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H I G H L I G H T S  

• WRF model with satellite-based land parameters is developed to quantify the impact of land use change on temperature. 
• New urban areas become warmer and less green, vegetation restoration occurs in old urban areas due to urban renewal. 
• A much larger greenspace fraction and albedo management are suggested in urban areas to alleviate urban warming.  
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A B S T R A C T   

Unprecedented land use and land cover change (LULCC) has occurred across China over the past two decades. 
While urban heat island effects have been well documented, few studies identified the LULCC-induced tem-
perature disparity within cities and nearby rurual areas. Through an integrated analysis of satellite observations 
and regional model simulations, this study quantifies LULCC effect on summer temperature in old urban areas 
(existed in 2003), new urban areas (developed after 2003) and rural areas (non-urban areas) over Eastern China 
in 2003–2019. The results show that LULCC causes urban areas to become warmer, with the effect being more 
pronounced in new urban areas than in old urban areas. Air temperature (2 m, T2) and surface temperature (TSK) 
in new urban areas increase respectively by 1.69 ◦C and 3.40 ◦C, while in old urban areas, T2 (TSK) increases by 
0.10 ◦C (0.13 ◦C). Significant vegetation degradation is observed in new urban areas, whereas vegetation 
restoration occurs in old urban areas in recent years as a result of urban renewal. In contrast, LULCC cools and 
greens rural areas, with a 0.02 ◦C (0.03 ◦C) decrease in T2 (TSK). Urbanization warming can spread to the 
suburbs, along with vegetation degradation. The analysis of surface energy budget reveals that the reduction in 
latent heat plays a dominant role in urban warming. Our study underscores that a much larger greenspace 
fraction and albedo management in urban areas are suggested as an inherent part of future LULCC policy to 
alleviate urban-rural temperature disparity.  
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1. Introduction 

Global mean surface temperature has increased dramatically since 
the 1980s (Parry et al., 2007). In addition to greenhouse gases and 
anthropogenic aerosols, land use and land cover change (LULCC) can 
substantially influence temperature and surface energy budget by 
altering the surface albedo, roughness, and evapotranspiration (Zhou 
et al., 2004; Peng et al., 2014). Urbanization, afforestation, and agri-
cultural activity are the most important anthropogenic forms of LULCC 
and have important implications for regional climate (Zhang et al., 
2013; Chen and Dirmeyer, 2019; Qian et al., 2022). The United Nations 
Intergovernmental Panel on Climate Change (IPCC) has designated our 
current understanding of climate forcing due to LULCC as medium to 
low at the global scale; uncertainties about LULCC forcing at the 
regional scale can be even greater, especially in developing countries 
such as China where LULCC in the form of urbanization is unprece-
dented (Parry et al., 2007; Iacono et al., 2008). Here, we focus on the 
simulation, qualification and understanding of the effects of LULCC on 
regional temperature in China over nearly two decades. 

In past decades, China has experienced the most rapid expansion of 
urban areas, accounting for 47.5% of urban area expansion in the world 
(Sun et al., 2020). Urbanization led to an average temperature increase 
in China by 1.44 ◦C during the period of 1961–2013 and contributed to 
one third of this observed warming among the anthropogenic and nat-
ural external forcings (Sun et al., 2016). During urbanization, the urban 
areas take the place of natural land, can decrease the albedo, increase 
the surface roughness, may alter the energy partitioning between latent 
and sensible heat flux (Zhou et al., 2014; Yang et al., 2019; He et al., 
2020a). The characteristic of urbanization footprint on climate is the 
urban heat island effect, the phenomenon of higher temperature in 
urban areas than rural areas, which has already been identified by both 
ground measurements and satellite observations (Oke, 1982; Kalnay and 
Cai, 2003). This effect is interrelated with increasing urban scale, and 
urban vegetation variations (Zhao et al., 2014; Shen et al., 2021). In 
addition to urban expansion, urban renewal also occurs in recent years, 
including the replacement of old houses with high-rise buildings, 
increasing urban tree cover by the installation of green parks and green 
roofs (Krayenhoff et al., 2018). Here, vegetation plays an important role 
in regulating urban temperature shifts. Some studies reported that 
vegetation degradation with urban expansion in China can exacerbate 
the urban warming (Peng et al., 2012). However, vegetations increase 
by urban renewal can reduce urban heat-island effect through shading 
and evapotranspiration in China (Wang and Shu, 2020; Zhao et al., 
2016). Therefore, while both the urban expansion and urban renewal 
are occurring in Eastern China, the overall impacts of LULCC on regional 
temperature and the mechanisms underlying them remain elusive. 

Attaining an accurate estimate of temperature changes induced by 
LULCC is a crucial motivation for our study. LULCC-induced tempera-
ture changes can be derived with many different approaches. The urban 
minus rural (UMR) and observation minus reanalysis (OMR) methods 
are used in surface measurements and satellite observations (Du et al., 
2019; Yang et al., 2011). However, these methods have limitations when 
it comes to the selection of urban pixels and the interpretation of results 
to separate the albedo effect from the covariation of weather patterns 
(Chen and Dirmeyer, 2020). In contrast, climate models can adopt 
different LULCC scenarios to separate their respective temperature re-
sponses and have been widely used in previous studies (Liao et al., 2017; 
Zhao et al., 2019). For example, using landscape data from 1988, 2000, 
and 2010, Cao et al. (2016) quantified the climate effects of urban 
expansion in China. Most studies have considered only the effects of 
urbanization in terms of land type change; changes in vegetation char-
acteristics, which also play an important role in the regional climate, 
have been largely omitted (Georgescu et al., 2011). The partial consid-
eration of LULCC in above studies leads to an overestimation of tem-
perature increase by accounting only for land type change and not for 
other land parameters (albedo, green vegetation fraction (GVF), and 
LAI). In other words, recent realistic variations in land surface may be 
captured inappropriately in model simulations such as the Weather 
Research and Forecasting (WRF) model. Therefore, to accurately 
represent land surface conditions, it is essential to develop the model by 
incorporating time-varying satellite observations to capture the 
continuous progression of surface properties associated with LULCC. 

In this study, high-resolution and real-time satellite data from 2003 
to 2019, including land cover type, albedo, GVF and LAI, are assimilated 
into WRF to describe the progression of LULCC and to analyze the 
resulting temperature change. Based on an integrated analysis of 
regional climate model and satellite observations, this study aims to: (1) 
develop a WRF model with assimilation of satellite-based land param-
eters (land cover type, albedo, GVF and LAI) and validation with 
observation data; (2) quantify the LULCC-induced temperature changes 
in old urban, new urban and rural areas; and (3) evaluate the biophysical 
effects of LULCC on surface energy budget. This study focuses on the 
region of Eastern China (117◦E-123◦E, 28◦N-34◦N, Fig. 1) due to the 
complicated LULCC in this region, including rapid urbanization and 
agriculture development. We further focus on the summer months 
because of high urbanization-induced warming effects and active 
vegetation growth. The paper is organized as follows. The data are 
described in Section 2. Section 3 is the model development and exper-
iment designs. Section 4 presents the model evaluation, spatiotemporal 
characteristics of LULCC impact on summer temperature and the anal-
ysis of surface energy budget in old urban, new urban and rural areas. 
The conclusion is presented in Section 5. 

Fig. 1. (a) Land cover type over the study domain in 2003. (b) Urban distribution in 2003 (red, old urban areas) and its growth in 2019 (green, new urban areas 
in 2019). 
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2. Data 

Table 1 lists the MODerate Resolution Imagine Spectroradiometer 
(MODIS) data products that are integrated with the WRF model, 
including land cover type, surface albedo, normalized difference vege-
tation index (NDVI) and LAI. MODIS land surface temperature (LST) 
data is used for model evaluation, along with surface observations. The 
time period of this study is 2003–2019 when MODIS/Aqua and MODIS/ 
Terra satellite data are available. 

2.1. Satellite data assimilated into WRF 

MODIS land cover type product (MCD12Q1, Friedl et al., 2002) has a 
spatial resolution of 500 m (Table 1) and contains 17 land cover types 
defined by the International Geosphere-Biosphere Program (IGBP) 
scheme (Table S1). In China, this dataset has a high accuracy of 70% 
after ignoring the differences of five forest types (Bai et al., 2015). 
Surface albedo data are from MODIS combined Terra and Aqua bidi-
rectional reflectance distribution function (BRDF) albedo product 
(MCD43A3). The data include both black-sky albedo (αBSA, 
directional-hemispherical reflectance-direct) and white-sky albedo 
(αWSA, bihemispherical reflectance-diffuse) in seven spectral bands and 
three broad bands (visible, 0.3–0.7 μm; near-infrared, 0.7–5.0 μm; and 
shortwave, 0.3–5.0 μm). It is temporally weighted to the ninth day of 
every 16 days at 500 m spatial resolution. The uncertainty of MODIS 
albedo is less than 5% (Cescatti et al., 2012). The blue-sky albedo (αBLUE, 
the actual albedo), which is the required input of the WRF model, can be 
derived from the following equation with an assumed constant 
white-sky albedo at low solar zenith angles (less than 70◦–75◦): 

αBLUE =αBSA(θSun)(1 − S) + αWSAS (1) 

Here, S = 0.2, and denotes the diffuse radiation fraction (Ran et al., 
2016). Notably, to ensure the accuracy, only the albedo values with 
quality flag (0–2) are used. The seasonal albedo-averaged maps in the 
corresponding year are calculated, and then missing values in study area 
due to cloud contamination or poor-quality data are filled in. The default 
LAI dataset in WRF model is substituted with MODIS LAI product 
(MCD15A2H). MODIS LAI is known to have a low uncertainty (0.17) and 
can better capture the vegetation growth (Ran et al., 2016). GVF is 
derived from MODIS NDVI product (MOD13A3) in accordance with the 
algorithm of Purevdorj et al. (1998). Here, NDVI is adopted as an indi-
cator of vegetation variations in this study (Carlson and Ripley, 1997). 
NDVI (dimensionless) is less than zero for water, and is approximately 
equal to zero for bare soil, rock and construction area. NDVI is less than 
1 for vegetation, and higher NDVI values represent higher vegetation 
coverage. 

2.2. Data for validation 

Two sets of observational data are used to evaluate the simulation 
performance. Surface observation site data, derived from the Meteoro-
logical Information Comprehensive Analysis and Process System 
(MICAPS) developed by Chinese National Meteorology Center, has a 
temporal resolution of 3 h. A map of the 192 surface observation sites 
over Eastern China is shown in Fig. S1, in which 30 sites are located in 

new urban areas in 2019 and the remaining sites are in old urban areas. 
Additionally, MODIS LST products, MOD11A1 (Terra) Version 6, can 
provide the spatial pattern of LST for further evaluating the simulation 
results. LST data are measured at a spatial resolution of 1 km twice a day 
(~10:30 a.m. and ~10:30 p.m.). Provided by Wan (2014), the LST error 
is less than 0.5 K. For validation, MODIS LST data are re-gridded into the 
same spatial resolution as the WRF grids (5 km × 5 km). 

3. Method 

Model development is conducted to refine various components in 
WRF to enable MODIS land surface products to be assimilated into WRF 
every month. Subsequently, the WRF model with the new development, 
the unified initial conditions from the NASA GEOS global system for 
WRF land surfaces (hereafter UI-WRF), is configured for two series of 
numerical experiments to analyze the impact of LULCC on summer 
temperature in Eastern China. Model simulations are then assessed with 
surface measurements and satellite observations. 

3.1. Model development 

This study adopts a mesoscale WRF model (Fast et al., 2006; Grell 
et al., 2005). A Noah land surface model (LSM) scheme is selected for the 
WRF simulation (Chen and Dudhia, 2001), in which land cover type, 
GVF, LAI and albedo are key parameters for controlling surface energy 
partitioning and land-atmosphere interactions. The default land type 
and GVF in the WRF model are outdated (from the 1990s) (Gutman and 
Ignatov, 1998; Loveland et al., 2000), while the LAI and albedo values 
are determined by the prescribed look-up table in the WRF model. They 
could fail to accurately capture realistic variations of land surface pa-
rameters, which result in large errors in model simulations (Li et al. 
2014, 2017). In addition, the spatial resolution of these datasets is too 
coarse (e.g., 0.144◦ × 0.144◦) in the model to describe landscape het-
erogeneity for high-resolution simulations. Therefore, it is necessary to 
develop the WRF model by incorporating real-time and high-resolution 
satellite observations of land parameters (Table 1) and capturing the 
continuous progression of LULCC. WRF can allow different datasets of 
land cover type for the LSM, including U.S. Geological Survey (USGS, 
default), MODIS and the National Land Cover Database (NLCD). Here, 
20-class MODIS land type is selected in this study, which contains 17 
land cover types defined by IGBP and three classes of tundra (Justice 
et al., 2002). Several modifications are made in the Noah LSM. First, 
MODIS land cover type, albedo, GVF, and LAI are resampled and 
aggregated into monthly mean values, then re-projected and re-gridded 
into the same resolution as that of the WRF model (25 km, 5 km) and 
saved at the same data format as that of the geographical data in the 
model for the areas of interest. The spatial resampling of land cover type 
is done by nearest-neighbor interpolation, and other parameters are 
re-sampled with four-pointed bilinear interpolation and grid-cell 
average interpolation. 

Table 1 
MODIS datasets used in this study.  

Parameter Product Spatial 
resolution 

Temporal 
resolution 

Land cover type MCD12Q1 500 m yearly 
Normalized difference 

vegetation index (NDVI) 
MOD13A3 1 km monthly 

Leaf area index (LAI) MCD15A2H 500 m 8-day 
Surface albedo MCD43A3 500 m daily 
Land surface temperature (LST) MOD11A1 1 km daily  

Table 2 
WRF configurations in this study.  

Physical process Parameterization scheme 

Land surface process Noah land surface model (Chen and Dudhia, 
2001) 

Longwave radiation scheme RRTMGa (Iacono et al., 2008) 
Shortwave radiation scheme RRTMGa 

Planetary boundary layer 
process 

YSUb (Hong et al., 2006) 

Microphysics scheme Morrison 2-momc (Morrison et al., 2008) 
Cumulus schemed Grell 3-D (Grell and Dezső, 2002)  

a RRTMG, the Rapid Radiative Transfer Model for GCMs. 
b YSU, the Yonsei University planetary boundary layer scheme. 
c Morrison 2-mom, Morrison double-moment microphysics scheme. 
d Only used in the outer domain. 
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3.2. Model configuration and sensitivity experiments 

In this study, model simulations are performed by WRF (version 
3.8.1) with modification to enable UI-WRF. Two nested domains over 
Eastern China are centered around 30.98◦ N and 120.41 ◦E, with the 
outer domain at a resolution of 25 km and the inner domain at 5 km 
(Fig. S1). The model has 47 vertical layers, with 13 levels below 2 km 
and the lowest level at approximately 130 m. The main physical 
parameterization schemes are listed in Table 2. It is noted that the 
cumulus scheme is used only in the outer domain. The 0.625◦ × 0.5◦

Modern-Era Retrospective Analysis for Research and Application, 
Version 2 (MERRA-2) data provide the meteorological initial and 
boundary condition (Gelaro et al., 2017). The 0.25◦ × 0.25◦ Global Land 
Data Assimilation System (GLDAS) data provide the initial and bound-
ary conditions of soil properties (e.g., soil moisture and temperature) 
(Rodell et al., 2004). 

To examine the influence of LULCC on summer temperature during 
the period of 2003–2019, UI-WRF experiments are designed for two 
scenarios as follows: (1) land-constant cases with the same land pa-
rameters as 2003 for all years; (2) land-varying cases with monthly land 
parameters. A detailed description of all simulations performed in this 
study can be found in Table S2. The simulation captures the spatio-
temporal process of urban expansion and vegetation variation in Eastern 
China for every other year between 2003 and 2019 (2003, 2005, 2007, 
2009, 2011, 2013, 2015, 2017, 2019). Here, we focus on the simulation 
for the month of July to represent mean summertime conditions, as June 
often is affected by general synoptic conditions with a high cloud cover 
and frequent rainfall (Zhang et al., 2017). Simulations for the two sce-
narios are performed using the same physics schemes and meteorology 
for model boundary conditions, with the only difference being land 
parameters (land cover type, albedo, GVF, and LAI). The two scenarios 
use the same 17-category soil texture map from the 5 min United 
Nations/Food and Agriculture Organization database (Chen and Dud-
hia, 2001), assuming that the soil type has little change associated with 
the urban expansion. The remaining secondary surface parameters (e.g., 
roughness length) are assigned by tabulated values according to land 
type, GVF and soil index in WRF model. Simulations are conducted from 
June 28 to July 31 in the corresponding year, and only data in July are 
adopted for the following analyses. The effect of LULCC on temperature 
is quantified as the difference in temperature between the land-varying 
and land-constant cases for each year relative to 2003. In this way, the 
geospatial evolution of LULCC effects on temperature since 2003 can be 
analyzed for each year. The model output data is archived for every 
hour. 

To assess the performance of the UI-WRF modified model, an addi-
tional sensitivity test, 2019-default, is conducted, along with the 2019- 
modified case (one of the land-varying cases performed for July 2019). 
For the 2019-default case, the land parameters are set as the WRF Noah 
default values. The comparisons of two land parameters are shown in 
Fig. 2. Then the simulated temperature of 2019-default and 2019-modi-
fied are both compared with surface observations and MODIS LST to 
evaluate the model performance. 

3.3. The definition of old urban, new urban and rural areas 

To explore the disparity of temperature, the urban areas are further 
divided into old urban areas and new urban areas. Based on MODIS land 
cover type data, urban areas that existed in the initial year of 2003 
(Fig. 1b, red) are regarded as old urban areas, while the newly urbanized 
grid cells after 2003 are new urban areas (Fig. 1b, green). New urban 
areas vary in time and Fig. S2 portrays the spatial pattern of new urban 
areas with urban expansion for every other year from 2005 to 2019. The 
remaining non-urban grid cells (excluding water grid cells) are referred 
as rural areas. Rural areas include cropland and forest areas. Further, 
rural areas in the range of 5–20 km (equivalent to 1–4 grid cells at the 
spatial resolution of 5 km in the model) away from new urban grid cell 
are defined as suburbs (Fig. S3). All of these areas are derived from land- 
varying cases and identified by model grids with the spatial resolution of 
5 km, in which new urban, surburb and rural areas change over time, but 
old urban areas remain unchanged. As shown in Fig. 1, urban area 
proportion increased from 4.02% in 2003 to 6.60% in 2019 with the 
growth rate of 64.31%. Eastern China’s urbanization is accompanied by 
a decrease in cropland and forest cover, which accounting for 39% and 
27.3% of our study domain area in 2003, respectively. Among the 
approximately 105 km2 of natural land converted to urban areas, 52.6% 
is forest and 45.4% is cropland (Fig. S4). Croplands (forests) and urban 
areas have clearly different land parameters, with urban areas having 
lower albedo and NDVI values than the rural areas. The difference in 
land parameters can further influence the temperature changes and 
regional energy surface budget. 

Growth rate (GR) is used to quantify the magnitude of urban 
expansion (at the expanses of total rural areas) from 2003 to 2019. 

GR=
A2019 − A2003

A2003
(2) 

A2003 and A2019 denote the area of urban areas in 2003 and 2019, 
respectively. 

Fig. 2. Spatial pattern of (a) USGS land type in 2019- 
default case and (b) MODIS land type in 2019-modi-
fied case. (1–9 corresponding to 9 land type class, 1: 
forest, 2: shrubland, 3: savanna, 4: grassland, 5: 
wetland, 6: cropland, 7: urban, 8: barren, 9: water). 
(c) and (d) show the map of albedo in 2019-default 
and 2019-modified cases, respectively. Similarly (e) 
and (f) display the GVF distribution in 2019-default 
and 2019-modified case, (g) and (h) are LAI in 
2019-default and 2019-modified case, respectively. 
Here, 17 MODIS land cover type were merged into 9 
classes to compare with USGS. The forest includes 
five types of forests: evergreen needleleaf forests, 
evergreen broadleaf forests, deciduous needleleaf 
forests, deciduous broadleaf forests and mixed forests. 
The shrubland includes closed and open shrublands. 
The savanna includes woody savannas and savannas. 
The cropland includes cropland/natural vegetation 
mosaics and croplands.   
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3.4. Surface energy budget 

The changes in surface land temperature (TSK) and air temperature 
due to LULCC are closely related with the individual terms of the surface 
energy balance. 

Rn = LE + H + G = SWnet + LWnet (3)  

SWnet = SWdown − SWup =(1 − α)SWdown (4)  

LWnet =LWdown − LWup = LWdown − εσTSK4 (5)  

Where Rn is the net radiation, H is the sensible heat flux, LE is the latent 
heat flux, G is the ground heat flux. SWnet and LWnet are net shortwave 
and longwave radiation, respectively. SWdown (SWup) denotes the 
downward (upward) shortwave radiation. Similarly, LWdown (LWup) is 
the downward (upward) longwave radiation. А is the surface albedo, ε is 
emissivity, σ is the Stephan-Boltzmann constant (5.67 × 10− 8 W m− 2 

K− 4), TSK is land surface temperature in the Eq. (5). 
The impacts of LULCC on temperature and surface energy budget are 

calculated as the difference of the variables (temperature, albedo, heat 
flux, etc.) simulated by two experiments (land-varying–- land-constant 
cases). These differences are examined by two-tailed Studen’’s tests, 
and p < 0.05 indicates the difference is statistically significant. 

4. Results 

4.1. Model evaluation 

Fig. 2 shows the comparison of land paramters (land cover type, 
albedo, GVF, and LAI) in 2019-default and 2019-modified cases. Two 
land type maps (Fig. 2a and b) from 2019-default and 2019-modified 
case reveal that Eastern China experienced dramatic urbanization dur-
ing the past 20 years, and large growth of forests in the South with the 
removal of cropland. As shown in Fig. 2c and d, MODIS albedo in 2019- 
modified can portray that urban and forests have slightly lower albedo 
than northern cropland, while tabulated albedo in 2019-default 
(without using MODIS-based data) is not representative. MODIS GVF 
(Fig. 2e and f) and LAI (Fig. 2g and h) in 2019-modified can reproduce 
high values over the southern forests, and lower values over northern 
croplands and urban areas compared with 2019-default. These land 
parameters in 2019-modified can provide more reliable land charac-
teristics than 2019-default, which favors a better simulation of tem-
perature. Then surface observations and MODIS LST are both used to 
evaluate the simulated temperature and model performance of 2019- 
default and 2019-modified. 

Model performance is evaluated through comparison with surface 
and satellite-based measurements of temperature. Table 3 lists the 
comparison statistics between surface observations and the 2019-default 
(as well as 2019-modified) cases. In monthly averages, 2019-modified 
performs better than 2019-default in all sites (192 sites), especially in 
new urban sites (30 sites) with the absolute value of mean bias (MB) 
reduced from − 0.89 to 0.20 ◦C, Mean Error (ME) from 1.90 to 1.43 ◦C, 
and Root-Mean-Square-Error (RMSE) from 2.28 to 1.75 ◦C. Fig. 3 further 
displays the comparisons of ME, MB and RMSE at each observation 
station for the 2019-default (blue line) and 2019-modified (orange) 
cases. Black dots denote new urban sites in 2019-modified. For com-
parison, the x-axis is the observation site number sorted by the quantity 

Table 3 
Performance statistics for WRF-simulated 2 m temperature (T2) in 2019-default 
and 2019-modified cases, including mean bias (MB), mean error (ME) and Root- 
Mean-Square-Error (RMSE).  

Indexa 2019-default 
(all domain) 

2019-modified 
(all domain) 

2019-default 
(new urban 
areas) 

2019-modified 
(new urban 
areas) 

MBb − 0.80 0.23 − 0.89 0.20 
MEc 1.81 1.58 1.90 1.43 
RMSEd 2.21 1.85 2.28 1.75  

a In the equations, sim and obs represent the simulated and observed tem-
perature, and N is the number of data pairs at all the observation sites. 

b MB =
1
N

∑N
i=1

(simi − obsi). 

c ME =
1
N

∑N
i=1

|simi − obsi|. 

d RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
i=1

(simi − obsi)
2

√

.  

Fig. 3. (a) MB (Mean Bias), (b) ME (Mean Error) and 
(c) RMSE (Root-Mean-Square-Error) in simulated 
temperatures for 2019-default (blue line) and 2019- 
modified (orange line) cases at 192 surface stations. 
MB is shown as absolute value for comparison here. 
The x-axis is the station number sorted by the quan-
tity shown in each panel for 2019-modified case. The 
orange/black dotsbelow (above) blue dots indicate an 
improvement (degradation) in 2019-modified 
compared to 2019-default case. Black dots denote 
new urban sites.   
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shown in each panel for the 2019-modified case. Orange/black dots 
below blue dots indicate that the bias of simulated temperature in 2019- 
modified is lower than that of 2019-default; this represents an 
improvement in 2019-modified. MB, ME, and RMSE are improved in 
~72%, ~65%, and ~58% of all observation sites over the study domain, 
respectively. For new urban sites (black dots), MB, ME, and RMSE are 
improved in ~87%, ~83%, and ~73%, respectively. 

To further evaluate the model simulation, the monthly averages of 
simulated surface temperature (TSK) are compared with MODIS LST 
observations. Compared to 2019-default (Fig. 4a and d), 2019-modified 
(Fig. 4b and e) can reproduce the hot spots of temperature in urban areas 
(e.g., Shanghai, Nanjing, Hangzhou), and is in better agreement with 
MODIS (Fig. 4c and f) during the daytime and nighttime overpass of the 

satellite. The pattern correlation coefficient (PCC) between 2019-modi-
fied and MODIS is 0.68 during daytime and 0.63 during nighttime, 
which is higher than the counterparts (0.52 both in daytime and 
nighttime) for 2019-default. Overall, UI-WRF model substantially re-
duces the bias of simulated temperature after the inclusion of satellite- 
based land parameters. The more accurate simulations can ultimately 
improve the assessment of LULCC impact on temperature in the next 
step. 

4.2. LULCC impact on temperature and vegetation variations 

Fig. 5 and Fig. S5 portray the spatial pattern of LULCC-induced mean 
2-m temperature (ΔT2) and land surface temperature (ΔTSK) differences 

Fig. 4. The comparisons among simulated surface temperature (TSK) in (a) 2019-default, (b) 2019-modified and (c) MODIS Land Surface Temperature (LST) during 
the daytime of Terra satellite overpass time (unit: ◦C). (d–f) are similar with (a–c) but for the nighttime. Note, (c) and (f) are satellite data for clear-sky only, while 
model data (a,b,d,e) are for all-skies. 

Fig. 5. Spatial pattern of LULCC-induced the monthly mean air temperature difference (ΔT2, land-varying case – land-constant case, unit: ◦C) for (a) 2005, (b) 2007, 
(c) 2009, (d) 2011, (e) 2013, (f) 2015, (g) 2017 and (h) 2019, respectively. 

Table 4 
Averages of variable differences calculated in old urban, new urban and rural areas (identified by model land type in 2019) between 2019 and 2003, including albedo 
(Δalbedo, land-varying case–land-constant case), NDVI (ΔNDVI), land surface temperature (ΔTSK, ◦C), air temperature (ΔT2, ◦C), net radiation (ΔRn, W/m2), latent 
heat flux (ΔLE, W/m2), sensible heat flux (ΔH, W/m2) and ground heat flux (ΔG, W/m2).   

Δalbedo ΔNDVI ΔTSK ΔT2 ΔRn ΔLE ΔH ΔG 

old urban areas − 0.0008 0.0233 0.13 0.10 − 1.09 0.29 − 1.20 − 0.18 
new urban areas − 0.0023 − 0.0499 3.40 1.69 − 47.36 − 99.33 66.18 − 14.21 
rural areas 0.0013 0.0381 − 0.03 − 0.02 0.41 0.85 − 0.55 0.11  
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during the period of 2005 and 2019, which show the urban warming and 
rural cooling effect. The magnitude of ΔTSK is obviously greater than 
ΔT2, even exceeding 2 ◦C in dramatic urbanization areas. The areas of 
urban warming expand as urban size increases and grows as part of 
various urban clusters. According to Fig. S2 and Fig. 5, new urban areas 
experience a greater temperature increase (>1 ◦C) compared to old 
urban areas. It is calculated that old urban areas experience a 0.13 ◦C 
(0.10 ◦C) increase in TSK (T2), while new urban areas experience a 
3.40 ◦C (1.69 ◦C) increase in 2019 compared with 2003 (Table 4). 
Moreover, new urban areas also have a more significant increasing trend 
of ΔT2 with a mean value of 0.04 ◦C every two years, compared with old 
urban areas (0.02 ◦C, Fig. 7a). Nevertheless, old urban areas are still 
warmer than new urban areas (Fig. 8a). With the temperature in new 
urban areas grows faster, a significant decreasing trend is found in the 
difference of temperature between the old and new urban areas 

(Fig. 8b). In rural areas, LULCC produces a noticeable cooling effect, 
with TSK (T2) decreasing by 0.03 ◦C (0.02 ◦C). Specifically, LULCC re-
duces TSK (T2) by 0.06 ◦C (0.01 ◦C) in cropland, which is significantly 
greater than − 0.02 ◦C (0 ◦C) of TSK (T2) in forest areas. The temperature 
in rural areas appears to have no linear temporal trend and fluctuates 
around zero (Fig. 7a), implying that rural cooling effect is not enhanced 
with time. 

Vegetation variations due to LULCC also occur in Eastern China. 
Urban areas become less green while rural areas become greener as 
indicated by NDVI, particularly in northern croplands in recent years 
(Fig. 6). Table 4 shows that NDVI decreases in new urban areas (− 0.05) 
because new urban areas are developed with the loss of natural land 
during urban expansion. The significant decreasing trend of ΔNDVI in 
new urban areas with the trend of − 0.009 every two years (Fig. 7b), 
indicates that new urban areas become less green during past years. In 
old urban areas, satellite evidences show anincrease in NDVI (Table 4) in 
2019 compared with 2003. These can be attributed to the urban renewal 
over Eastern China in recent years. According to Wang and Shu (2020), 
the replacement of the old shorter buildings with high-rise buildings can 
significantly change the albedo in old urban areas, and more scattered 
greenspaces can increase the NDVI in old urban areas of Shanghai based 
on high-resolution satellite data. Our results show that ΔNDVI fluctuates 
with no decreasing linear trend in old urban areas, thanks in part to the 
vegetation restoration during urban renewal in recent years (Fig. 8c). 
Overall, the disparity of NDVI between old and new urban areas is also 
significantly decreased, just like the temperature, even though new 
urban areas are still greener than old urban areas (Fig. 8). In rural areas, 
NDVI overall increases by 0.04, with the increase more in croplands 
(0.05) than in forests (0.02). NDVI variations in rural areas can be 
influenced by local climate and agricultural practices, such as the irri-
gation, wheat harvest and straw burning (Aegerter et al., 2017; Guo 
et al., 2016; Wang et al., 2017). As illustrated in Figs. 5–7, the spatio-
temporal changes of NDVI have a negative phase with temperature, that 
is, the area of vegetation loss resonates the area of urban warming, while 
increased vegetation in rural areas can enhance the cooling effect by 
increasing evapotranspiration. They all indicate that vegetations play an 
important role in regulating urban temperature shifts. 

In addition to urban areas, the urbanization can also have an addi-
tional warning effect on suburbs. To capture this change, ΔT2 and 
ΔNDVI are calculated for suburb grid cells, with the ranges of 5–10 km 
(1–2 model grid cells), 10–15 km (2–3 grid cells) and 15–20 km (3–4 
grid cells) away from each new urban grid cell (Fig. 9). The warming of 
suburbs occurred beginning in 2009 due to urban expansion, with no 
warming influence from 2005 to 2007 (ΔT2<0, Fig. 9a). Similar to 
temperature increases, urbanization also reduces the greenness begin-
ning in 2009 (ΔNDVI<0, Fig. 9b). Furthermore, suburb warming is 
reduced (Fig. 9), as one moves away from new urban areas and more 

Fig. 6. Similar with Fig. 5, but for ΔNDVI.  

Fig. 7. (a) The boxplots of temperature difference (ΔT2, land-varying case – 
land-constant case, unit: ◦C) in old urban (blue), new urban (orange) and the 
rural areas (green) from 2005 to 2019, respectively. (b) is for the NDVI dif-
ference (ΔNDVI). The dashed lines represent the temporal trend is significant 
(p < 0.01). 
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vegetation is restored. In recent years, vegetation has increased within 
10–20 km (2–4 grid cells) of new urban areas (e.g., ΔNDVI>0 in green, 
light green bars during 2015, 2017, 2019), and may attenuate the urban 
warming effect to some extent. In general, from 2003 to 2019, tem-
perature (T2) rises by 0.17 ◦C (5–10 km), 0.13 ◦C (10–15 km) and 
0.11 ◦C (15–20 km). Meanwhile, NDVI decreases accordingly with away 
from new urbans. As a result, urban sprawl can warm areas in close 
proximity to new urban areas, with decreasing greenspace. In all three 

ranges away from new urban areas, there is a significant increasing 
trend of mean temperature difference of 0.026 ◦C, 0.022 ◦C, and 
0.020 ◦C every two years, respectively. It indicates that as the size of 
cities grows, so does the warming effect (including its spatial coverage). 

4.3. LULCC impact on surface energy budget 

To explore the correspondence between temperature and surface 

Fig. 8. (a) The monthly mean temperature in old urban, new urban and rural areas (unit: ◦C), (b) is the difference of temperature between old and new urban areas as 
a function of time, (c) and (d) are similar with (a) and (b) respectively, but for NDVI. Note that the blue line in (b) denotes the significant decreasing trend in the 
difference of temperature between old and new urban areas, the green line in (d) is also the significant decreasing trend in the difference of NDVI. 

Fig. 9. (a) Mean temperature difference (ΔT2, unit: ◦C) for suburbs which are in the range of 5–10 km (equivalent to 1–2 model grid cells at the spatial resolution of 
5 km in WRF model, dark red), 10–15 km (2–3 grid cells, red) and 15–20 km (3–4 grid cells, light red) away from new urban areas from 2005 to 2019. (b) is mean 
NDVI difference (ΔNDVI), dark green represents the suburbs which are in the range of 5–10 km (1–2 model grid cells), green is 10–15 km (2–3 grid cells) and light 
green is 15–20 km (3–4 grid cells). 
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energy budget, their respective changes (in form of ΔHeat flux) due to 
LULCC are shown in Fig. 10. The conversion of natural land to imper-
vious surface in new urban areas can cause notable perturbations to the 
surface energy balance, the magnitude of ΔHeat flux in new urban areas 
is obviously much greater than that in old urban and rural areas, where 
the land type remains unchanged. In new urban areas, owing to reduced 
albedo (Table 4 and Fig. 10a) in new urban areas, SWup decreases and 
SWnet can increase (Eq. (4)). An increase in TSK causes an increase in 
LWup (Eq. (5)), moreover, LWdown also increases due to higher T2 
induced by urbanization. Taking shortwave (Fig. 10b) and longwave 
radiations (Fig. 10c) together, Rn decreases accordingly with the value of 
− 47.36 W m− 2 (Table 4). New urban areas have higher fractions of 
impervious surface with less vegetation cover compared with before, 
and it cause a much decrease in LE (− 99.23 W m− 2, Table 4 and 
Fig. 10d) and the increase in H (66.18 W m− 2), along with the decrease 
in G (− 14.21 W m− 2). In this process,ΔLE is much higher than other 
terms, which implies that the decreased latent heat dominates the bio-
physical warming effect in new urban areas. 

As illustrated in Table 4 and Fig. 10, in old urban areas, Rn decreased 
(− 1.09 W m− 2)due to a decline in albedo. Increased LE (0.29 W m− 2) 
may result from an increase in NDVI in recent years due to urban 
renewal and a decrease in H (− 1.20 W m− 2) is probably attributed to the 
decline in surface wind speed during the past decades as a result of ur-
banization (Zhang and Wang, 2021). In rural areas, increased NDVI 
(0.04, Table 4) can promote the transpiration rate, leading to higher LE 
(0.85 W m− 2) and lower H (− 0.55 W m− 2); hence, LULCC has cooling 
and wetting effects in rural areas, and the increase in LE due to rural 
greenness dominates the rural cooling. 

In addition, the warming in old urban areas and suburbs may be 
mainly associated with the heat convections from new urban areas, 
which is quantified by aerodynamic resistance (Zhao et al., 2014). The 
convection efficiency between urban and rural areas is suggested to 
dominate the temperature difference between urban and the surround-
ing rural areas especially in humid areas. More observation data and 
modeling are needed to explore the possible mechanism in old urban 
areas, which is worthy of more attention in our future study. Aside from 
the factors mentioned above, anthropogenic heat release, which is not 
considered in our study, is also a contributor to urban warming. Ac-
cording to the model simulation conducted by Liao et al. (2017), 
anthropogenic heat can cause a 0.6 ◦C warming in Eastern China. Taking 
this into account, the temperature rise over old urban areas is still less 
than that over new urban areas. 

5. Conclusions and discussion 

In this study, satellite observations are integrated into the WRF 
model to investigate the progression of LULCC-induced urban warming 
and rural cooling during the past two decades. To accurately capture the 
continuous progression of LULCC, MODIS land surface products (land 
cover type, albedo, GVF, and LAI) are assimilated into UI-WRF. This 
assimilation leads to the improvement in 2-m temperature, the corre-
sponding ME, MB, and RMSE in ~72%, ~65% and ~58% of observation 
sites during July 2019. Compared with satellite data, 2019-modified 
case with data assimilation can better capture the urban heat island 
during daytime and nighttime than 2019-default case without data 
assimilation. These evaluation results provide the fidelity needed to use 
UI-WRF as a tool to study the impact of LULCC on surface temperature in 
2003–2019, both spatially and temporally. 

Subsequently, two sets of WRF simulations are performed for land- 
constant and land-varying cases every two years between 2003 and 
2019. The model results show that LULCC causes urban areas to become 
warmer, with the effect being more pronounced in new urban areas than 
in old urban areas. New urban areas have an increase of 1.69 ◦C 
(3.40 ◦C) in T2 (TSK), old urban areas have a slight increase of 0.10 ◦C 
(0.13 ◦C) in T2 (TSK). Significant vegetation degradation is found during 
new urban development, with a significant decreasing trend in NDVI. 
However, vegetation restoration is also found in old urban areas in 
recent years due to urban renewal. Furthermore, the difference of new 
urban and old urban temerpature is becoming smaller with time during 
2003–2019. On the other hand, LULCC cools and greens rural areas, 
rendering a 0.03 ◦C (0.02 ◦C) decrease in TSK (T2) and an increase in 
NDVI (0.04). In addition, urbanization warming doesn’t stay in urban 
areas, and can be extended to the suburbs. The urban warming along 
with vegetation degradation can reach to the suburbs within 20 km from 
the outskirt of urban areas. The analysis of surface energy budget further 
reveals that the reduction in latent heat is the dominant factor 
contributing to the warming over new urban areas and cooling in rural 
areas. 

Our satellite-based analysis and regional modeling reveal the inter-
nal dynamics of temperature in urban areas due to urban expansion and 
urban renewal. These findings show that the brand new urban areas are 
hotspots for urban management, and more greenspace and albedo 
management are suggested in future landscape plans. Effective measures 
for urban restoration are suggested, such as increasing tree cover, 
expanding urban park space (especially for medium-density urban 

Fig. 10. Spatial pattern of LULCC-induced the monthly mean albedo and heat flux (ΔHeat flux, land-varying case–land-constant case, unit: W m− 2) difference during 
2019 for (a) Δalbedo, (b) ΔSWnet (net shortwave radiation), (c) ΔLWnet (net shortwave and longwave radiation), (d) ΔLE (latent heat flux), (e) ΔH (sensible heat 
flux), (f) ΔG (ground heat flux). 
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areas), and adopting green or cool roofs (especially for high-density and 
commercial areas, as stated by Krayenhoff et al. (2018) and He et al. 
(2020b)). In Shanghai, approximately 20 million m2 of roof space is 
available and suitable for roof greening, which would help to ameliorate 
future warming temperatures (Shanghai Bureau of Statistics, 2017). 
Therefore, future LULCC policy should include efforts to increase more 
vegetation and albedo management in both old and new urban areas 
across Eastern China to alleviate urban warming. 
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