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Abstract. Gaseous pollutants at the ground level seriously threaten the urban air quality environment and public
health. There are few estimates of gaseous pollutants that are spatially and temporally resolved and continuous
across China. This study takes advantage of big data and artificial-intelligence technologies to generate seamless
daily maps of three major ambient pollutant gases, i.e., NO2, SO2, and CO, across China from 2013 to 2020 at a
uniform spatial resolution of 10 km. Cross-validation between our estimates and ground observations illustrated
a high data quality on a daily basis for surface NO2, SO2, and CO concentrations, with mean coefficients of
determination (root-mean-square errors) of 0.84 (7.99 µg m�3), 0.84 (10.7 µg m�3), and 0.80 (0.29 mg m�3), re-
spectively. We found that the COVID-19 lockdown had sustained impacts on gaseous pollutants, where surface
CO recovered to its normal level in China on around the 34th day after the Lunar New Year, while surface SO2
and NO2 rebounded more than 2 times slower due to more CO emissions from residents’ increased indoor cook-
ing and atmospheric oxidation capacity. Surface NO2, SO2, and CO reached their peak annual concentrations of
21.3 ± 8.8 µg m�3, 23.1 ± 13.3 µg m�3, and 1.01 ± 0.29 mg m�3 in 2013, then continuously declined over time
by 12 %, 55 %, and 17 %, respectively, until 2020. The declining rates were more prominent from 2013 to 2017
due to the sharper reductions in anthropogenic emissions but have slowed down in recent years. Nevertheless,
people still suffer from high-frequency risk exposure to surface NO2 in eastern China, while surface SO2 and
CO have almost reached the World Health Organization (WHO) recommended short-term air quality guide-
lines (AQG) level since 2018, benefiting from the implemented stricter “ultra-low” emission standards. This
reconstructed dataset of surface gaseous pollutants will benefit future (especially short-term) air pollution and
environmental health-related studies.
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1 Introduction

Air pollution has been a major environmental concern, af-
fecting human health, weather, and climate (Anenberg et
al., 2022; Kan et al., 2012; Z. Li et al., 2017; GBD 2019
Risk Factors Collaborators, 2020; Orellano et al., 2020), thus
drawing worldwide attention. The sources of air pollution
are complex. They include natural sources such as wild-
fires and anthropogenic emissions, including pollutants dis-
charged from industrial production (e.g., smoke or dust, sul-
fur oxides, nitrogen oxides – NOx , and volatile organic com-
pounds – VOCs), hazardous substances released from burn-
ing coal during heating seasons (e.g., dust, sulfur dioxide –
SO2, and carbon monoxide – CO), and waste gases (e.g., CO,
SO2, and NOx) generated by transportation, especially in big
cities.

Among various air pollutants, the following have been
most widely recognized: particulate matter with diameters
smaller than 2.5 and 10 µm (PM2.5 and PM10) and gaseous
pollutants (e.g., ozone (O3), nitrogen dioxide (NO2), SO2,
and CO, among others). Many countries have built ground-
based networks to monitor a variety of conventional pollu-
tants in real time. China has experienced serious ambient air
pollution for a long time, prompting the establishment of a
large-scale air quality monitoring network (MEE, 2018a).
Over the years, much effort has been made to model dif-
ferent species of air pollutants. Many studies that focused
on particulate matter in China have been carried out (Gao
et al., 2022; T. Li et al., 2017; H. Li et al., 2022; Ma et
al., 2022; Yang et al., 2022; Zhang et al., 2018). The global
COVID-19 pandemic has motivated many attempts to esti-
mate surface NO2 concentrations from satellite-retrieved tro-
pospheric NO2 products (Tian et al., 2020; WHO, 2020), e.g.,
from the Ozone Monitoring Instrument (OMI) on board the
NASA Aura spacecraft and the TROPOspheric Monitoring
Instrument (TROPOMI) on board the Copernicus Sentinel-
5 Precursor satellite, adopting different statistical regression
(Chi et al., 2021; Qin et al., 2017; Zhang et al., 2018) and ar-
tificial intelligence (Chen et al., 2019; Chi et al., 2022; Dou
et al., 2021; Liu, 2021; Wang et al., 2021; Zhan et al., 2018)
models. By comparison, surface SO2 and CO in China are
less studied, limited by weaker signals and a lack of good-
quality satellite tropospheric products (W. Han et al., 2022;
Li et al., 2020; Liu et al., 2019; Wang et al., 2021). Such
studies still face more challenges, e.g., satellite data gaps and
missing values that seriously limit their application and the
neglect of spatiotemporal differences in air pollution in the
modeling process. In addition, most previous studies mainly
focused on studying a single or a few species during rela-
tively short observational periods.

In view of the above problems, the purpose of this pa-
per is to reconstruct daily concentrations of three ambient
gaseous pollutants (i.e., NO2, SO2, and CO) in China. To
this end, relying on the dense national ground-based observa-
tion network and big data, including satellite remote sensing

products, meteorological reanalysis, chemical model simula-
tions, and emission inventories, we are capable of mapping
three pollutant gases seamlessly (100 % spatial coverage) on
a daily basis at a uniform spatial resolution of 10 km since
2013 in China. Estimates were made using an extended and
powerful machine-learning model incorporating spatiotem-
poral information, i.e., Space–Time Extra-Trees (Wei et al.,
2022a). Natural and anthropogenic effects on air pollution,
including their physical mechanisms and chemical reactions,
were accounted for in the modeling. Using this dataset, spa-
tiotemporal variations of the gaseous pollutants, the impacts
of environmental protection policies and the COVID-19 pan-
demic, and population risk exposure to gaseous pollution are
investigated.

To date, we have combined the advantages of artificial
intelligence and big data to construct a virtually complete
set of major air quality parameters concerning both par-
ticulate and gaseous pollutants over a long period of time
across China, including PM1 (1 km, 2000–present) (Wei et
al., 2019), PM2.5 (1 km, 2000–present) (Wei et al., 2020,
2021a), PM10 (1 km, 2000–present) (Wei et al., 2021b), O3
(10 km, 1979–present) (Wei et al., 2022a; L. He et al., 2022),
and NO2 (1 km, 2019–present) (Wei et al., 2022b), serving
environmental, public health, economy, and other related re-
search. This study is the continuation of our previous studies,
adding two new species of SO2 and CO for the first time and
also dating the data records of NO2 back to 2013. Instead
of devoting itself to a single pollutant, this study deals with
all gaseous pollutants of compatible quality over the same
period with the same spatial coverage and resolution. In par-
ticular, considering that there are few public datasets of these
three gaseous pollutants with such spatiotemporal coverages
focusing on the whole of China, this is highly valuable for the
sake of studying their variations, relative proportions, and at-
tribution of emission sources, as well as the diverse and joint
effects of different pollutant species on public health.

2 Materials and methods

2.1 Big data

2.1.1 Ground-based measurements

Hourly measurements of ground-level NO2, SO2, and CO
concentrations from ⇠ 1600 reference-grade ground-based
monitoring stations (Fig. 1) collected from the China Na-
tional Environmental Monitoring Centre (CNEMC) network
were employed in the study. This network includes urban as-
sessing stations, regional assessing stations, background sta-
tions, source impact stations, and traffic stations, set up in a
reasonable overall layout that covers industrial (⇠ 14 %), ur-
ban (⇠ 31 %), suburban (⇠ 39 %), and rural (⇠ 16 %) areas
to improve the spatial representations, continuity, and com-
parability of observations (HJ 664-2013; MEE, 2013a). NO2
is measured by chemiluminescence and differential optical
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absorption spectroscopy (DOAS), and SO2 uses ultraviolet
fluorescence and DOAS, while CO adopts non-dispersive in-
frared spectroscopy and gas filter correlation infrared spec-
troscopy. These measurements have been fully validated and
have the same average error of indication of ±2 % of full
scale (FS) for the three gaseous pollutants considered here,
with additional quality control checks such as zero and span
noise and zero and span drift (HJ 654-2013 and HJ 655-2013;
MEE, 2013b, c). They have also been used as ground truth
in almost all air pollutant modeling studies in China (Ma et
al., 2022; B. Zhang et al., 2022). All stations use the same
technique to measure each gas routinely and continuously for
24 h a day at about sea level without time series gaps. How-
ever, the reference state (i.e., observational conditions like
temperature and pressure) changed from the standard condi-
tion (i.e., 273 K and 1013 hPa) to the room condition (i.e.,
298 K and 1013 hPa) on 31 August 2018 (MEE, 2018a). We
thus first converted observations of the three gaseous pollu-
tants after this date to the uniform standard condition for con-
sistency. Here, daily values for each air pollutant were aver-
aged from at least 30 % of valid hourly measurements at each
station in each year from 2013 to 2020.

2.1.2 Main predictors

A new daily tropospheric NO2 dataset at a horizontal resolu-
tion of 0.25� ⇥ 0.25� in China was employed, created using a
developed framework integrating OMI Aura Quality Assur-
ance for Essential Climate Variables (QA4ECV) and Global
Ozone Monitoring Experiment-2B (GOME-2B) offline tro-
pospheric NO2 retrievals passing quality controls (i.e., cloud
fraction < 0.3, surface albedo < 0.3, and solar zenith angle
< 85�; He et al., 2020a). The reconstructed tropospheric NO2
agreed well (R = 0.75–0.85) with multi-axis differential op-
tical absorption spectroscopy (MAX-DOAS) measurements.
Through this data fusion, the daily spatial coverage of satel-
lite tropospheric NO2 was significantly improved in China
(average = 87 %). Areas with a small number of missing
values were imputed via a nonparametric machine-learning
model by regressing the conversion relationship with Coper-
nicus Atmosphere Monitoring Service (CAMS) tropospheric
NO2 assimilations (0.75� ⇥ 0.75�), making sure that the in-
terpolation was consistent with the OMI/Aura overpass time
(Inness et al., 2019; Y. Wang et al., 2020). The gap-filled
tropospheric NO2 was reliable compared with measurements
(R = 0.94–0.98; Wei et al., 2022b). The above two-step gap-
filling procedures allowed us to generate a daily seamless
tropospheric NO2 dataset that removes the effects of clouds
from satellite observations.

Here, the reconstructed daily seamless tropospheric NO2
together with CAMS daily ground-level NO2 assimilations
(0.75� ⇥ 0.75�) averaged from all 3-hourly data in a day
and monthly NOx anthropogenic emissions (0.1� ⇥ 0.1�;
Inness et al., 2019) were used as the main predictors
for estimating surface NO2. Limited by the quality of

direct satellite observations, daily model-simulated SO2
and CO surface mass concentrations, averaged from all
available data in a day provided by 1-hourly Modern-
Era Retrospective Analysis for Research and Applica-
tions, version 2 (MERRA-2, 0.625� ⇥ 0.5�), 3-hourly CAMS
(0.75� ⇥ 0.75�), and 3-hourly Goddard Earth Observing Sys-
tem Forward-Processing (GEOS-FP, 0.3125� ⇥ 0.25�) global
reanalyses were used as the main predictors to retrieve sur-
face SO2 and CO, together with CAMS monthly SO2 and
CO anthropogenic emissions.

2.1.3 Auxiliary factors

Meteorological factors have important diverse effects on air
pollutants (He et al., 2017; Li et al., 2019), e.g., the boundary
layer height reflects their vertical distribution and variations
(Z. Li et al., 2017; Seo et al., 2017); temperature, humid-
ity, and pressure can affect their photochemical reactions (Li
et al., 2019; Xu et al., 2011; C. Zhang et al., 2019); rain-
fall and wind can also influence their removal, accumula-
tion, and transport (Dickerson et al., 2007; Li et al., 2019).
Eight daily meteorological variables, provided by the ERA5-
Land (0.1� ⇥ 0.1�; Muñoz-Sabater et al., 2021) and ERA5
global reanalysis (0.25� ⇥ 0.25�; Hersbach et al., 2020), were
calculated (i.e., accumulated for precipitation and evapora-
tion while averaged for the others) from all hourly data in a
day, used as auxiliary variables to improve the modeling of
gaseous pollutants. Other auxiliary remote sensing data used
to describe land-use cover and/or change (i.e., Moderate-
Resolution Imaging Spectroradiometer (MODIS) normal-
ized difference vegetation index (NDVI), 0.05� ⇥ 0.05�) and
population distribution density (i.e., LandScan™, 1 km) were
employed as inputs to the machine-learning model because
they are highly related to the type of pollutant emission and
amounts of anthropogenic emissions, as well as to the sur-
face terrain (i.e., Shuttle Radar Topography Mission (SRTM)
digital elevation model (DEM), 90 m), which can affect the
transmission of air pollutants. Table S1 in the Supplement
provides detailed information about all the data used in this
study. All variables were aggregated or resampled into a
0.1� ⇥ 0.1� resolution for consistency.

2.2 Pollutant gas modeling

Here, the developed Space–Time Extra-Trees (STET) model
(Wei et al., 2022a), integrating spatiotemporal autocorrela-
tions of and differences in air pollutants to the extremely
randomized trees (ERT; Geurts et al., 2006), was extended
to estimate surface gaseous pollutants, i.e., NO2, SO2, and
CO. ERT is an ensemble machine-learning model based on
the decision tree, capable of solving the nonparametric, mul-
tivariable, nonlinear regression problem. Ensemble learning
can avoid the lack of learning ability of a single learner,
greatly improving accuracy. The introduced randomness en-
hances the model’s anti-noise ability and minimizes the sen-
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Figure 1. Geographical locations of ground-based stations from the China National Environmental Monitoring Centre network (marked as
yellow dots) monitoring gaseous pollutants across China. The background shows the nighttime light level, an estimate of population. Purple
delineates three typical urban agglomerations: the Beijing–Tianjin–Hebei (BTH) region, the Yangtze River Delta (YRD), and the Pearl River
Delta (PRD).

sitivity to outliers and multicollinearity issues. It can han-
dle high-latitude, discrete, or continuous data without data
normalization and is easy to implement and parallel. How-
ever, several limitations exist, e.g., it is difficult to make pre-
dictions beyond the range of training data, and there will
be an over-fitting issue on some regression problems with
high noise. The training efficiency diminishes with increas-
ing memory occupation when the number of decision trees is
large.

Compared with traditional tree-based models (e.g., ran-
dom forest), ERT has a stronger randomness which randomly
selects a feature subset at each node split and randomly ob-
tains the optimal branch attributes and thresholds. This helps
to create more independent decision trees, further reducing
model variance and improving training accuracy (Geurts et
al., 2006). The STET model has been successfully applied
in estimating high-quality surface O3 in our previous study
(Wei et al., 2022a). It is thus extended here to regress the non-
linear conversion relationships between ground-based mea-
surements and the main predictors and auxiliary factors for
other species of gaseous pollutants. For surface NO2, the
STET model was applied to the main variables of the satellite
tropospheric NO2 column, modeled surface NO2 mass, and
NOx emissions, together with ancillary variables of the pre-
viously mentioned meteorological, surface, and population
variables (Eq. 1). For surface SO2 (Eq. 2) and CO (Eq. 3),
modeled surface SO2 and CO concentrations and SO2 and
CO emissions were used as main predictors along with the
same auxiliary variables as NO2 to construct the STET mod-

els separately.

NO2(ij t) ⇠fSTET
�
SNO2(ij t),MNO2(ij t),ENOxijm,

Meteorologyij t ,NDVIijmDEMijyPOPijy,

PsPt) , (1)

SO2(ij t) ⇠fSTET
�
MSO2(ij t),ESO2(ijm),

Meteorologyij t ,NDVIijmDEMijyPOPijy,

PsPt) , (2)

COij t ⇠fSTET
�
MCOij t ,ECOijm,Meteorologyij t ,

NDVIijm,DEMijy,POPijy,Ps,Pt
�
, (3)

where NO2(ij t), SO2(ij t), and COij t indicate daily ground-
based NO2, SO2, and CO measurements at one grid (i,j )
on the t th day of a year; SNO2(ij t) indicates the daily
satellite tropospheric NO2 column at one grid (i,j ) on the
t th day of a year; MNO2(ij t), MSO2(ij t), and MCOij t in-
dicate daily model-simulated surface NO2, SO2, and CO
concentrations at one grid (i,j ) on the t th day of a year;
ENOxijm, ESO2(ijm), and ECOijm indicate monthly anthro-
pogenic NOx , SO2, and CO emissions at one grid (i,j ) in the
mth month of a year; Meteorologyij t represents each meteo-
rological variable at one grid (i,j ) on the t th day of a year;
DEMijy and POPijy indicate the elevation and population at
one grid (i,j ) of a year; and Ps and Pt indicate the space and
time terms (Wei et al., 2022a).
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3 Results and discussion

3.1 Seamless mapping of surface gaseous pollutants

Using the constructed STET model, we generated daily
10 km datasets with complete coverage (spatial cover-
age = 100 %) for three ground-level gaseous pollutants
from 2013 to 2020 in China, called ChinaHighNO2,
ChinaHighSO2, and ChinaHighCO. Monthly and annual
maps were generated by directly averaging daily data at
each grid. They belong to a series of public long-term, full-
coverage, high-resolution, and high-quality datasets of a vari-
ety of ground-level air pollutants for China (ChinaHighAir-
Pollutants, CHAP) developed by our team. Figure 2 shows
spatial distributions of the three pollutant gases across China
on a typical day (1 January 2018). The spatial patterns of
these gaseous pollutants were consistent with those observed
on the ground, especially in highly polluted areas, e.g., se-
vere surface NO2 pollution in the North China Plain (NCP)
and high surface SO2 emissions in Shanxi Province. The
unique advantage of our dataset is that it can provide valu-
able gaseous pollutant information on a daily basis at loca-
tions in China where ground measurements are not available.
This addresses the major issues of scanning gaps and numer-
ous missing values in satellite remote sensing retrievals un-
der cloudy conditions, e.g., the average spatial coverage of
the official OMI/Aura daily tropospheric NO2 product is only
42 % over the whole of China during the period 2013–2020
(Fig. S1). Our dataset provides spatially complete coverage,
significantly increasing daily satellite observations by 58 %.
In addition, reanalysis data do not simulate surface masses of
gaseous pollutants well, underestimating them compared to
our results and ground-based observations in China (Fig. S2).
This is especially so for SO2, where high-pollution hotspots
are easily misidentified. Validation illustrates that our re-
gressed results for surface NO2, SO2, and CO agree bet-
ter with ground measurements than modeled results (slopes
are close to 1, and correlations > 0.93), being 1.9–6.4 times
stronger in slope and 1.3–3.5 times higher in correlation, but
5.9–7.7 times smaller in differences (Fig. S3). This shows
that our model can take advantage of big data to significantly
correct and reconstruct gaseous simulation results via data
mining using machine learning.

Figure 3 shows annual and seasonal maps for each
gas pollutant during the period 2013–2020 across China.
Multi-year mean surface NO2, SO2, and CO concen-
trations were 20.3 ± 4.7 µg m�3, 16.2 ± 7.7 µg m�3, and
0.86 ± 0.22 mg m�3, respectively. Pollutant gases varied sig-
nificantly in space across China, where high surface NO2 lev-
els were mainly distributed in typical urban agglomerations,
e.g., the Beijing–Tianjin–Hebei (BTH) region, the Yangtze
River and Pearl River deltas (YRD and PRD), and scattered
large cities with intensive human activities and highly devel-
oped transportation systems (e.g., Urumqi, Chengdu, Xi’an,
and Wuhan, among others). High surface SO2 concentrations

were mainly observed in northern China (e.g., Shanxi, Hebei,
and Shandong provinces), associated with combustion emis-
sions from anthropogenic sources, and the Yunnan–Guizhou
Plateau in southwest China, likely associated with emissions
from volcanic eruptions. By contrast, except in some areas in
central China (e.g., Shanxi and Hebei), surface CO concen-
trations were overall low.

Significant differences in spatial patterns were seen at
the seasonal level. Surface NO2, SO2, and CO in sum-
mer (average = 15.9 ± 4.7 µg m�3, 22.9 ± 13.4 µg m�3, and
1.1 ± 0.3 mg m�3, respectively) were the lowest, thanks to
favorable meteorological conditions, e.g., abundant precipi-
tation and high air humidity conducive to flushing and scav-
enging of different air pollutants (Yoo et al., 2014). Strong
sunlight and high temperature also accelerate the photochem-
ical reactions of NO2 loss (Shah et al., 2020). Pollution lev-
els were highest in winter, with average values increasing by
⇠ 1.5–1.9 times those in summer. This difference was much
larger in central and eastern China, e.g., 2.3–3.4 times higher
in the BTH due to large amounts of direct NOx , SO2, and CO
emissions from burning coal for heating in winter in north-
ern China. The spatial patterns of the three gaseous pollutants
were similar in spring and autumn.

3.2 Changes in gaseous pollution and exposure risk

3.2.1 Short-term pandemic effects on air quality

Many studies have focused on the effects of the COVID-
19 pandemic on air quality (WHO, 2020). Most of them
were done using ground-based observations (Huang et al.,
2020; Su et al., 2020), tropospheric gas columns (Field et
al., 2021; Levelt et al., 2022), or retrieved surface masses
(Cooper et al., 2022; Ling and Li, 2021). The resulting con-
clusions could be affected by insufficient spatial representa-
tion due to the uneven distribution of ground monitors or a
large number of missing values in space due to the influence
of clouds. The unique advantage of our seamless day-to-day
gaseous pollutant dataset can make up for these shortcom-
ings, allowing us to assess the changes in gaseous pollutants
during the pandemic more accurately and quantitatively.

We first compared the spatial differences in monthly rel-
ative differences from February to April between 2020 and
2019 in China (Fig. 4). In February, surface NO2 sharply re-
duced in China, especially in key urban agglomerations and
megacities, showing relative changes of greater than 50 %. A
significant decrease in surface SO2 (> 40 %) was observed in
northern areas where heavy industry is the mainstay in China
(e.g., Tianjin, Hebei, and Shandong), while little change was
seen in southern China. Surface CO also showed drastic de-
creases, but the amplitude was smaller than the other two
gaseous pollutants. These were attributed to extensive plant
closures and traffic controls due to the lockdown, which
started at the end of January 2020, significantly reducing an-
thropogenic NOx , SO2, and CO emissions (Ding et al., 2020;
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Figure 2. A typical example of (a–c) big-data-derived (horizontal resolution = 10 km) seamless surface NO2 (µg m�3), SO2 (µg m�3), and
CO (mg m�3) concentrations and (d–f) corresponding ground measurements on 1 January 2018 in China.

Yang et al., 2022; Zheng et al., 2021). In March, surface NO2
was still generally lower than the historical level in most east-
ern areas, especially in areas where the pandemic was severe,
i.e., Wuhan, Hubei Province, and its surrounding areas. The
decrease in surface SO2 largely slowed by more than 2 times
in the NCP and central China, while surface CO almost re-
turned to normal levels in most areas in China. In April, sur-
face NO2 and SO2 were comparable to historical concentra-
tions (within ±10 %), even increasing in some areas of the
southern and northeastern areas due to rebounding anthro-
pogenic emissions (Ding et al., 2020), especially in Hubei
Province, indicating that their surface levels were almost re-
covered.

Most previous studies have focused mainly on changes in
air pollutants during the lockdown, with little attention paid
to the recovery. We thus compared the time series of daily
population-weighted concentrations of the three gaseous pol-
lutants after the Lunar New Year between 2020 and 2019 in
China (Fig. 5). After the beginning of New Year’s Eve, sur-
face gaseous pollutants showed a significant decrease in both
the normal and pandemic years due to the closure of fac-
tories, with decreasing anthropogenic emissions during the
Spring Festival holiday. However, gaseous pollutants in the
normal year rose rapidly after they fell to their lowest lev-
els due to the return to work after the holidays. By contrast,
their levels continued to decrease in 2020 and were lower
than historical levels due to the sustained impacts of the strict
lockdowns. They hit bottom in the 4th week after the Lu-
nar New Year, then they began to increase gradually. Sur-
face NO2 and SO2 recovered in the middle of the 11th week
(around the 72nd and 75th days) after the Lunar New Year

(i.e., 2020 and 2019 concentrations intersected and then al-
ternately changed). However, surface CO levels recovered at
the end of the 5th week (around the 34th day), more than
2 times faster than NO2 and SO2 levels. This is attributed to
more CO emissions from increased residents’ indoor cooking
(Zheng et al., 2018), increased atmospheric oxidation capac-
ity (Huang et al., 2020; Wei et al., 2022a), and a potentially
higher sensitivity to temperature rises (Lin et al., 2021).

3.2.2 Temporal variations and policy implications

Figures S4–S6 show annual-mean maps of each gaseous
pollutant from 2013 to 2020 in China. Surface NO2, SO2,
and CO changed greatly, peaking in 2013, with aver-
age values of 21.3 ± 8.8 µg m�3, 23.1 ± 13.3 µg m�3, and
1.01 ± 0.29 mg m�3, respectively. They reached their low-
est levels in 2020, particularly due to the noticeable effects
of the COVID-19 pandemic. In general, national ambient
NO2, SO2, and CO concentrations decreased by approxi-
mately 12 %, 55 %, and 17 % from 2013 to 2020, respec-
tively. Large seasonal differences were observed in the am-
plitude of gaseous pollutants (Fig. 6), e.g., surface NO2 de-
creased the most in winter, especially in the three urban ag-
glomerations (# 24 %–31 %), and changed the least in au-
tumn (especially in the YRD). Surface SO2 showed much
larger decreases in all seasons, especially during the cold
seasons (# 55 %–81 %) due to the implementation of stricter
“ultra-low” emission standards (C. Li et al., 2022; Q. Zhang
et al., 2019). Surface CO had similar seasonal changes as
SO2, but these were 1.5–3.3 times smaller in amplitude.

Atmos. Chem. Phys., 23, 1511–1532, 2023 https://doi.org/10.5194/acp-23-1511-2023



J. Wei et al.: Ground-level gaseous pollutants (NO2, SO2, and CO) in China 1517

Figure 3. Annual- and seasonal-mean maps (horizontal resolution = 10 km) of surface NO2 (µg m�3), SO2 (µg m�3), and CO (mg m�3)
averaged over the period 2013–2020 in China.

To better investigate the spatiotemporal variations of ambi-
ent gaseous pollution, we calculated linear trends and signif-
icance levels using monthly anomalies by removing seasonal
cycles. Most of China showed significant decreasing trends,
with average annual rates of 0.23 µg m�3, 2.01 µg m�3, and

0.05 mg m�3 for surface NO2, SO2, and CO (p < 0.001),
respectively (Fig. 7), especially in three urban agglomera-
tions and large cities (e.g., Wuhan and Chengdu). The largest
downward trends mainly occurred in northern and central
China, especially in the BTH (Table S2). This is mainly due
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Figure 4. Relative changes (%) in surface NO2, SO2, and CO concentrations in February, March, and April between 2019 and 2020 in
populated areas of China. The area outlined in magenta and the star in each panel indicate Hubei Province and Wuhan City, respectively.

to the change in fuel for heating from coal to gas widespread
across China in winter (S. Wang et al., 2020), greatly re-
ducing emissions of precursor gases (Koukouli et al., 2018).
Increasing trends of surface NO2 were, however, found in
Ningxia and Shanxi provinces in central China due to in-
creased traffic emissions and new coal-burning power plants
in underdeveloped areas without strict regulations on NOx

emissions (C. Li et al., 2022; Maji and Sarkar, 2020; Van
Der A et al., 2017).

We then divided the study period into three periods to in-
vestigate the impact of major environmental protection poli-
cies on air quality implemented in China (Fig. 7). During the
Clear Air Action Plan (CAAP, 2013–2017), the rates of de-
crease for surface NO2, SO2, and CO accelerated in most
populated areas in China, especially urban areas. This was
due to dramatic reductions in main pollutant emissions like
SO2 and NOx (by 59 % and 21 %, respectively) through the
upgrading of key industries, industrial structure adjustments,
and coal-fired boiler remediation (Q. Zhang et al., 2019). In
addition, the majority of gaseous pollutants had dropped con-
tinuously during the Blue Sky Defense War (BSDW, 2018–
2020), benefiting from continuous reductions in total air pol-
lutant emissions and the impacts of COVID-19 (Jiang et al.,
2021; Zheng et al., 2021). However, areas with trends pass-
ing the significance level sharply shrank, especially for SO2.

During the 13th Five-Year Plan (FYP, 2016–2020), the de-
creasing trends of the three gaseous pollutants across China
slowed down compared to those during CAAP. Large de-
creases in surface NO2 were mainly found in the BTH re-
gion and Henan Province, while slightly increasing trends
occurred in southern China. Surface SO2 significantly de-
creased in most areas, where a greater downward trend was
observed in Shanxi Province, mainly due to the reduction
in coal consumption thanks to a strengthened clean-heating
policy (Lee et al., 2021). Surface CO also continuously de-
creased, more rapidly in central China but less rapidly else-
where. The continuous decline in gaseous pollutants is due to
the binding reductions in total emissions of major pollutants
like NOx (# 71 %) and SO2 (# 48 %) in China (Wan et al.,
2022; X. Wu et al., 2022).

3.2.3 Population-risk exposure to gaseous pollution

With the daily seamless datasets, we can evaluate the
spatial and temporal variations of short-term population-
risk exposure to the three gaseous pollutants by calcu-
lating the number of days in a given year exceeding
the new recommended short-term minimum interim target
(IT1) and desired air quality guidelines (AQG) level de-
fined by the World Health Organization (WHO) in 2021
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Figure 5. Time series of the 7 d moving averages of daily population-weighted surface (a) NO2, (b) SO2, and (c) CO concentrations after
the Lunar New Year of 2019 and 2020 in China. The black circle in each panel shows the turning point when the gaseous pollutants began to
return to their normal levels.

Figure 6. Relative changes (%) in seasonal mean surface NO2, SO2, and CO concentrations between 2013 and 2020 over (a) China, (b) the
Beijing–Tianjin–Hebei (BTH) region, (c) the Yangtze River Delta (YRD), and (d) the Pearl River Delta (PRD).
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Figure 7. Temporal trends of surface NO2, SO2, and CO concentrations during the whole period (2013–2020), the Clean Air Action Plan
(2013–2017), the Blue Sky Defense War (2018–2020), and the 13th Five-Year Plan (2016–2020) in populated areas of China. Only regions
with trends that are significant at the 95 % (p < 0.05) confidence level are shown.

(WHO, 2021). The area exceeding the recommended lev-
els (i.e., daily NO2 > 120 µg m�3, SO2 > 125 µg m�3, and
CO > 7 mg m�3) was generally small in eastern China
(Fig. S7). High NO2-exposure risks were mainly found in
Beijing and Hebei Province and in a handful of big cities
(e.g., Jinan, Wuhan, Shanghai, and Guangzhou), while high
SO2-exposure risks were mainly observed in Hebei, Shan-
dong, and Shanxi Provinces. The risk of high CO pollution
was small, only found in some scattered areas in the NCP. In
general, both the area and the possibility of occurrence ex-
posure to high pollution has gradually decreased over time,
almost disappearing since 2018.

By contrast, most areas of eastern China had a surface NO2
exposure exceeding the AQG level (Fig. 8), especially in the
north and economically developed areas in the south (pro-
portion > 80 %). Both the extent and intensity are decreasing
over time, but it is still a problem, suggesting that stronger
NOx controls are needed in the future. Most of the main air
pollution transmission belt in China (i.e., the “2 + 26” cities,
Fig. 1) had surface SO2 levels exceeding the AQG level at the
beginning of the study period. Thanks to strict control mea-
sures, these polluted areas sharply decreased after 2015, al-
most disappearing in 2020. Controlling CO was much more
successful in China, with less than 10 % of the days in the
BTH exceeding the desired standard in the early part of the
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Figure 8. Spatial distributions of the percentage of days exceeding the WHO-recommended short-term desired air quality guidelines (AQG)
level for surface NO2 (daily mean > 25 µg m�3), SO2 (daily mean > 40 µg m�3), and CO (daily mean > 4 mg m�3) for each year from 2013
to 2020 in populated areas of eastern China.

study period. Most areas have reached the CO AQG level
since 2018.

Figure 9 shows the percentage of days with pollution lev-
els exceeding WHO air quality standards in three key re-
gions. BTH was the only region experiencing high NO2 and
SO2 exposure risks (i.e., daily mean > IT1), dropping to zero
since 2017 and 2016, while YRD and PRD had no high risks
of exposure to the three gaseous pollutants (Fig. 9a–b). There
was also no regional high CO-pollution risk (Fig. 9c). How-
ever, although declining continuously, regional surface NO2
levels failed to meet the short-term AQG level in 2020, with
61 %–73 % of the days exceeding this standard. More efforts
toward mitigating NO2 levels in these key regions are thus
needed. Continual decreases in the number of days above the
AQG level were also observed in surface SO2, reducing to
nearly zero in 2014, 2016, and 2018 in the PRD, YRD, and
BTH, respectively. Less than 3 % of the days in the BTH and
YRD had surface CO levels exceeding the AQG level. Sur-
face CO levels were always below the AQG level in the PRD.

3.3 Data quality assessment

Here, the widely used out-of-sample 10-fold cross-validation
(10-CV) method was adopted to evaluate the overall es-
timation accuracy of gaseous pollutants (Rodriguez et al.,
2010; Wei et al., 2022a). An additional out-of-station 10-
CV approach was used to validate the prediction accuracy of
gaseous pollutants, performed based on measurements from
ground-monitoring stations. These measurements were ran-
domly divided into 10 subsets, of which data samples from

9 subsets were used for model training and the remaining
subset for model validation. This was done 10 times, in turn,
to ensure that data from all stations were tested. This pro-
cedure generates independent training samples and test sam-
ples made in different locations, used to indicate the spatial
prediction ability of the model in areas where ground-based
measurements are unavailable (Wei et al., 2022a; Wu et al.,
2021).

3.3.1 Estimate and prediction accuracy

Figure 10 shows the CV results of all daily estimates and
predictions for ground-level NO2, SO2, and CO concentra-
tions from 2013 to 2020 in China (sample size: N ⇡ 3.6 mil-
lion). Surface NO2 and SO2 concentrations mainly fell in
the range of 200 to 500 µg m�3. Daily estimates were highly
correlated to observations, with the same coefficients of de-
termination (R2 = 0.84) and slopes close to 1 (0.86 and
0.84, respectively). Average root-mean-square error (RMSE;
mean absolute error, MAE) values of surface NO2 and
SO2 estimates were 7.99 (5.34) and 10.07 (4.68) µg m�3,
and normalized RMSE (NRMSE) values were 0.25 and
0.51, respectively. Most daily CO observations were less
than 10 mg m�3, agreeing well with our daily estimates
(R2 = 0.80, slope = 0.79), and the average RMSE (MAE)
and NRMSE values were 0.29 (0.16) mg m�3 and 0.3. Com-
pared to estimation accuracies (Fig. 10a–c), prediction ac-
curacies slightly decreased, which is acceptable considering
the weak signals of trace gases. Daily surface SO2, NO2, and
CO predictions (Fig. 10d–f) agree well with ground mea-
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Figure 9. Percentage of days (%) exceeding the WHO-recommended short-term (a–c) minimum interim target (IT1) and (d–f) desired air
quality guidelines (AQG) level for surface NO2, SO2, and CO for each year from 2013 to 2020 in three typical urban agglomerations: the
Beijing–Tianjin–Hebei (BTH) region, the Yangtze River Delta (YRD), and the Pearl River Delta (PRD).

surements, with spatial R2 values of 0.70, 0.68, and 0.61, re-
spectively. Their respective RMSE (MAE) values were 14.28
(8.1) µg m�3, 11.57 (7.06) µg m�3, and 0.42 (0.24) mg m�3,
and NRMSE values were 0.35, 0.71, and 0.42, respec-
tively, representing the accuracy for areas without ground-
monitoring stations.

The performance of our air pollution modeling was also
evaluated on an annual basis, showing that our model works
well in estimating and predicting the concentrations of dif-
ferent surface gaseous pollutants in different years (Table 1).
The model performance has continuously improved over
time, as indicated by increasing correlations and decreas-
ing uncertainties. This is because of the increasing density
of ground stations (especially in the suburban areas of cities)
and updated quality control of measurements, e.g., improv-
ing the sampling flow calibration of monitoring instruments,
flow calibration of dynamic calibrators, revision of precision,
accuracy review, and data validity judgment (HJ 818-2018;
MEE, 2018b). This has led to an increase in the number
of data samples (e.g., from 169 000 in 2013 to more than
522 000 in 2020) and improvement in their quality.

Figure 11 shows the spatial validation of estimated daily
pollutant gases across China. In general, our model works
well at the site scale, with average CV-R2 values of 0.77,
0.72, and 0.72 and NRMSE values of 0.25, 0.43, and 0.26
for surface NO2, SO2, and CO, respectively. In addition, ap-
proximately 93 %, 80 %, and 84 % of the stations had at least

moderate agreements (CV-R2 > 0.6) between our estimates
and ground measurements. Except for some scattered sites,
the estimation uncertainties were generally less than 0.3, 0.5,
and 0.3 in more than 80 %, 77 %, and 76 % of the stations for
the above three gaseous pollutant species, respectively.

Figure 12 shows the temporal validation of ground-level
gaseous pollutants as a function of ground measurements
in China. On the monthly scale (Fig. 12a–c), we collected
a total of ⇠ 119 000 matched samples of the three gaseous
pollutants. Accuracies significantly improved, with increas-
ing R2 (decreasing RMSE) values of 0.93 (4.41 µg m�3),
0.97 (4.03 µg m�3), and 0.94 (0.13 mg m�3) for surface
NO2, SO2, and CO, respectively. On the annual scale
(Fig. 12d–f), more than ⇠ 10 000 matched samples were col-
lected, showing better agreement with observations (e.g.,
R2 = 0.94, 0.98, and 0.97) and lower uncertainties (e.g.,
RMSE = 3.06 µg m�3, 2.46 µg m�3, and 0.07 mg m�3) for
the above three gaseous pollutants, respectively.

3.3.2 Comparison with previous studies

We compared our results with those from previous stud-
ies on the estimation of the three gaseous pollutants us-
ing different developed models focusing on the whole of
China. Here, only those studies applying the same out-of-
sample cross-validation approach against ground-based mea-
surements collected from the same CNEMC network were
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Figure 10. Density plots of daily (a–c) estimates and (d–f) predictions of ground-level NO2 (µg m�3), SO2 (µg m�3), and CO (mg m�3)
concentrations as a function of ground measurements in China from 2013 to 2020 using the out-of-sample (a–c) and out-of-station (d–f)
cross-validation methods.

Table 1. Statistics of the overall accuracies and predictive abilities of ambient gaseous pollutants for each year in China from 2013 to 2020.

Year Sample Overall accuracy Predictive ability

size NO2 SO2 CO NO2 SO2 CO

N (103) R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

2013 169 0.77 12.48 0.83 17.97 0.80 0.56 0.53 18.16 0.68 25.04 0.60 0.78
2014 324 0.76 10.97 0.83 15.87 0.77 0.38 0.54 15.56 0.66 22.45 0.51 0.57
2015 518 0.79 9.34 0.80 13.71 0.74 0.38 0.61 13.10 0.61 19.49 0.50 0.55
2016 516 0.82 8.59 0.83 11.26 0.76 0.34 0.64 12.20 0.65 16.28 0.57 0.46
2017 527 0.86 7.57 0.86 7.79 0.82 0.24 0.72 10.67 0.74 10.80 0.70 0.32
2018 513 0.87 6.92 0.83 5.61 0.82 0.20 0.76 9.33 0.68 7.80 0.69 0.26
2019 515 0.87 6.78 0.81 4.84 0.82 0.20 0.77 9.23 0.66 6.63 0.70 0.25
2020 522 0.89 5.78 0.80 4.02 0.82 0.17 0.79 8.04 0.62 5.57 0.69 0.23

selected (Table 2). The statistics shown in the table come
from the publications themselves because their generated
datasets are not publicly available. We have applied the same
validation method and ground measurements as those used
in the previous studies. Most generated surface NO2 datasets
had numerous missing values in space, limited by direct
OMI/Aura satellite observations at spatial resolutions from
0.125� ⇥ 0.125� to 0.25� ⇥ 0.25� (Chen et al., 2019; Chi et
al., 2021; Dou et al., 2021; Xu et al., 2019; Zhan et al., 2018).
Some studies improved the spatial resolution by introducing
NO2 data from the recently launched Sentinel-5 TROPOMI
satellite, but data are only available from October 2018 on-

ward (Chi et al., 2022; Liu, 2021; Wang et al., 2021; Wei et
al., 2022b). Surface SO2 estimated from an SO2 emission in-
ventory and surface CO from Measurement of Pollution in
the Troposphere (MOPITT) and TROPOMI retrievals have
a much lower data quality, with R2 values that are smaller
by 12 %–57 % and RMSE values that are larger by 41 %–
47 % against ground measurements compared to ours (Li et
al., 2020; Liu et al., 2019; Wang et al., 2021). Overall, our
gaseous pollutant datasets are superior to those from previ-
ous studies in terms of overall accuracy, spatial coverage, and
length of data records.
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Figure 11. Sample-based spatial validation of daily ground-level NO2 (µg m�3), SO2 (µg m�3), and CO (mg m�3) estimates at each
individual monitoring station in China from 2013 to 2020: (a–c) accuracy (i.e., CV-R2) and (d–f) uncertainty (i.e., NRMSE).

Figure 12. Sample-based temporal validation of (a–c) monthly and (d–f) yearly composites of ground-level NO2 (µg m�3), SO2 (µg m�3),
and CO (mg m�3) as a function of ground measurements from 2013 to 2020 in China.
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Table 2. Comparison of long-term datasets of different gaseous pollutants in China.

Species Model Missing Spatial Main input Validation CV-R2 RMSE Literature
values resolution period

NO2 RF-STK Yes 0.25� OMI 2013–2016 0.62 13.3 Zhan et al. (2018)
RF-K Yes 0.25� OMI 2013–2018 0.64 11.4 Dou et al. (2021)
KCS Yes 0.125� OMI 2014–2016 0.72 7.9 Chen et al. (2019)
LUR Yes 0.125� OMI 2014–2015 0.78 – Xu et al. (2019)
LME Yes 0.1� OMI 2014–2020 0.65 7.9 Chi et al. (2021)
XGBoost Yes 0.125� TROPOMI 2018–2020 0.67 6.4 Chi et al. (2022)
XGBoost Yes 0.05� TROPOMI 2018–2019 0.83 7.6 Liu (2021)
LightGBM No 0.05� TROPOMI 2018–2020 0.83 6.6 Wang et al. (2021)
SWDF No 0.01� TROPOMI 2019–2020 0.93 4.9 Wei et al. (2022b)
STET No 0.1� Big data 2013–2020 0.84 8.0 This study

SO2 RF No 0.25� Emissions 2013–2014 0.64 17.1 Li et al. (2020)
STET No 0.1 Big data 2013–2020 0.84 10.1 This study

CO RF–STK Yes 0.1 MOPITT 2013–2016 0.51 0.54 Liu et al. (2019)
LightGBM No 0.07� TROPOMI 2018–2020 0.71 0.26 Wang et al. (2021)
STET No 0.1� Big data 2013–2020 0.80 0.29 This study

KCS: kriging-calibrated satellite method; LightGBM: light gradient boosted model; LME: linear mixed-effect model; LUR: land use regression; MOPITT:
Measurements of Pollution in the Troposphere; OMI: Ozone Monitoring Instrument; RF: random forest; RF-K: random forest integrated with K-means;
RF-STK: random-forest-spatiotemporal-kriging model; STET: space–time extremely randomized tree; SWDF: spatiotemporally weighted deep forest;
TROPOMI: TROPOspheric Monitoring Instrument; XGBoost: extreme gradient boosting.

3.4 Successful applications

Our surface gaseous pollutant datasets have been freely avail-
able to the public online since March 2021 (see “Data avail-
ability” section). A large number of studies have used the
three gaseous pollutant datasets generated in this study to
study their single or joint impacts on environmental health
from both long-term and short-term perspectives, benefiting
from the unique daily, spatially seamless coverage. For ex-
ample, a nearly linear relationship between long-term ambi-
ent NO2 and adult mortality in China was observed (Y. Zhang
et al., 2022); ambient NO2 hindered the survival of middle-
aged and elderly people (Wang et al., 2023), while acute ex-
posure to ambient SO2 increased the risk of asthma mortal-
ity in China (S. Li et al., 2023; W. Liu et al., 2022, 2023).
Long-term SO2 and CO exposure can increase the incidence
rate of visual impairment in children in China (Chen et al.,
2022a), and short-term exposure to ambient CO can signif-
icantly increase the probability of hospitalization for stroke
sequelae (R. Wang et al., 2022). Regional and national co-
hort studies have shown that exposure, especially short-term
exposure, to multiple ambient gaseous (NO2, SO2, and CO)
and particulate pollutants have negative effects of varying de-
grees on a variety of diseases, like all-cause mortality (Feng
et al., 2023), dementia mortality (T. Liu et al., 2022), my-
ocardial infarction mortality (Ma et al., 2023), cause-specific
cardiovascular disease (Xu et al., 2022a, b), respiratory dis-
eases (H. Li et al., 2023), ischemic and hemorrhagic strokes
(Cai et al., 2022; F. He et al., 2022; H. Wu et al., 2022b; Xu
et al., 2022c), metabolic syndrome (Guo et al., 2022; S. Han
et al., 2022), influenza-like illness (Lu et al., 2023), incident

dyslipidemia (Hu et al., 2023), diabetes (Mei et al., 2023),
blood pressure (Song et al., 2022; H. Wu et al., 2022a), re-
nal and/or kidney function (S. Li et al., 2022; Y. Li et al.,
2023), neurodevelopmental delays (Su et al., 2022), serum
liver enzymes (Y. Li et al., 2022), overweight and obesity
(Chen et al., 2022b), insomnia (Xu et al., 2021), and sleep
quality (L. Wang et al., 2022). These studies attest well to
the value of the CHAP dataset regarding current and future
public health issues, among others.

4 Summary and conclusions

Exposure to gaseous pollution is detrimental to human
health, a major public concern in heavily polluted regions
like China, where ground-based observations are not as rich
as in major developed countries. Moreover, pollutants travel
long distances, affecting large downstream regions. To rem-
edy such limitations, this study applied the machine-learning
model called Space–Time Extra-Trees to estimate ambient
gaseous pollutants across China, with extensive input vari-
ables measured by monitors and satellites and by models.
Daily 10 km resolution (approximately 0.1� ⇥ 0.1�), seam-
less (spatial coverage = 100 %) datasets for ground-level
NO2, SO2, and CO concentrations in China from 2013 to
2020 were generated. These datasets were cross-evaluated
in terms of overall accuracy and predictive ability at dif-
ferent spatiotemporal levels. National daily estimates (pre-
dictions) of surface NO2, SO2, and CO were highly consis-
tent with ground measurements, with average out-of-sample
(out-of-station) CV-R2 values of 0.84 (0.68), 0.84 (0.7),
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and 0.8 (0.61) and RMSEs of 7.99 (11.57) µg m�3, 10.7
(14.28) µg m�3, and 0.29 (0.42) mg m�3, respectively.

Ambient pollutant gases varied significantly in space and
time, with high levels mainly found in the North China
Plain, especially in winter, due to more anthropogenic emis-
sions, such as coal burning for heating. All gaseous pollu-
tants sharply declined in China during the COVID-19 out-
break, while large differences were observed during their re-
covery times. For example, surface CO was the first to return
to its historical level within the fifth week after the Lunar
New Year in 2020, about 2 times faster than surface NO2
and SO2 levels. This is attributed to more home cooking and
enhanced atmospheric oxidation. Temporally, surface NO2,
SO2, and CO levels in China gradually decreased from peaks
in 2013 (average = 21.3 ± 8.8 µg m�3, 23.1 ± 13.3 µg m�3,
and 1.01 ± 0.29 mg m�3, respectively), with annual rates of
decrease of 0.23 µg m�3, 2.01 µg m�3, and 0.05 mg m�3, re-
spectively (p < 0.001), until 2020. Improvements in air qual-
ity have been made in the last 8 years thanks to the imple-
mentation of a series of environmental protection policies,
greatly reducing pollutant emissions. In addition, both the
areal extents of regions experiencing gaseous pollution and
the probability of gaseous pollution occurring have grad-
ually decreased over time, especially for surface CO and
SO2, which have almost reached the short-term air quality
guidelines level recommended by the WHO in most areas
in China in 2020. This high-quality daily seamless dataset
of gaseous pollutants will benefit future environmental and
health-related studies focused on China, especially studies
investigating short-term air pollution exposure.

Although a lot of new and/or useful data and analyses
are presented in this study, they still suffer from some lim-
itations. For example, our estimated surface SO2 and CO
concentrations should have larger uncertainties than those of
NO2, since model simulations, instead of satellite retrievals,
are supplemented during modeling to compensate for the
lack of data in China. However, these data often have large
biases in remote regions with few observations, such as west-
ern China (H. Li et al., 2022), as the surface measurements
from MEE are mainly over eastern China. More influential
factors stemming from regional economic and development
differences and more parameters describing the complex me-
teorological system (e.g., winds at 850 hPa and the pressure
system in the mid-troposphere) need to be considered in de-
veloping more powerful artificial intelligence models, which
could be helpful in improving the accuracy of air pollutant
retrievals. The spatiotemporal resolutions of gaseous pol-
lutants will be further improved by integrating information
from polar-orbiting and geostationary satellites to investigate
diurnal variations. In a future study, we will also reconstruct
data records over the last two decades and investigate their
long-term spatiotemporal variations, filling the gap of miss-
ing observations. This will help us understand their forma-
tion mechanisms and impacts on fine particulate matter and
ozone pollution in China.

Data availability. CNEMC measurements of gaseous pol-
lutants are available at http://www.cnemc.cn (last ac-
cess: 1 January 2023; CNEMC, 2023). The reconstructed
OMI/Aura tropospheric NO2 product is available at
https://doi.org/10.6084/m9.figshare.13126847.v1 (He et al.,
2020b). MODIS series products and the MERRA-2 reanal-
ysis are available at https://search.earthdata.nasa.gov/ (last
access: 1 January 2023; NASA, 2023a). The SRTM DEM
is available at https://www2.jpl.nasa.gov/srtm/ (last access:
1 January 2023; NASA, 2023b), and LandScan™ population
information is available at https://landscan.ornl.gov/ (last ac-
cess: 1 January 2023; ORNL, 2023). The ERA5 reanalysis
is available at https://cds.climate.copernicus.eu/ (last access:
1 January 2023; CDS, 2023), GEOS CF data are avail-
able at https://portal.nccs.nasa.gov/datashare/gmao/geos-cf/
(last access: 1 January 2023; NASA, 2023c), and the
CAMS reanalysis and emission inventory are available at
https://ads.atmosphere.copernicus.eu/ (last access: 1 January 2023;
ADS, 2023).

The ChinaHighAirPollutants (CHAP) dataset is open access
and freely available at https://weijing-rs.github.io/product.html
(last access: 1 January 2023; Wei, 2023). The ChinaHighNO2
dataset is available at https://doi.org/10.5281/zenodo.4641542
(Wei and Li, 2021a), the ChinaHighSO2 dataset is avail-
able at https://doi.org/10.5281/zenodo.4641538 (Wei and
Li, 2021b), and the ChinaHighCO dataset is available at
https://doi.org/10.5281/zenodo.4641530 (Wei and Li, 2021c).
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