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Enhancement of Nighttime Fire Detection and
Combustion Efficiency Characterization Using
Suomi-NPP and NOAA-20 VIIRS Instruments
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Miguel O. Román, Edward J. Hyer, and Steven D. Miller

Abstract— We present the second-generation FIre Light Detec-
tion Algorithm (FILDA-2), which includes advances in fire
detection and retrievals of radiative power (FRP), fire visible
energy fraction (VEF), and fire modified combustion efficiency
(MCE) at nighttime from the holistic use of multiple-spectral
radiances measured by the visible infrared imaging radiometer
suite (VIIRS) aboard Suomi-NPP (VNP) and National Oceanic
and Atmospheric Administration (NOAA)-20/joint polar satellite
system (JPSS)-1 (VJ1) satellites. Key enhancements include: 1) a
new fast algorithm that maps VIIRS day/night band (DNB)
radiances to the pixel footprints of VIIRS moderate (M) and
imagery (I) bands; 2) identification of potential fire pixels through
the use of the DNB anomalies and I-band thermal anomalies;
3) dynamic thresholds for contextual testing of fire pixels; and
4) pixel-specific estimates of FRP, VEF, and MCE. The global
benchmark test demonstrates that FILDA-2 can detect approx-
imately 25%–30% smaller and cooler fires than the operational
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VIIRS active fire 375-m I-band algorithm with the added benefit
of providing daily global pixel-level characterizations of MCE
for nighttime surface fires. The MCE derived by FILDA-2 is
in good agreement with limited ground-based observations near
the fires. Additionally, FILDA-2 reduces angular dependence in
FRP estimates and significantly reduces the “bow-tie” (double-
counting) effect in fire detection compared with the AF-I product.
The cross-validation of FILDA-2 products from VNP and VJ1
retrievals confirms good consistency in FRP and MCE retrievals
globally. FILDA-2 is being implemented by the National Aero-
nautics and Space Administration (NASA) to generate a new
VIIRS data product for fire monitoring, chemical-speciated fire
emission estimates, and fire line characterization.

Index Terms— Day-night band (DNB), fire detection, fire
radiative power (FRP), gas flaring, modify combustion effi-
ciency (MCE), National Oceanic and Atmospheric Adminis-
tration (NOAA)-20, Suomi-NPP, visible energy fraction (VEF),
visible infrared imaging radiometer suite (VIIRS), visible light
at night, wildfire.

NOMENCLATURE

List of Acronyms
AF Active fire.
BT Brightness temperature.
CMG Climate modeling grid.
DNB Day/night band.
EPA Environmental protection agency.
FRP Fire radiative power.
GEOS-FP Goddard Earth observing system forward

processing.
IGBP International Geosphere-Biosphere Programme.
I-Band Imagery resolution band.
LWIR Long-wave InfraRed.
MAD Mean absolute difference.
M-Band Moderate resolution band.
MCE Modified combustion efficiency.
MDR Mole density ratio.
MODIS MODerate resolution Imaging

Spectroradiometer.
MWIR Medium-wave InfraRed.
SAMA South Atlantic Magnetic Anomaly.
TOA Top of atmosphere.
VEF Visible energy fraction.
VIIRS Visible infrared imaging radiometer suite.
VJ1 VIIRS aboard JPSS-1/NOAA-20.
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VLP Visible light power.
VNP VIIRS aboard Suomi-NPP.

List of Parameters
BTI4 BT of the I-band

channel 4 (3.74 µm), in K.
BTI5 BT of the I-band

channel 5 (11.45 µm), in K.
BTM10 BT of the M-band

channel 10 (1.61 µm), in K.
BTM13 BT of the M-band

channel 13 (4.05 µm), in K.
DTI4 Dynamical threshold of the I-band

channel 4 (3.74 µm), in K.
FRP Fire radiative power, in W.
LDNB DNB at sensor radiance, in Wm−2sr−1.
LDNBb Background DNB at sensor radiance,

in Wm−2sr−1.
LM13 M-band channel 13 (4.05 µm) at sensor

radiance, in Wm−2sr−1µm−1.
LM13b Background M-band channel 13

(4.05 µm) at sensor radiance, in
Wm−2sr−1µm−1.

MAD(BTI4b) Spatial mean absolute deviation of the
background BTI4, in K.

MAD(BTI45b) Spatial MAD of the
background 1BTI45, in K.

MAD(BTM10b) Spatial MAD of the
background BTM10, in K.

MAD(BTM13b) Spatial MAD of the
background BTM13, in K.

MCE Modified combustion efficiency, unitless.
QF14 Quality flag of the I-band channel 4

(3.74 µm), unitless.
QF15 Quality flag of the I-band channel 5

(11.45 µm), unitless.
VEF Visible energy fraction, unitless.
VLP Visible light power, in W.
1BTI45 BT difference

between the I-band channel 4 (3.74 µm)
and channel 5 (11.45 µm), in K.

BTI4b Spatial mean of the background BTI4,
in K.

BTM10b Spatial mean of the background BTM10,
in K.

BTM13b Spatial mean of the background BTM13,
in K.

1BTI45b Spatial mean of the background 1BTI45,
in K.

I. INTRODUCTION

ACTIVE fire detection from space offers a valuable tool
for monitoring fires in near-real time and studying their

impacts on climate change and air quality on a global scale.
The identification of active fire locations and estimation of
FRP has been a mainstay of existing fire products and have

been used to improve estimates of global fire emissions over
the past two decades [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13]. As reviewed by Polivka et al. [14],
while the first detection of fires from space using fire
light measured by the Defense Meteorological Satellite
Program (DMSP) Operational Linescan System (OLS)
instruments occurred in the early 1970s [15], operational
active fire detection algorithms have primarily leveraged
observations in the MWIR (MWIR at ∼4 µm) spec-
trum to distinguish the hot anomalies from the cold
background and subsequently locate active fires [2], [3],
[4], [5], [6], [11], [12], [16], [17], [18], [19], [20].

Current operational detection algorithms employed by the
National Oceanic and Atmospheric Administration (NOAA)
and the National Aeronautics and Space Administration
(NASA) estimate FRP using the MWIR measurement at the
pixel level [4], [5], [6], [18], [19]. However, these algorithms
are unable to describe the combustion efficiency [21], [22],
[23], which is an intrinsic property of a fire and can vary
throughout its life regardless of fire size [24]. Combustion
efficiency is typically quantified by the mass ratio of carbon
emitted as CO2 to the total carbon emitted as CO2 and CO,
referred to as MCE [24], [25], [26], [27], [28]. While MCE
typically ranges from 0.80 to 0.98, a small change of only
0.08 in MCE can result in a factor of up to 20 changes in the
emission factor of organic aerosols [27]. Similar changes have
been observed for other gas and aerosol species [29], [30],
[31]. MCE also significantly impacts the optical properties of
the emitted aerosols [32], [33]. Current estimates of smoke
aerosol and trace gas emissions vary by a factor of 10 or
more depending on the region, time, fuel type, and species of
interest [25], [34], [35] in different biomass burning emission
inventories, leading to substantial uncertainty in the impact
assessment of biomass burning on the Earth. The retrieval of
MCE from space can provide much-needed information for
constructing a chemical-speciated fire emission inventory and
reducing uncertainties.

We present the development and advancement of a nighttime
fire detection algorithm that can be used to characterize the
FRP and fire MCE based on data from the VIIRS aboard the
NOAA/NASA Suomi National Polar-orbiting Partnership (S-
NPP) and NOAA-20 satellites. Our work builds upon several
recent studies that have combined the visible light measure-
ments from VIIRS DNB with MWIR measurements to either
assess the fire combustion efficiency or enhance fire detec-
tion [6], [14], [18], [24]. In the first generation of the FIre Light
Detection Algorithm (FILDA-1), Polivka et al. [14] demon-
strated that incorporating the DNB, which is sensitive to radia-
tion in the wavelength range from 0.5 to 0.9 µm, with selected
VIIRS moderate resolution bands (M-band, 742 m) at MWIR
can detect 30% smaller and cooler fires compared with the
operational VIIRS active fire 750-m M-band (AF-M) products.
To characterize fire combustion efficiency, Wang et al. [24]
introduced a new parameter, i.e., VEF, defined as the ratio
of the visible energy emitted by the fire (VLP) to the total
FRP, and found that VEF is positively correlated with fire
MCE at global, regional, and local scales. As a ratio, VEF is
an intensive property, like MCE, and can attain a maximum
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Fig. 1. Flowchart of the FILDA-2 algorithm. The green color indicates
the workflow that passes the tests in each step, while the red color indicates
the steps that fail the tests. The blue color highlights the improvements of
FILDA-2 compared with FILDA. Please refer to the text for further details.

possible value of 1. In terms of the physics of combustion, vis-
ible light is intrinsic to flaming combustion, and the larger the
visible light intensity, the more flaming occurs, and therefore,
the larger the MCE. However, in the work by Wang et al. [24],
active fire detection solely utilized M-band MWIR and LWIR
(for background temperature estimation) observations.

The new approach integrates the VIIRS DNB, MWIR,
and LWIR channels to simultaneously improve fire detection
and VEF estimation (indicative of MCE). The algorithm is
the second generation of the FILDA-2 and combines the
techniques in FILDA-1 [14] with the development of VEF and
MCE retrieval algorithm first established in Wang et al. [24].
Furthermore, the FILDA-2 utilizes the VIIRS imagery res-
olution bands (I-band, 375 m) observations from both the
S-NPP and NOAA-20 satellites to improve fire detection.
The FILDA-2 algorithm, while conceptually simple, requires
surmounting several technical challenges to be practically
applied. Section II describes the data used in this study and the
necessary techniques for combined utilization of the different
VIIRS products. Details of the updates on the FILDA-2 are
described in Section III. Section IV provides a comprehensive
assessment of the FILDA-2 with the high-resolution data
acquired by the Advanced Spaceborne Thermal Emission
and Reflection (ASTER) instrument aboard NASA’s Terra
satellite [36] and other existing data products. Section V
summarizes this article.

II. SENSOR, DATA, AND CHALLENGES

Fig. 1 depicts the primary input data and algorithm flow of
FILDA-2, which utilizes several data products (Section II-B)
from the VIIRS instruments (Section II-A) on the S-NPP and
NOAA-20. Although the VIIRS sensors have the same design
concepts, they differ in their ways of pixel aggregation for
the level-1 radiance data, which poses challenges in aligning
DNB, MWIR, and LWIR measurements to the same ground
footprint (Section II-C).

A. VIIRS Sensor

VIIRS is the primary imager aboard S-NPP and NOAA’s
polar-orbiting joint polar satellite system (JPSS) series of
satellites for the next two to three decades [37], [38], [39],

[40], [41]. It is a 22-band scanning radiometer with a nominal
spatial resolution of 375 m in the five “imagery bands”
I-bands, 750 m in 16 “moderate resolution” M-bands, and the
DNB [42], [43]. VIIRS differs from its predecessors, such as
the advanced very-high-resolution radiometer (AVHRR) [44]
and the MODIS [45] in several ways that are significant
for fire detection applications: 1) due to cross-track onboard
aggregation of detectors, the pixel size growth factor from the
nadir to the edge of the scan (EOS) is about 4 [38], [41],
much smaller than the 8–10 growth factor for MODIS [46],
[47]; 2) the VIIRS DNB can measure visible light intensity in
a range of seven orders of magnitude [42], including levels
down to the equivalent of a quarter moon phase or less,
orders of magnitude lower than conventional visible bands;
and 3) measurements of shortwave radiation at wavelengths of
0.865 (M07), 1.24 (M08), 1.61 (M10), 2.25 (M11), 3.74 (I4),
3.70 (M12), and 4.05 µm (M13) are available at night, whereas
MODIS only has a 3.96 µm MWIR channel for fire detection
at night.

Currently, two VIIRS sensors are flown, respectively, on the
S-NPP (hereafter VNP) and the NOAA-20 (previously named
joint polar satellite system-1 or JPSS01, referred to here
as VJ1) satellites [40]. VNP was the first VIIRS sensor
launched in 2011 and has a sun-synchronous orbit that syn-
optically observes the Earth at roughly 1:30 P.M. local time
in its ascending node, and a corresponding descending node
observes the Earth at 1:30 A.M. used for this research. VJ1
was launched in late 2017 and operates on the same orbital
plane [48] as VNP, but the overpassing time is 50 min ahead
(00:40 A.M. and 00:40 P.M., respectively). Together, these
sensors allow important overlap in observational coverage and
consequently provide the science and application communities
with a daily global near-nadir view of the Earth within a
one-hour time window at the complementary view and illumi-
nation geometries. At the time of this writing, there are plans
to launch JPSS-2 (to become NOAA-21 once operational) in
November 2022, which will be inserted into the same orbital
plane as S-NPP and NOAA-20, and thus, provide multiple
observations centered around the 1:30 A.M./P.M. crossing
times [49].

B. Data and Data Processing
1) FILDA-2 Input Dataset: Table I summarizes the VIIRS

bands used in FILDA-2. The primary input datasets for
FILDA-2 are: 1) VIIRS level-1B calibrated DNB radiance
data (VNP02DNB [50] and VJ102DNB [51]) and the DNB
geolocation product (VNP03DNB [52] and VJ103DNB [53]),
used for fire identification and VEF and MCE deriva-
tion; 2) VIIRS level-1B calibrated M-band radiance data
(VNP02MOD [54] and VJ102MOD [55]) and the geolo-
cation product (VNP03MOD [56] and VJ103MOD [56]),
used for the cloud masking and FRP, VEF, and MCE esti-
mation; and 3) VIIRS level-1B calibrated I-band radiance
data (VNP02IMG [57] and VJ102IMG [58]) and the I-band
geolocation product (VNP03IMG [59] and VJ103IMG [60]),
used for fire identification. All the VIIRS products can be
obtained through the NASA level-1 and atmosphere archive
and distribution system (LAADS, https://ladsweb.modaps.
eosdis.nasa.gov/). While the 3.74 µm (I4) band is the
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TABLE I
CHARACTERISTICS OF THE VIIRS BANDS USED IN THE FILDA-2

main channel for fire identification in FILDA-2, previous
research [6] suggested that two primary types of anomalies
can affect its application on fire detection: 1) saturation due
to its single-gain channel nature [61] and 2) SAMA [62],
[63]. The SAMA also affects the observational quality of the
VIIRS DNB [64]. Section III-C1 addresses the saturation of
the I4-band and Section III-C4 addresses the SAMA issues
for fire detection.

Other ancillary datasets and the respective preprocessing
steps used prior to the retrieval of fire characteristics at the
pixel level are listed as follows.

1) The standard S-NPP VIIRS black marble nighttime light
product (VNP46A1) [66] is used for generating a global
surface light climatology. VNP46A1 contains daily,
TOA, at-sensor nighttime radiance gridded to 15 arc-
second linear latitude/longitude grid. We fit three months
of DNB radiance data of each pixel of VNP46A1 into a
gamma distribution to derive the shape parameter α and
the rate parameter β, under the assumption that the DNB
radiance for a specific location obeys a gamma distribu-
tion. These two parameters form the historical nighttime
light climatology used later to identify visible light
anomalies and select the fire candidates (Section III-C).
VNP46A1 is the at-sensor radiance product without any
corrections. The future improvement includes exploring
the VNP46A2 to parameterize the surface light clima-
tology. The VNP46A2 data product contains the daily
at-sensor TOA nighttime DNB radiance at 15 arc-second
resolution after correction of Lunar, cloud, terrain, atmo-
spheric, snow, airglow, stray light, and seasonal canopy
effects, and intelligent gap filling [67].

2) We use temperature data from the GEOS-FP fore-
cast product [68] as part of the surface flux diag-
nostics (tavg1_2d_flx_Nx) to aid in the processing of
an internal nighttime cloud mask (Section III-B). The
tavg1_2d_flx_Nx dataset has a spatial resolution of
0.25◦

× 0.375◦ and a temporal resolution of 1 h. Surface
temperatures are first linearly interpolated to the VIIRS
overpass time and then interpolated bilinearly to match
the VIIRS geolocation.

3) MODIS monthly normalized difference vegetation index
(NDVI, MOD13C2, and MYD13C2) [69], [70] is used
to derive the multiyear monthly NDVI climatology,
which is used later in the internal cloud detection
(Section III-B).

4) The MODIS Terra and Aqua combined land cover
product (MCD12Q1) [71], [72] is used to specify the
land surface type of each fire pixel, as needed by the fire
emission modeling community. The MCD12Q1 contains
17 land categorizations defined by IGBP, It is worth
noting that peatland is not considered one of the IGBP
land surface types.

5) A peatland database [73] is included to specifically des-
ignate peatland fire pixels. This is necessary because the
peatland fires have distinctly different emission factors
compared with fires on other land types [74], [75], [76].
To accelerate the speed of the algorithm, we rasterize the
shapefile in the database into a 0.005◦

× 0.005◦ raster
image, as shown in Fig. 2. It is also worth noting that
the peatland database is not mutually exclusive with the
MCD12Q1. The provided information is an additional
peatland flag to identify the presence of peatland within
the fire pixels.

6) A global gas flaring dataset (Fig. 2) is used to identify
gas flaring pixels detected by FILDA-2 [77]. The dataset
is originally provided in point source format, which was
rasterized into a 0.005◦

× 0.005◦ raster image using the
same process as for the peatland dataset.

2) Validation Dataset: Table II lists the datasets used in
validating the FILDA-2 fire detection and fire parameters
estimation, and they are listed as follows.

1) The band-10 (8.3 µm) radiance data from the ASTER
is used to verify the fire detection made by FILDA-2.
With a spatial resolution of approximately 90 m, the
ASTER band-10 is capable of detecting hot spots during
nighttime. To the best of our knowledge, it is the only
high-resolution sensor that has routine observations at
night and can provide the co-occurred subhundred-meter
evidence of a fire incident for the validation of the fire
detection algorithms. Due to its co-occurring and high-
resolution nature, it has been widely used as a reference
for fire detection validation in previous studies [41],
[78], [79].

2) The operational VIIRS 750 m AF-M product and 375-m
I-band active fire detection (AF-I) product are used as
references for comparison of fire detection and FRP
estimation of FILDA-2. Currently, AF-M and AF-I prod-
ucts are generated by NASA and NOAA, under identical
physical principles, simultaneously, and independently.
The AF-M and AF-I products used for comparison are
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Fig. 2. Illustration of land surface types used in FILDA-2 for the year 2018, including IGBP, Peatland, and gas flaring databases from multiple sources. The
IGBP product used is MODIS Terra and Aqua combined land cover product (MCD12Q1) and updated for each year; the peatland dataset is a static dataset,
sourced from the PEATMAP at the University of Leeds, Leeds, U.K., and has been rasterized to a resolution of 0.005◦; the gas flaring dataset has a resolution
of 0.005◦ and is also updated annually. The region affected by SAMA is defined in Section III-C4. See text for details.

TABLE II
DATASETS USED IN THE VERIFICATION

from NASA LAADS. The AF-M (VNP14) [5] product
uses the spectral contrast of 4.05 (M13) and 10.78 µm
(M15) to provide fire locations and FRP estimates. The
AF-I product (VNP14IMG) [6] utilizes the 3.74 (I4) and
11.45 µm (I5) to provide fire location. Since the I4-band
is a single-gain band originally designed for Earth
imaging and cloud studies, it can be easily saturated
when the kinetic temperature of fire exceeds 367 K.
Consequently, I-band observations are only used for
detecting fire pixels, while the FRP in each I-band
fire pixel is calculated based on the collocated M-band
observations. Although at the detection level, VIIRS
I-band products can provide more fire pixels detected
with a higher spatial resolution (including more detec-
tion than Terra/Aqua MODIS products, combined) [6],
it lacks the ability to distinguish the variations of FRP
between I-band fire pixels within in the same M-band
pixel.

3) Measurements of CO and NO2 from the U.S. EPA,
Washington, DC, USA, were used to validate the MCE
derived in this work.

C. Configuration of DNB and M-Band on VIIRS and
Difference Between VNP and VJ1 DNB

Due to differences in pixel resolutions and aggregation
schemes, mismatches in spatial coverage or differences in

footprint size may occur among I-band, M-band, and DNB
pixels that contain the same fire on the ground [24]. These
differences are critical to a fire detection algorithm that
requires multispectral data for the exact same location or
footprint on the ground. In brief, while the DNB has the
same along-track extent on the focal plane assembly (FPA) as
all the other M-band or I-band sensors, it has 250 subpixel
charge-coupled device (CCD) detectors in the cross-track
direction and 672 subpixel detectors along the track direction.
However, the M-band and I-band sensors have only 16 and
32 along-track 1-D detectors, respectively. For the VNP sensor,
the sampling time of the I-band and M-band in the cross-track
direction is 44.1295 and 88.259 µs, respectively, while for
DNB it is only 3.8373 µs. These differences enable VNP DNB
to have a much finer resolution of 18 × 11 m at the nadir and
38 × 69 m at the end of the swath for the footprint of each
detector providing a larger degree of freedom for VNP DNB
through the aggregation of these detector data to formulate
the level-1B pixel data that sustain a nearly constant pixel
size of 742 m throughout the swath (aggregation option 32,
Opt32) [80]. VNP DNB has a nominal scan angle of ±56.06◦,
which covers approximately the same area as the M-band
and I-band with a swath width of 3060 km across the track.
The VNP DNB sensor data record (SDR) product has a total
of 4064 Earth view (EV) samples/pixels per scan line, while
the EV sample number is 3200 for the M-band and is doubled
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Fig. 3. Illustrations of VJ1 DNB nonlinearity in the onboard aggregation of detector footprints to form level-1B pixels. (a) VJ1 DNB nighttime TOA
reflectance image on August 14, 2019. (b) VJ1 M13 (4.05 µm) BT image, the same observation time as (a). (c) Google Earth image of Missouri River in
South Dakota (SD). (d) VJ1 DNB image of Missouri River in SD, nadir view (Aggregation mode 1, Zone 31). (e) Same as (d), but for aggregation Zone 63
(at the edge of the scan) where the bow-tie effect often can be found due to the use of the pixel aggregation mode 21 in the VJ1 design. (f) Same as (e) with
the removal of bow-tie pixels (remove as denoted as the black stripes). See text for details.

to 6400 for the I-band. The VNP DNB SDR product has nearly
no bow-tie effect or swath overlap due to the superior on-board
aggregation [14], [24].

VJ1 DNB differs from VNP DNB in the method that is
used to aggregate the radiances from individual subpixel CCD
detectors to calculate the radiance on DNB resolution, which
affects the data handling for each sensor in the FILDA-2.
Although both DNB sensors have the same design, the VJ1
DNB showed high nonlinearity in the radiometric response
for high gain (nighttime illumination levels) focal plane arrays
during the prelaunch radiometric calibration stage [81]. This
nonlinearity is specific to certain detectors and depends on the
aggregation mode and can be especially pronounced at high
scan angles [82]. To mitigate this issue, the JPSS Data Working
Group proposed two new aggregation options: aggregation
option 21 (Op21, which holds aggregation mode 21 constant
out to scan edge) and aggregation option 21/26 (Op21/26).
Op21 was ultimately chosen for VJ1 DNB due to its better
radiometric performance [83]. The major observational dif-
ferences between the Op21 (used for VJ1 DNB) and Op32
(used for VNP DNB) are: 1) VJ1 only has a nearly constant
pixel size within ±49.1◦ of the scan angle. Beyond this range,
the pixel size grows with scan angles due to the aggregation
of more subpixels compared WITH Op32 and 2) the EV
frame for VJ1 ends at a scan angle of ±60.5◦, which allows
for the aggregation of more detectors at high scan angles.
These differences result in a wider swath of ∼3650 km and a
slightly larger increase in pixel size at the end of the scan for

VJ1 DNB. Consequently, as shown in Fig. 3(a) and (b), there
is a ∼600-km extent of EV samples in the VJ1 DNB swath
compared with those in the VNP DNB and other VJ1 bands.
The VJ1 DNB SDR product also exhibits a bow-tie effect
and overlaps between scans, as shown in Fig. 3(e), which are
significantly greater than those found in VNP DNB.

III. FILDA-2 ALGORITHM

Three steps are taken to process each VIIRS data file
(typically every 6 min, as shown in Fig. 3). The first step
(shown in the first row of Fig. 1) involves processing the data
to resample DNB radiance to the footprint of each VIIRS
M- and I-bands pixels (denoted as LDNB−M and LDNB−I,
respectively) and removing pixels affected by the bow-tie
effect, water, and twilight. The second step (shown in middle
part of Fig. 1) integrates the LDNB−I data, I-band channel-4
3.74 µm BT (BTI4), and I-band channel-5 11.45 µm BT (BTI5)
for comprehensive fire detection. The final step retrieves fire
parameters (FRP, VEF, and MCE) at M-band resolution for
each fire pixel utilizing the LDNB−M and M-band channel-13
4.05 µm radiance (LM13). This section details the technical
steps of the algorithm.

A. Collocation and Alignment of M-Band and I-Band Pixels
With DNB

The first step in the FILDA-2 is to bring the VIIRS
DNB, I-band, and M-band data into one consistent spatial
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Fig. 4. Example of DNB, I-band, and M-band collocation and homogenization. (a) VJ1 DNB observation on August 8, 2019, in its native resolution.
(b) Same as (a) but without projection on the Eart’s surface. (c) Same as (a) but for M13 (4.05 µm) BT. (d) Resampled VJ1 DNB observation in M-band
resolution with the removal of bow-tie-affected pixels. (e) M13 BT with the removal of bow-tie-affected pixels. (f) VJ1 3.74 µm I-band BT with the removal
of bow-tie-affected pixel. In (a) and (b), the bright pixels were fire affected area, while the dark pixels are the background area. The green and red mesh grids
are the pixel footprints of two consecutive scan blocks. See text for details.

resolution. While this process is relatively simple for the
I-band and M-band, as one M-band pixel holds four I-band
pixels, collocating the DNB pixel with the M-band and I-band
pixels is more complex. To address this, a fast collocation
algorithm was developed by Wang et al. [24] to resample the
VNP DNB radiance to the M-band footprint. It includes the
following steps: 1) segregate the M-band data into different
DNB aggregation zone; 2) project the M-band and DNB
footprints onto the Earth’s surface using Albers’s equal-area
projection; 3) detect the DNB pixels that overlap with a given
M-band footprint; 4) calculate the areal weights for each
identified DNB pixel in 3); and 5) resample the DNB radiance
to match the M-band resolution.

However, this method is dependent on the aggregation
schemes of the DNB and M-band and may not be suitable
for future VIIRS sensors with different aggregation options.
To create a more general resampling method that can be
applied to any VIIRS sensor and handle any aggregation mode,
we developed a new method that calculates the resampling
coefficients for each I-band and M-band pixel in a cross-track
scan independently. This avoids the need to consider the
varying aggregation pattern of each VIIRS sensor and allows
for continuity in the fire data product across future VJ2,
VJ3, and VJ4 sensors. To derive the resampling coefficients,
we carefully selected a VIIRS scan near the equator where pro-
jection deformation, as represented by Tissot’s indicatrix [84],
was minimized. The new method entails the following steps:

first, for each I-band or M-band footprint (target footprint),
we used a 0.05◦

× 0.05◦ spatial window to identify the DNB
footprints (candidate DNB footprints) that potentially overlap
with the target I-band or M-band footprint in the geographic
coordinate system. Second, we projected the target footprint
together and candidate DNB footprints onto the Earth’s surface
using Albers’s equal-area projection with projection param-
eters that minimized Tissot’s indicatrix. Third, we applied
the Weiler–Atherton clipping algorithm [85] to determine
the intersection between the candidate DNB footprint and
the target footprint and calculate the overlap areas. Finally,
we used the Shoelace formula [86] to calculate the area of the
target footprint and determine the resampling weights for each
I-band and M-band footprint. Redundant overlapping pixels
caused by the bow-tie effect were removed, similar to the
method proposed by Wang et al. [24]. This transformation
only needs to be applied once to a representative sample scan,
and the results, including indices and weights of the DNB
pixels, for each I-band and M-band footprint along the scan
line are saved in a lookup table [24]. The lookup table allows
us to efficiently map all DNB pixels in each granule onto
the M-band and I-band in the same granule for the FILDA-2
algorithm (Fig. 4).

B. Removal of Cloud, Water, and Twilight Pixels
In FILDA-2, cloudy pixels are identified on both M-band

and I-band resolutions through two sets of IR tests on the
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M-band and I-band, separately. The final cloud mask used in
the FILDA-2 is generated by merging the M-band and I-band
cloud masks. To be conservative in identifying clear pixels, the
two masks are combined using the Boolean union operation,
meaning that if an M-band pixel is detected as cloudy, all
the collocated I-band pixels will also be marked as cloudy.
The M-band cloud mask is created using three BT tests on
3.70 (M12), 10.78 (M15), and 12.01 (M16) µm channels,
respectively. First, if the 10.78 µm BT (BTM15) for a given
pixel is lower than the corresponding surface temperature
estimated from GEOS-FP by 10 K or more, then that pixel
is considered as a cloudy pixel. Second, if the BT difference
between 10.78 and 3.70 µm is positive over the vegetated
surface (with monthly mean climatology of NDVI > 0.25),
it is indicative of nighttime low-level water cloud due to the
lower cloud emissivity at 3.70 µm. Third, the BT difference
test between 10.78 and 12.01 µm is used to detect the
cirrus clouds. The cloud mask algorithm for I-band resolution
goes through two BT threshold tests, respectively, at BTI4
and BTI5; pixels whose BTI4 and BTI5 values are smaller
than 295 K and 265 K, respectively, will be identified as
cloudy pixels. After cloudy pixels are removed, the remaining
pixels are further filtered to remove water pixels (using pixel
land_water_mask within VIIRS level-1B geolocation data) and
twilight pixels (solar zenith angle is less than 100◦) before the
fire detection process.

C. Identification of the Fire Pixel

The process of identifying the fire pixels from cloud-free
pixels consists of two consecutive steps on the top level: the
absolute and dynamic tests to identify fire pixel candidates,
and the contextual test which exploits dynamic thresholds to
screen the fire pixels.

1) Absolute Test: Pixels that clearly show energy signatures
indicative of a fire or thermal anomaly are identified first,
following the methods used by the AF-I algorithm [6]. If a
pixel satisfies any of the following criteria, it will be labeled
as a fire pixel:

BTI4 > 320 K and QFI4 = 0 (1)

or

BTI4 = 367 K and QFI4 = 4 (2)

or

1BTI45 < 0 K and BTI5 > 310 K and QFI5 = 0 (3)

or

BTI4 = 208 K and BTI5 > 335K and QFI5 = 0 (4)

where 1BTI45 is the BT difference between BTI4 and BTI5
and QFI4 and QFI5 are the pixel quality flags of channel
I4 and I5, respectively. A zero value of those quality flags
guarantees an unsaturated status of the observation on the cor-
responding bands, while a value of 4 indicates the saturation
status. Equations (2)–(4) enable FILDA-2 to include the high
temperature I4-band saturated pixels as absolute fire pixels
[6]. FILDA-2 calculates the fire parameters for the absolute

fire pixels without any additional down-selection. After the
absolute test, FILDA-2: 1) applies the dynamic threshold test
to the remaining cloud-free pixels to select the potential fire
candidate pixels and 2) applies the contextual test to ultimately
identify the fire pixels.

2) Dynamical Threshold Test With a Constraint of DNB:
The selection of fire pixel candidates entails two stages. First,
nighttime visible light anomalies are picked out through the
probability test on the LDNB−I obtained in Section III-A, given
by

pDNB = 1 − F(LDNB−I, α, β) < 1% (5)

where F(LDNB−I, α, β) is the cumulative distribution function
of a Gamma distribution. The fitting parameters used are
the shape parameters α and the rate parameter β derived,
as described in Section II-B. Pixels whose LDNB−I values are
significantly greater than the climatology (with pDNB < 1%)
would be flagged as visible light anomalies. For these pixels,
a fire candidate is determined according to

BTI4 > DTI4 and 1BT I45 > 3 × MAD(1BT I45) (6)

where DTI4 is the dynamical threshold (DT) determined for
each visible light intensity anomaly. It is the mean value
of BTI4 in a 501 × 501 pixel area (equivalent to 187 ×

187 km2) centered at a fire pixel candidate, including only
“clean background” pixels, that is, after exclusion of cloudy,
water, and absolute fire pixels. The MAD(1BTI45) is the
spatial MAD of the 1BTI45. Visible light anomaly pixels that
satisfied (6) are considered as the candidate fire pixels and
included in subsequent contextual tests. Compared with the
operational VIIRS AF-I product that requires BTI4 > 295 K
and 1BTI45 > 10 K [6], both of these selection criteria are
relaxed taking advantage of the visible light information that is
a strong indicator of fire at night. While this step is sufficient
for fire detection in the rural-mountain and intermountain
regions where the existence of artificial light is minimal and
further removed based on the climatology of artificial light
locations, it can be less robust in the city areas where the light
may not arise from the same source of thermal anomaly seen
from the infrared bands. In these cases, the thermal anomalies
around the stable surface light sources will primarily be
detected based on the test in IR bands.

For pixels that are not flagged as anomalous by the DNB
probability test, a more stringent test on the IR band is applied,
given by

BTI4 > 295 K and 1BTI45 > 10 K. (7)

Only pixels that pass the dynamical threshold test (5), (6),
or (7) are classified as fire pixel candidates and proceed
onward to the battery of contextual tests.

3) Contextual Test: The contextual test implemented in
FILDA-2 is to confirm the ultimate status for the potential fire
pixel candidates identified in Section III-C2. In concept, this
step consists of a set of probability tests customized for each
fire pixel candidate. The statistics used in forming those tests
are generated from the “clean background” pixels adjacent to
the fire pixel candidate using a dynamically assigned window.
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To minimize the impact of the thermal anomalies on the
background statistics, we further remove the pixels that have a
high probability to be a fire pixel from the clean background as
described earlier since they may potentially increase the value
of the background temperature, using the following criterion:

BTI4 > 300 K and 1BTI45 > 10 K. (8)

The parameters to be retrieved for the contextual test include
the spatial mean of the background BTI4 (BTI4b), the spatial
mean of the background 1BTI45 (1BTI45b), the spatial MAD
of the background BTI4 (MAD(BTI4b)), and the spatial MAD
of the background 1BTI45 (MAD(1BTI45b)). For the I-band,
the size of the spatial sampling window, centered at each fire
pixel candidate, ranges dynamically from 11 × 11 (4 × 4 km2)
up to 51 × 51 pixels (20 × 20 km2) until at least 25% or
30% usable pixels are encountered. These customized statistics
are used to form the contextual criteria applied to each fire
candidate for the confirmation of its ultimate status based on
the N -σ rule, given by

1BTI45 > 1BT I45b + γ × MAD(1BTI45b) (9)

1BTI45 > 1BT I45b + δ (10)

BTI4 > 1BT I4b + ϵ × MAD(BTI4b). (11)

The values of γ , δ, and ϵ in the tests are determined upon the
score of its DNB probability test (pDNB) in Section III-C2.
If pDNB < 0.5% (rare than a 2.5-sigma event), the following
values are used: γ = 2.5, σ = 7.5, and ϵ = 2.5; otherwise,
rigid criteria are applied as γ = 3, σ = 9, and ϵ = 3. The
contextual test is essentially a set of hypothesis tests with
statistics. Because the DNB has been shown to be effective
for detecting smaller and cooler fires, thresholds for pixels
that pass the DNB tests are less strict.

4) Filtering the SAMA False Alerts: The SAMA is a known
source of false fire detections in the VIIRS data, to exclude
the false alters caused by the SAMA. Following [6] and [63],
the region extending from 10◦N to 55◦S and −110◦W to 11◦E
is defined as the region of SAMA influence in FILDA-2. Fires
detected within this region are then subjected to cross-checks
on the collocated 1.61- (M10) and 4.05 µm (M13) BT. Using
the size of the same window that matches the contextual
test (for absolute fire, a 25 × 25 window is preassigned),
the background BT mean of M10 channel (BTM10b) and
M13 channel (BTM13b), and corresponding MAD(BTM10b) and
MAD(BTM13b) are used to filter out false alerts caused by the
SAMA, given by

BTM10 > BTM10b + 3 × MAD(BTM10b) (12)

BTM13 > BTM13b + 3 × MAD(BTM10b). (13)

Fire pixels that fail these tests are downgraded to a clean pixel
and flagged as SAMA-affected.

D. Retrieval of Fire Parameters

Since there is possible saturation in I4-band observation,
FILDA-2 calculates the FRP, VLP, VEF, and MCE on the M-
band. For an M-band fire pixel, its FRP is distributed equally
among the I-band fire pixels contained within that M-band

pixel. The FRP is calculated for an M-band fire pixel by the
following:

FRP =
Aσ(LM13 − LM13b)

C
(14)

where A is the pixel area (in unit of m2), σ is the
Stefan–Boltzmann constant, C is a sensor and channel depen-
dent fitting parameter [5], [87] (for VIIRS M13 channel, C =

2.88 × 10−9Wm−2sr−1µm−1K−4). LM13 is the M13 radiance
of a fire pixel, and LM13b is the mean of the background M13
radiance sampled by the same spatial dynamical window used
in Section III-C3.

As a parameter, the VLP value for each fire pixel is
calculated via a modification of Wang et al. [24]

VLP = π A(LDNB − LDNBb) (15)

where LDNB is the DNB radiance for the fire pixels, and
LDNBb is its background counterpart. It is the mean of the 1%
minimum clean and water-free DNB radiance for the entire
granule aiming to offset the impact of the moonlight.

VEF is defined as the ratio of the VLP and the FRP, given
by

VEF =
VLP
FRP

. (16)

MCE calculation follows Wang et al. [24] with slight
modification. In the FILDA-2, the intercept of the regression
is fixed as 1, considering that the upper bound of MCE is
1. This leads to the slope coefficient changing from 0.016 to
0.017

MCE = 0.017 ln VEF + 1. (17)

It is worth noting that the visible light power detected
over city regions or stable light sources is less reliable to be
used in the calculation of fire combustion status. These pixels
are flagged as city pixels in the FILDA-2 product. There is
also evidence that light emissions in high latitudes, such as
airglow and aurora borealis radiance, can reach values higher
than 60 nWcm−2sr−1 in DNB observation [67]. Fires under
aurora borealis conditions are likely rare because they both are
ephemeral phenomena; if in the cases they do coincidentally
occur, positive biases will be brought into the estimation of
the VLP, VEF, and consequently the MCE. Currently, there is
no effective approach in FILDA-2 to recognize airglow and
aurora, but this will be a future refinement.

IV. RESULTS

The products generated from FILDA-2 science com-
pute facility (SCF) are available on the website of
Atmospheric and Environmental Research (AER) Labora-
tory, The University of Iowa, Iowa City, IA, USA, via
(http://esmc.uiowa.edu:3838/fires_detection/). To demonstrate
the performance of the new developments, we selected several
typical wildfire events based on the size of the fire and the
availability of coincident ASTER overpasses. Global compar-
isons of the FILDA-2 products with the standard VIIRS AF-M
and AF-I products are also presented in Sections IV-A–IV-E.
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Fig. 5. Multiband and multisensor view of the black summer bushfire on January 8, 2020, by VIIRS and ASTER. (a) Google image of the fire event.
(b) VNP I-band 3.74 µm BT at 14:00 UTC; the averaged view zenith angle for this scene is ∼65.1◦. (c) VJ1 I-band 3.74 µm BT at 14:54 UTC with a view
zenith angle of 16.8◦. (d) Same as (b) but for resampled DNB observation at M-band resolution. (e) ASTER 8.3 µm image overpass at 13:05 UTC. The boxes
on the images indicate the fire pixel footprints color-coded according to their corresponding detection algorithms. FILDA-2 VJ1 detection in (c) is displayed
as light-gray-shaded areas in (a). The resolution of FILDA-2 (VNP and VJ1) and AF-I detection are 375 m, and for FILDA-1 it is 750 m. The orange circle
indicates an isolated fire event that is ∼5 km away from the fire front. See text for details.

A. 2019/2020 Black Summer Bushfire Season
The 2019/2020 black summer bushfire season, which took

place between June 2019 and May 2020, was a series
of megafires that occurred along the southeast coastline of
Australia. It was one of the largest fire complexes in Australian
history, with more than 44.5 million acres affected. Most of
the fires happened in New South Wales, including the Gospers
mountain fire, which was the largest forest fire ever recorded
in Australia. Satellite images show that these fires started in
late October 2019 and ended in late January 2020. During
this period, ASTER captured approximately 1000 frames
of nighttime observations over the southeastern coastline of
Australia, containing multiple fire observations that can be
used to evaluate the performance of the FILDA-2 product.

Fig. S1 in the Supplementary Material displays the distri-
bution of fire pixels detected by FILDA-2 from August 1,
2019, to February 29, 2020, for the southeastern coastline
of Australia. Zoomed-in plots show individual fire events
that were captured by ASTER. Figs. 5 and 6 and Figs. S2
and S3 in the Supplementary Material provide two case
studies, which are part of Fig. S1 in the Supplementary Mate-
rial, that demonstrate the superior performance of FILDA-2.
Figs. 5 and 6 compare the fire detections of FILDA-2, AF-I,
and FILDA-1, while Figs. S2 and S3 in the Supplementary
Material compare the fire detections of FILDA-2, AF-I, and
AF-M. The two case studies show that FILDA-2 has a slightly
better performance than AF-I (Figs. 5 and 6), as more isolated
fire pixels confirmed by ASTER were detected for a clearer
delineation of the fire lines by FILDA-2. It is also evident
that FILDA-2 outperforms both FILDA-1 (Figs. 5 and 6) and
AF-M (Figs. S2 and S3 in the Supplementary Material) in fire

detection, as only a limited number of fires were detected by
FILDA-1 and AF-M in these two cases. The improvement of
FILDA-2 can be attributed to the inclusion of nighttime visible
light information through the temporal probability test, which
enables the use of more relaxed thresholds in the contextual
test of IR data. We will delve into this topic in greater depth
in the subsequent paragraphs.

For example, Fig. 5 shows an isolated fire incident (high-
lighted by the orange circle) around 5 km away from the fire
front on January 8, 2020. While the presence of this fire can
be easily verified through both VJ1 Level-1B observation with
a near-nadir view and the ATSTER observation at a resolution
of around 90 m, AF-I failed to detect the fire since the cooler
BTI4 of 293 K for this fire pixel at the VNP view angle of
65◦ does not meet the criteria for identifying it as a fire pixel
candidate. At this view angle, the signal of fires is averaged
across a larger pixel area compared to the nadir view of
VJ1 or ASTER. The weaker fire signal would make this fire
pixel also fail to pass the contextual test if a 3-σ criterion
were applied. In contrast, FILDA-2 recognized this pixel as
a visible light anomaly in the DNB imagery at a confidence
level of 0.99 when compared with the nighttime visible light
climatology, allowing it to be classified as a valid fire pixel
candidate. Consequently, the thresholds for the subsequent
tests were relaxed to a 2.5-σ level and the pixel was ultimately
classified as a fire spot.

Another example shown in Fig. 6 occurred on January 3,
2020, when fires were present within a relatively warmer back-
ground scene. The BTI4b in 5-km range was 295.5 K, with a
MAD(BTI4b) value of 0.95 K, and the corresponding 1BTI45b
and MAD(1BTI45b) were 2.96 K and 0.43 K, respectively.
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Fig. 6. Multiband and multisensor view of the black summer bushfire on January 3, 2020, by VIIRS and ASTER. (a) Google image of the fire event.
(b) VNP I-band 3.74 µm BT at 13:54 UTC; the averaged view zenith angle is ∼67.6◦. (c) VJ1 I-band 3.74 µm BT at 14:48 UTC with a view zenith angle of 22◦.
(d) Same as (b) but for resampled DNB observation at M-band resolution. (e) ASTER 8.3 µm image overpass at 12:47 UTC. The boxes on the images indicate
the fire pixel footprints color-coded according to their corresponding detection algorithms. FILDA-2 VJ1 detection in (c) is displayed as light-gray-shaded
areas in (a). The resolution of FILDA-2 (VNP and VJ1) and AF-I detection are 375 m, and FILDA-1 resolution is 750 m. The orange circle indicates that
FILDA-2 better delineated the fire front in the Northeast. The green circle indicates potential isolated fire spots omitted by both FILDA-2 and AF-I. See text
for detail.

Although the absolute temperature of the pixels was high
(>305 K), the relatively small difference of approximately
8.88 K between the 1BTI45 of those fire pixels and the back-
ground 1BTb prevented the AF-I algorithm from identifying
them as fires. However, in FILDA-2, visible light information
from DNB played a strong constraint in the selection of the
fire pixel candidates, allowing the thresholds of BT difference
to be relaxed down to 7.5 K and enabling the detection of
the fire. This resulted in a more accurate depiction of the fire
front, as shown in the orange circle in Fig. 6.

More examples supporting the conclusion earlier can be
found in Fig. S1 in the Supplementary Material. While the
information from the nighttime visible light measurements
enhanced the ability of FILDA-2 to detect smaller and cooler
fires, missed detection can still occur, as demonstrated by the
isolated hot spot highlighted by the green circle of Fig. 6.
Although the DNB information helped to identify the isolated
spot as a potential fire candidate, the relatively low BTI4
of 298.6 K only resulted in a 1.06-σ level of significance
through (10) in the contextual test. Despite achieving 3.15-σ
and 6.39-σ levels of significance could be obtained through
(9) and (11), respectively, the joint possibility of the isolated
spot being a thermal anomaly was 0.85, which did not meet
the required confidence level of 0.99. Consequently, FILDA-2
rejected it from being recognized as a fire. However, the VJ1
FILDA-2 product was able to detect this particular fire pixel,
as shown as the pink shaded area in Fig. 6(a) as well as in
Fig. 6(c) due to its near-nadir view for this event.

The current operation synergy between the VNP and VJ1
allows for the VIIRS to observe the Earth at a near-nadir view

within a one-hour window, in contrast to the 3-h lag in the
MODIS Terra and Aqua constellation. In addition to serving
as a supplement to the VNP detection, the synergistic use of
the VNP and VJ1 fire products also offers the opportunity to
investigate the impact of view geometry on the contextual test
of a fire detection algorithm, which may have contributed to
the aforementioned missed detection. This will be a potential
future improvement of FILDA-2.

B. Case Validation of the MCE

While it is ideal to measure CO and CO2 to directly validate
the MCE, it is prohibitively difficult to collect those measure-
ments over a fire pixel at night, particularly when considering
the need to have multiple days of ground measurements within
the satellite overpass time, which is necessary to form a
statistically significant assessment.

The most recent studies investigated the usage of MDR,
derived from the daytime TROPOMI NO2 to CO ratio, to esti-
mate combustion efficiency [8], [88]. These data show that the
MDR resonates with the combustion status (MCE): a higher
MDR over a fire corresponds to a higher MCE associated with
high-temperature flaming combustion, while a lower MDR
indicates low-temperature smoldering combustion. Following
this concept, we used the hourly CO and NO2 data measured
by the three EPA sites located in North Los Angles during
6∼21 September 2022, when the Bobcat fires around the
Angeles National Forest were within a 5-km radius of these
measurement sites. The background diurnal climatology of CO
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Fig. 7. Assessment of FILDA-2 MCE with EPA NO2 and CO data for the Bobcat fire in Angeles National Forest, California, USA, 2020. (a) Fire progression
map of the Bobcat fire. (b) Scatter plot of the MDR between NO2 and CO as measured by EPA versus FILDA-2 MCE. See text for details.

and NO2 was derived from July 2022 when no significant
wildfires were occurring.

We derived the EPA-based MDR through

MDR =
1NO2

1CO
(18)

where the 1NO2 is the concentration of the fire-emitted NO2,
it was obtained by subtracting the background NO2 concen-
tration from the real-time measurements of NO2 concentration
during the period of the fires events. 1CO is the concentration
of fire-emitted CO obtained through the same approach as
NO2. A 3-h moving average of MDR centered at the VIIRS
overpass time was obtained and used as a proxy of in situ MCE
for the evaluation of satellite-based MCE. Wind direction
from the MERRA-2 dataset was used to select the days of
observation for the comparison. Fig. 7(b) shows a scatter
plot comparing the EPA-MDR and FILDA-2 MCE. The data
demonstrate a positive correlation between the EPA-MDR and
FILDA-2 MCE. While the correlation coefficient is modest
∼0.68, it is statistically significant (p < 0.05). Taking into
consideration the resolution of the EPA CO measurement is
only 0.01 ppb, the 5-km distance between the fire location
and EPA sites, and the statistical bulk method applied to the
MCE, it is reasonable to conclude that the FILDA-2 MCE
change does resonate with the change of burning phases and
can be used to represent the combustion efficiency. Future field
campaigns will be necessary to explore this idea further.

C. Global Comparison Between FILDA-2 and AF-I Products

Globally, the FILDA-2 product outperforms AF-I in fire
detection. Table III summarizes the detected fire of FILDA-2
and AF-I from August 2019 to October 2019 on a global scale
in the three M-band aggregation zone. The scan angle bound-
aries are provided at the bottom of Table III. In general, after
removing the bow-tie-affected fire pixels (discussed in the fol-
lowing), no significant omission of fires happened in FILDA-2
compared with AF-I. Indeed, FILDA-2 was able to pick out
25.37% more nighttime thermal anomalies when compared
with AF-I. That fraction increased to 32.27% in areas viewed

TABLE III
COUNTS OF DETECTED HOTSPOT PIXELS FROM FILDA-2 AND AF-I

AS A FUNCTION OF AGGREGATION ZONE

by the M-band aggregation zone 3, where pixel sizes are up to
four times larger than the nadir. As aforementioned, a larger
pixel size dilutes the fire signal and consequently reduces the
chance of the fire pixel being detected. The rising fraction of
fire pixels as compared with the AF-I indicates that the angular
dependence of the fire detection was mitigated in FILDA-2
when DNB information is utilized in the detection process.
This will be further examined and explained in Fig. 11. The
distributions of BTI4 and 1BTI45 for fire pixels detected by
FILDA-2 and AF-I are shown in Fig. 8. Noticeable in Fig. 8(a)
are the much smoother boundaries of BTI4 and 1BTI45 for
segregating the thermal anomalies (with p < 0.005) and the
fire-free background. The smooth boundaries benefit from the
fact that all the thresholds applied in FILDA-2 are dynamically
determined, indicating that commonly used absolute thresh-
olds for selecting the fire candidates in AF-I are too rigid.
In contrast, the temperature distribution of the AF-I fire pixels
presents sharp boundaries, as shown in Fig. 8(b), indicating
that the possibility of recognizing smaller and cooler fires
is eliminated due to the fixed thresholds that AF-I applies,
as shown in Fig. 5.

As aforementioned, FILDA-2 detected a total of 128 518
(25.37%) more fire pixels than AF-I. Closer analysis reveals
that those extra hot spots detected by FILDA-2 can be cat-
egorized into two types. The first type, known as type-I,
consists of the isolated fire pixels for which there is no
companion AF-I fire found, as shown in Fig. 5. The second
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Fig. 8. Two-dimensional temperature distribution of the fire detected by different algorithms. The x-axis is the 3.74 µm BT (BTI4). The y-axis is the BT
difference between the 3.74 and 11.45 µm (1BTI45). (a) For all the fire pixels detected by FILDA-2 algorithm. (b) For all the fire pixels detected by AF-I
algorithm. (c) For fire pixels detected by FILDA-2 only (type-I and type-II). (d) For type-I fires detected by FILDA-2 only. See text for details.

type, known as type-II, is the fire pixel neighboring at least
one AF-I fire pixel. While it is expected that relaxed thresholds
would lead to the detection of more type-II fires, the detection
of type-I fires is particularly noteworthy, as it demonstrates
the superior performance of FILDA-2 (as shown in Fig. 5).
The temperature distribution of those fires only detected by
FILDA-2 (type-I + type-II) is shown in Fig. 8(c), among
which 43.13% were type-II fires and 56.87% were isolated
fires. The temperature distribution of the type-I fire (only
detected by FILDA-2 with no AF-I neighbored) is shown in
Fig. 8(d). While quadrant II to quadrant IV contains pixels that
were not selected by AF-I as fire candidates but were selected
and proved to be significantly warmer than the surrounding
by FILDA-2, it is interesting to see that ∼28.75% (12 171) of
pixels remain in the quadrant I, which was fire candidates that
selected initially but subsequently failed to pass the contextual
tests in AF-I algorithm. Carefully examining the AF-I algo-
rithm QA for those pixels revealed that 97.8% (11 900) of the
quadrant I pixels were initially included as the fire candidates.
For the remaining 2.2%, no specific reason for their exclusion
in the AF-I algorithm could be found. Based on our data
examination, their BTI4 and 1BTI45 all surpassed the absolute
thresholds of 320 K and 10 K. Among the 11 900 candidates,
11.73% (1396) were persistent heat sources near/over the
water surface that passed all three contextual tests but were

Fig. 9. FRP comparison between the VNP FILDA-2 and AF-I data product
for August 2019–October 2019. See text for details.

simply excluded because of their near-water/over-water nature.
A value of 82.84% failed to pass one or more contextual tests
in AF-I but was picked up by FILDA-2 due to the relaxed
MWIR thresholds enabled by the DNB information.

To evaluate the accuracy of the FRP calculation for
FILDA-2, a point-by-point comparison of FRP values was
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Fig. 10. Illustration of the bow-tie effect on the double counting of fire pixels. (a) Global view of the AF-I fire detection, note in FILDA-2 the bow-tie-affected
fire pixels are well recognized and removed for August–October 2019). (b) Example in double counting of fire detection in AF-I, two repeated patterns are
highlighted by the broken line boxes. (c) Same area as (b) but for FILDA-2 product. (d) Same as (b) but is projected on Earth’s surface. (e) Same as (c) but is
projected on Earth’s surface. The orange and red boxes in (d) indicate the bow-tie-affected observations shown in (a). The green box shows bow-tie-affected
areas for another consecutive VIIRS scan block that is not shown in (a). See text for details.

conducted for fires detected by both AF-I and FILDA-2,
as shown in Fig. 9. As aforementioned, the FRP is derived
based on the M-band 4.05 µm observation (742 m) considering
the saturation nature of the I-band 3.74 µm. Then, M-band

FRP is distributed equally into the I-band fire pixels. In order
to make a fair comparison, the I-band FRP is summed back to
the M-band resolution. As shown in Fig. 9, the FRP calculation
of FILDA-2 and AF-I can be viewed as identical since they are
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Fig. 11. Angular distribution (from nadir to the end of scan or EOS)
of different fire products. (a) For FRP and number fraction of the AF-I
bow-tie-affected fire pixels. (b) For the number of fires detected by the AF-I
(after removing the bow-tie-affected fire pixels, blue line) and by FILDA-2
(red line). (c) Same as (b) but for the FRP density. See text for details.

derived from the same physical formula and observations but
only with different implementations. The slight difference can
be explained by the different window sizes used to acquire
the nonfire clear-sky pixels for calculating the background
radiance.

Another improvement of the FILDA-2 products is the
identification and removal of the bow-tie effect and the inter-
scan overlap. While by design bow-tie-affected pixels are
removed in the onboard aggregation process (i.e., prior to
data transmitted to the surface), a significant amount of the
residual overlapping pixels remains in the VIIRS level-1B
dataset. A consequence of the residual is the double-counting
of the fire pixels in bow-tie areas. Fig. 10 is the global
fire detection of the AF-I algorithm from August 2019 to
October 2019. The double-counted fires are marked with blue
color. Fig. 10(b) demonstrates a fire event that was observed
by VNP in two consecutive scan blocks. Squares in cyan
are the AF-I detection. Two repeated patterns circled by the
dashed rectangles could be easily discerned by comparing
them with their solid line counterparts. In this case, 42%
of the fires are double counted. FILDA-2 uses the DNB
aggregation scheme Opt.32 as the reference frame to calculate

Fig. 12. Inter-comparison of FRP and MCE between VNP and VJ1 FILDA-2
products. (a) Global FRP comparison. (b) Global MCE comparison. Fire
data were resampled into a 0.25◦

× 0.25◦ climate modeling grid (CMG)
for point-by-point comparison. The dashed red line is the one-to-one line and
the solid black line is the best regression line. Colors underneath the scatter
points represent the density of the data.

the bow-tie index of the I- and M-bands (overlap ratio of the
I-band and M-band pixels with DNB in the same scan block).
Since no significant bow-tie effect and interscan overlap occur
in Opt.32, a bow-tie index of 1 indicates that the pixel
is free from the impact of the bow-tie effect. In general,
a value of 0.85 is sufficient to remove most affected pixels
while still preserving full coverage of Earth observations.
Fig. 10(c) shows the fire detection of the FILDA-2. Clearly, the
double-counted pixels have been effectively recognized and
removed.

Fig. 11 shows a zoomed-in analysis of the bow-tie-affected
fire pixels from August 2019 to October 2019, globally.
Fig. 11(a) shows that the doubled-counted fire pixels can
account for up to ∼18% of the total fires detected. The total
FRP of these double-counted fires can reach up to 838 GW
(20.83%), which is significant when applied to construct
the emission inventories for the chemistry transport model.
We applied the same technique to remove the doubled-counted
fire pixels in the AF-I fire dataset. Fig. 11(b) shows the
comparison of the number of detection for FILDA-2 and AF-I
detection after bow-tie removal. We find that the detection
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Fig. 13. Global distribution of FRP and MCE retrieved from VJ1 at night for August 2019–July 2020, averaged to a 0.25◦
× 0.25◦ CMG. (a) FILDA-2 VJ1

FRP distribution August 2019–July 2020. (b) FILDA-2 VJ1 MCE distribution August 2019–July 2020. The reddish grids on the MCE map over Siberia, the
Middle East, North Dakota, and Texas are gas flaring of the petroleum industry indicating their flaming combustion status. Inset: Histogram of differences
of (a) FRP and (b) MCE between VJ1 and VNP. Both of the histograms exhibit a Gaussian distribution with zero mean value indicating no systematic bias
between VNP and VJ1 retrievals.

has a strong angular dependence and FILDA-2 was able to
detect more fires toward the EOS, thus mitigating the angular
dependence. Fig. 11(c) compares the averaged FRP density
(i.e., FRP divided by the pixel area) of the FILDA-2 and AF-I
products. Since FILDA-2 is able to detect cooler and smaller
fires, it is reasonable to see that the majority of the FILDA-2
curve (red line) is below the AF-I curve (blue line). Moreover,
since FILDA-2 detects more fire at the EOS, a subtle positive
trend of relative increase is discernible when moving from
the nadir to EOS, which indicates again that the angular
dependence of the fire detection is mitigated.

D. VJI and VNP Results

The performance of VJ1 FILDA-2 was evaluated by com-
paring its FRP and MCE values to those of VNP. These
parameters were investigated spatially at the 0.25◦ CMG to
minimize the impact of the different footprints of the fires
detected by VNP and VJ1. Fig. 12 shows the daily point-by-
point comparison of VJ1 and VNP in terms of FRP and MCE.
We see that the VJ1 FRP and MCE are highly correlated with
their VNP counterparts (∼0.85 for FRP and ∼0.87 for MCE),
with only a ∼2% mean bias difference in FRP and no bias in
MCE. The slight discrepancy in the FRP can be explained by
the following reasons. First, the difference of 50 minutes in

overpass time may result in the two sensors sensing slightly
different stages of the fire. Second, the difference in the view
geometry of VJ1 and VNP can greatly impact the detection
of fire, as shown in the previous discussion, and consequently,
contribute to the differences in the FRP comparison. On the
other hand, the MCE shows more robust statistics and con-
centrated distribution, since MCE is essentially derived from
the VEF, which is less sensitive to the viewing geometry.
Interestingly, there are two apparent clusters centering at
0.89 and 0.94 in the MCE scatter plot [Fig. 12(b)], indicating
two unique combustion modes on the global scale, namely,
the biomass burning and the gas flaring. It is also evident
and reasonable to assume that the biomass-burning cluster
should have a longer tail/radius compared with the gas-flaring
cluster, considering that the combustion characteristics can
vary greatly between different land surface types.

Taking the daily gridded data into the monthly average,
Fig. 13 shows the monthly global distribution of the fire
pixel density, FRP, and MCE of VJ1 detection. Their VNP
counterparts are shown in Fig. S4 in the Supplementary Mate-
rial. Fig. S5 in the Supplementary Material shows the FRP
distribution of FILDA-2 and its counterpart Wang et al. [24].
It is evident that detections of FILDA-2 provide a larger
fire spatial coverage (∼24.43%) compared with the value of
∼7.83% coverage of Wang et al. [24] on the global scale.
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Fig. 14. Fire progression map of a fire event in California, on
August 19, 2020. (a) FRP map of the fire event. (b) VEF map of the fire
event. The shaded areas are the fire area detected by VIIRS on the following
day (August 20, 2020).

The relative increase of the fire spatial coverage detected
by FILDA-2 is ∼212%. North America, China, India, and
Europe contribute the most to this increase, as more pre-
scribed fires are detected in these regions. Furthermore, with
the improvement made in FILDA-2, more gas flaring and
mining-related burning activities are detected in areas, such as
North Africa, North Dakota, and Texas in the U.S., the Persian
Gulf of the Mideast, Siberia of Russia, and the northwest of
China. Their conspicuously high MCEs make those areas in
stark contrast to other biomass-burning activities, as shown
in Fig. 13(b), providing the opportunity for quantifying the
emission of fossil fuel (e.g., methane) burning from space.
Moreover, the insets in Fig. 13 show the distribution of the
monthly difference of FRP and MCE between VNP and VJ1
retrievals. For either FRP or MCE, the difference obeys a
Gaussian shape distribution with a mean value around zero,
indicating no significant systematic bias exists between VJ1
and VNP results.

E. Potential of the VEF for Monitoring Fire Line Progression

While FRP and MCE can be used to constrain the estimates
of the chemical speciation of fire emissions, VEF also has the
potential strength of indicating the progression of the fire line.
Fig. 14 shows an example of a fire event that happened in
California, in 2020. Fig. 14(a) is the FRP map on August 19,
2020, on which gray-shaded areas are the regions where the
fire progressed on the following day (August 20, 2020). Since
FRP only provides information on the total energy emitted by
the fires in a pixel, no clear fire front can be defined based on
the FRP map provided. Those pixels neighboring the perimeter
of the fire pixels detected the following day had very low FRP
values.

Because VEF is essentially an index of the energy distri-
bution of the combustion, a clear fire front can be defined,
as shown in Fig. 14(b). The VEF data show that the fire line
progressed much faster to the southwest and northwest, where
VEF was significantly higher than in other directions, such as
to the east. This pattern of fire line is blurry on the FRP map.
In fact, large FRP values may often occur at places that are
distant from the active firefront. This is understood because
as fire lines pass through an area, what is left behind the fire
lines are smoldering fires. These smoldering fires have lower
temperatures than active flaming fires, but they can have large
spatial areas (as a result of the time persistence of smoldering
combustion), which can, in turn, lead to larger FRP at the fire
pixel level.

V. CONCLUSION

Following Polivka et al. [14] and Wang et al. [24], we have
developed an FILDA-2 for nighttime fire identification and
combustion efficiency characterization applicable to Suomi-
NPP, NOAA-20, and future VIIRS instruments, which carry
the DNB’s low-light visible measurement. We have designed
a generalized resampling scheme to effectively map the DNB
level-1 data from VIIRS aboard VJ1, as well as any future
satellites of the JPSS constellation, to the footprint of VIIRS
M-band pixels. A historical nighttime light database was
integrated into FILDA-2 to identify the visible light anomalies
produced by fires. VIIRS observations from its I-band, TIR,
and MWIR bands are included in the fire detection process
for better detection accuracy.

ASTER nighttime imagery, VIIRS operational active fire
detection products, and the EPA trace gas measurements were
used to validate the fire detection and MCE obtained by
FILDA-2. Case studies and the global assessments through
VNP products indicate a significant improvement in detecting
smaller and cooler fires of FILDA-2 compared with the AF-I
and AF-M due to the usage of VIIRS DNB and I-band
observations. While maintaining good consistency in the FRP
calculation when compared with AF-I FRP, FILDA-2 also
shows superior performance in minimizing the double count-
ing of fire pixels caused by the interscan overlap (bow-tie)
nature of the VIIRS observations. The potential application of
MCE for fire emission estimates of NO2 and CO was evaluated
against the EPA’s real-time in situ measurements for the first
time. Global assessments of FILDA-2 show good consistency
for VNP and VJ1 FRP and MCE.

While most of the thresholds applied in selecting fire can-
didates were dynamically determined in FILDA-2, those used
in the contextual tests remain fixed and will be further investi-
gated in future studies. Another potential future improvement
would be to develop a set of view geometry-dependent thresh-
olds for contextual tests by exploiting the near-nadir view fire
detection within the one-hour window provided by the current
VNP and VJ1 operation scheme.

The availability of the VEF, FRP, and MCE of FILDA-2 at
the fire pixel level in near-real time provides new opportunities
for using the satellite fire information to support tactical
planning of wildfire control and the estimation of the chemical
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speciation of fire emission for air quality forecast and climate
studies. Future development of FILDA-2 includes the study of
the view geometry-dependent thresholds for contextual tests,
the development of a method for daytime MCE estimation,
and the impact of aerosol on MCE estimation.
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