high AOD are not well characterized in the 
training. The optimized inversions such as GRASP can quantify reli-
ability or quality of each retrieval by their residual errors in fitting 
satellite measurements (Dubovik et al., 2021). By contrast, evaluation of 
uncertainties in PDL retrievals is done in the pre-training stage and fo-
cuses on performance of the whole trained model rather than single 

Fig. 11. Same as Fig. 10 but for May 28, 2007.  
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retrieval. 
As an exploratory study, we test and validate the POLDER-3 PDL 

retrievals only in eastern China. There are still a few of limitations in the 
PDL method that need to be improved and perfected before a wide 
application. First, the uncertainties of PDL retrievals could increase in 
unusual cases or aerosol scenarios such as heavy pollution that only 
account for a small proportion in all the observations, which should be 
fully considered in the PDL training. To expand PDL retrievals to lager 
scales, current training based on aerosol properties in eastern China can 
have few typical aerosol scenarios such as wildfire smoke and dust 
events in other regions of the world. Global AERONET climatology of 
distinct aerosol types such as in GRASP/Models algorithm is needed for 
the training. Also, the forward RT model we used for generating training 
datasets did not consider the non-spherical shape of coarse particles. 
AERONET validation show no obvious changes in the performance of 
PDL retrievals during the dusty season in northern China (Fig. 3S). The 
influence of spherical assumption for coarse aerosols can be largely 
eliminated by DL modeling and spectral and angular information. 

However, it’s still necessary to utilize a more accurate spheroid model in 
the future work. Additionally, satellite surface BRDF can have non- 
negligible bias at large viewing angles (Litvinov et al., 2011; Tao 
et al., 2019). Motivated by the flexible framework, reliable performance, 
and very high computational efficiency of PDL method, we will refine 
the current model to apply to more satellite measurements and larger 
scales in the follow-up study. 

5. Conclusions 

The emerging MAP satellite measurements have put forward higher 
demands for efficient retrieval algorithms. In this study, we developed a 
flexible and high-efficiency algorithm framework for retrieval of aerosol 
optical/microphysical parameters from MAP measurements with 
physics-informed deep learning (PDL) method. Unlike the optimized 
inversion needs iterative RT calculations of all the unknowns together, 
the PDL method can model the whole MAP observations with interested 
aerosol parameters separately with the pre-training of RT simulations. 

Fig. 12. Same as Fig. 10 but for March 14, 2009.  

M. Tao et al.                                                                                                                                                                                                                                     



Remote Sensing of Environment 297 (2023) 113763

13

Besides an efficient utilization of satellite observations, PDL retrievals 
avoid error propagation among aerosol/surface parameters with 
different information content in optimized inversions. Moreover, the 
training of PDL can effectively utilize the existing prior information of 
satellite products and ground-based observations, which can provide a 
constraint of unphysical values. 

Ground-based validations with AERONET products show high ac-
curacy of POLDER-3 PDL AOD and fine AOD in eastern China with 
higher R (>0.91) and lower RMSE than GRASP retrievals. Owing to 
overestimation in low values (<0.2), the percent of PDL AOD (59.71%) 
within the EE of ±(0.05 + 15%) is lower than that of GRASP/Models 
(64.92%). By contrast, PDL fine and coarse AOD performs obviously 
better than GRASP retrievals. Despite lower accuracy than AOD, PDL 
SSA is consistent with AERONET inversions and very close to the best 
estimates from GRASP/Models. By quantifying particle size and ab-
sorption, POLDER-3 PDL retrievals can well characterize the spatial 
distribution and transport process of typical dust and biomass burning 
events. With a robust performance in accuracy and efficiency, the flex-
ible PDL algorithm has an outstanding potential for operational retrieval 
of MAP satellite measurements. To apply PDL method to more satellite 
measurements and larger scales, we will refine the PDL method by 
enhancing prior constraints and improving RT simualtions in the 
following study. 
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