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H I G H L I G H T S

• The aerosol–photolysis effect (APE) reduces surface O3 and PM2.5 concentration in Delhi during post-monsoon period.
• APE and Aerosol Radiative Feedback (ARF) notably influence O3 and PM2.5 levels from smoke during crop residue burning period.
• Control of urban VOC helps both O3 and PM2.5 reductions in Delhi, even after considering biomass burning emissions.
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A B S T R A C T

Atmospheric aerosol radiative effects regulate surface air pollution (O3 and PM2.5) via both the aero
sol–photolysis effect (APE) and the aerosol–radiation feedback (ARF) on meteorology. Here, we elucidate the 
roles of APE and ARF on surface O3 and PM2.5 in the heavily polluted megacity, Delhi, India by using a regional 
model (WRF-Chem) with constraints from limited surface observations. While APE reduces surface O3 (by 6.1%) 
and PM2.5 concentrations (by 2.4% via impeding the secondary aerosol formations), ARF contributes to a 2.5% 
and 17.5% increase in surface O3 and PM2.5, respectively. The ARF from smoke enhances PM2.5 (by 8%), black 
carbon (by 10%), and primary organic aerosol (by 18%) during late autumn when crop residue burning is sig
nificant. The synergistic APE and ARF have a negligible impact on the total concentrations of O3 and PM2.5. 
Hence, the reduction of PM2.5 may lead to O3 escalation due to weakened APE. Sensitivity experiments indicate 
the need and effectiveness of reducing VOC emission for the co-benefits of mitigating both O3 and PM2.5 con
centrations in Delhi.

1. Introduction

Ground-level ozone (O3) and fine particulate matter with aero
dynamic diameter ≤2.5 μm (PM2.5) are dominant air pollutants in 
megacities such as Delhi, India. Delhi has been experiencing severe air 
pollution episodes in recent years, especially during the post-monsoon 
(Oct.–Nov.) and winter (Dec.–Feb.) seasons associated with crop res
idue burning and widespread winter haze, respectively (Bharali et al., 
2019; Kumar et al., 2020; Saxena et al., 2021). Crop residue burning 
typically occurs twice a year, mostly in northwest India, after rice har
vests in October–November and wheat harvests in April–May (pre-
monsoon) – providing farmers with a quick and cost-effective method 
for clearing fields for the next cropping season (Lan et al., 2022). This 

practice has particularly severe effects during the post-monsoon season, 
exacerbated by limited dispersion due to inversion conditions, which 
spreads across northern India, including Delhi, resulting in critical levels 
of PM2.5 and O3 (Singh et al., 2023). Despite government bans and ad
visories, crop burning remains widespread due to socioeconomic factors, 
limited awareness of its harmful effects, and the financial advantages 
over alternative methods (Bhuvaneshwari et al., 2019; Lan et al., 2022). 
Both PM2.5 and O3 concentrations often exceed Indian National Ambient 
Air Quality Standards, posing a serious threat to public health (Jat et al., 
2021; Nelson et al., 2021; Sahu and Kota, 2017), leading to ~ 1 million 
and 31,000 premature deaths per year in India, respectively (Conibear 
et al., 2018; Ghude et al., 2016). Besides, O3 and PM2.5 exposure dam
ages crops and significantly reduces wheat and rice (22–42%) yields in 
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India (Sinha et al., 2015). Therefore, the prediction and process un
derstanding of both PM2.5 and O3 are highly essential to improve the air 
quality and mitigate their impacts on public health and agriculture in 
this region.

Past studies have focused on several factors including emission, 
meteorology, and atmospheric chemistry governing the high concen
trations of PM2.5 and O3 in the Indian region (e.g., Bran and Srivastava, 
2017; Ojha et al., 2020). One factor often overlooked in the literature is 
the impacts of aerosol–radiation interaction (ARI) on both PM2.5 and O3 
and the non-linear synergistic processes therein. The ARI influences O3 
chemistry and atmospheric oxidation capacity by modulating photolysis 
rates in the troposphere, known as the aerosol–photolysis effect (APE). 
This process further influences the particle formation process and air 
quality (Benas et al., 2013; Li et al., 2011). Modeling studies have 
highlighted the reduction in photolysis rate (e.g., NO2 and O3 photolysis 
rates) due to the strong absorption of aerosols (Liao et al., 1999; Tie 
et al., 2003), with subsequent effects on the O3 formation. Several 
studies have analyzed the impact of APE in different parts of the world 
such as the urban environment in China (Xing et al., 2017; Yang et al., 
2022), Mexico (Li et al., 2011), Europe (Real and Sartelet, 2011), and 
Texas (Flynn et al., 2010). However, such studies are limited over the 
Indian region, especially during the months of crop residue burning.

ARI not only entails APE but also includes aerosol–radiation feed
back (ARF) on meteorology that in turn affects surface O3 and aerosol 
distribution. ARF can lead to a substantial decrease in solar radiation 
reaching the ground, thereby reducing surface temperature and the 
planetary boundary layer (PBL) height. Via absorption of radiation, 
aerosols can heat the atmosphere, increase atmospheric stability, and 
further enhance aerosol concentration in the PBL; this positive feedback 
via ARF is particularly significant during severe pollution episodes (Liu 
et al., 2018; Wang et al., 2020). A recent study by Yang et al. (2022)
investigated APE and ARF effects focusing on O3 during extreme air 
quality episodes in pre-monsoon months in Northern China, whereas Wu 
et al. (2020) focused on PM2.5 during winter pollution events. However, 
these studies did not explore the synergistic (or confounding) impacts of 
ARF and APE for both O3 and PM2.5. Furthermore, the findings from the 
extreme haze events, as conducted in aforementioned studies in China, 
might not fully address the prevailing conditions in Delhi, which is 
affected not only by local emissions but also by the emissions from crop 
residue burning in neighboring areas - one of the uniqueness that dis
tinguishes the air pollution problems in Delhi from other megacities in 
East Asia.

Here we employ a regional chemistry transport model (WRF-Chem) 
to elucidate the relative impact of APE and ARF and study their impli
cations for simultaneously mitigating surface PM2.5 and O3 in the Na
tional Capital Region (NCR) of India. WRF-Chem has been widely used 
for the simulation of PM2.5 and O3 across the Indian region (e.g., Mogno 
et al., 2021; Sharma et al., 2017). But only a few studies have focused on 
the impacts of ARF (Bharali et al., 2019; Kumar et al., 2020) with no 
study analyzing the pure and synergistic effect of APE and ARF. Kumar 
et al. (2020) showed that the inclusion of ARF in WRF-Chem can lead to 
a significant improvement in PM2.5 forecast by reducing the mean bias 
up to 25% in NCR Delhi. Mukherjee et al. (2020) found a 30% reduction 
in surface O3 concentration due to APE associated with black carbon 
(BC) over South Asia. Hence, while reducing BC may lead to a decrease 
in PM2.5, it may lead to an increase in surface O3 concentration. While 
the earlier studies explored these individual aspects, our study is unique 
in several key aspects. First, we aim to capture a broader picture of APE 
and ARF effects by focusing on both PM2.5 and O3 over Delhi during the 
post-monsoon period when crop residue burning occurs. Second, our 
study takes a unique approach by elucidating the synergistic APE and 
ARF impacts that were not studied previously. The scientific consider
ation of the role of both APE and ARF and their synergistic effects is 
essential for the air pollution mitigation strategy, and their overall net 
effects across the Indian region would remain elusive without a quan
titative study. Third, to quantify these impacts, we employ the factor 

separation approach (FSA) method (see section 2.2) introduced by Stein 
and Alpert (1993), a distinct methodology from the earlier works. 
Moreover, our study fills the gap of studies in understanding the ARI 
processes during the crop residue burning period by accounting these 
effects from the fire emissions.

The contributions of APE and ARF are quantitatively analyzed here 
through model sensitivity simulations with the constraint of surface 
observations (described in section 2.3), focusing on the crop residue 
burning period in November 2018 over NCR Delhi. Results are presented 
in Section 3, starting from the comparison of the model results with 
observations (Section 3.1) to the analysis of the impact of pure and 
synergistic APE and ARF and their impact from fire emissions (Section 
3.2–3.4) and discussions (Section 3.5). The summary and conclusions 
are provided in Section 4.

2. Methodology

2.1. Model description

A regional model with Unified Inputs (of initial and boundary con
ditions) for the Weather Research and Forecasting model coupled with 
chemistry (UI-WRF-Chem) (Fast et al., 2006; Grell et al., 2005; Wang 
et al., 2023) is used to simulate O3 and PM2.5 in Delhi in two nested 
domains at 12 and 4 km horizontal resolutions, respectively. The outer 
and inner domains cover the entire northern Indian subcontinent and 
NCR Delhi, respectively (Fig. 1). There are 47 vertical layers from the 
ground to 50 hPa. The UI-WRF-Chem model utilizes Modern-Era 
Retrospective Analysis for Research and Applications, Version 2 
(MERRA-2) data to provide both meteorological and chemical initial 
and boundary conditions. Initial conditions for soil properties are taken 
from the Global Land Data Assimilation System (GLDAS) at a horizontal 
resolution of 0.25◦ × 0. 25◦.

The WRF-Chem emission preprocessing system (WEPS) designed in- 
house is used to prepare the anthropogenic and biogenic emissions 
needed for UI-WRF-Chem (Sha et al., 2021; Wang et al., 2023). 
Anthropogenic emissions are based on the Emissions Database for 
Global Atmospheric Research - Hemispheric Transport of Air Pollution 
(HTAPv2; Janssens-Maenhout et al., 2015) which includes PM10, PM2.5, 
BC, OC, NH3, NMVOCs, CO, NOx and SO2 at a horizontal resolution of 
0.1◦ × 0.1◦. Biomass burning emissions from the Fire Locating and 
Modeling of Burning Emissions Inventory (FLAMBE; Reid et al., 2009) is 
used to specify the sources of BC, OC, and gaseous species (CO, NO2) as a 
function of time. Further details of FLAMBE and WEPS can be found 
elsewhere (Ge et al., 2017; Wang et al., 2013). Regional Acid Deposition 
Model version 2 (RADM2) (Stockwell et al., 1990) coupled with the 
Modal Aerosol Dynamics for Europe (MADE) and the Secondary Organic 
Aerosol Model (SORGAM) (Schell et al., 2001) are used to simulate the 
gas-phase chemistry and aerosols. Our choice of the RADM2 mechanism 
was based on the findings of Sharma et al. (2017) and other relevant 
literature on gas and aerosol simulations using the WRF-Chem model 
over the Indian region, such as studies by Chutia et al. (2019) and Girach 
et al. (2017). Sharma et al. (2017) investigated the sensitivity of 
modeled O3 using both the MOZART and RADM2 mechanisms with 
HTAPv2 emissions, which we also employed in this study, and found 
comparable performance between the two mechanisms. HTAP-MOZART 
yielded higher noontime surface O3 with a normalized mean bias value 
of ~34.2%, compared to ~20.9% for HTAP-RADM2 over Indian region 
(Sharma et al., 2017). Additionally, the inorganic chemistry system 
considered in MADE is currently limited to sulfate, nitrate, ammonium, 
and water components in the aerosol phase. The Fast Tropospheric UV 
and Visible Radiation Model (FTUV) (Li et al., 2005) is used to evaluate 
aerosol effects on photolysis rates and the Goddard shortwave radiative 
transfer module (Chou and Suarez, 1994) is employed for estimating 
shortwave radiation. Other physics parameterization schemes 
(Table S1) used here are based on the earlier studies using the 
WRF-Chem model over the Indian region (Chutia et al., 2019; Ojha et al., 
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2020).

2.2. Simulation scenarios and analysis method

We utilized the factor separation approach (FSA) method (Stein and 
Alpert, 1993) to obtain the pure contribution of APE and ARF and their 
synergistic contributions due to the mutual interactions among APE and 
ARF. Based on the FSA, four simulations called AFRP (Anthro-
Fire-Radiation-Photolysis), AFR0P0, AFRP0, and AFR0P, have been per
formed to quantify the pure and synergistic impacts of APE and ARF on 
O3 and PM2.5 (See Table 1). Subscript 0 denotes that the corresponding 
effect is turned off. In the AFRP simulation, the impacts of both ARF and 
APE are considered. In AFR0P0, both ARF and APE are turned off, and in 
AFRP0, and AFR0P, only ARF and APE are considered respectively. In all 
these simulations, anthropogenic and fire emissions are turned on.

Considering that fARF+APE, fARF, fAPE, and f0 are the simulation re
sults including both APE and ARF (experiment AFRP), only ARF, and 
APE (experiment AFRP0, and AFR0P), and neither APE nor ARF 
(experiment AFR0P0), respectively, one can show the synergistic con
tributions between APE and ARF as follows: 

f /ARF+APE = fARF+APE− fAPE –fARF + f0 (i) 

Further, to investigate the impact of APE and ARF from fire emissions 
we have performed three more simulations: AF0RP (no fire emission); 
AF0R0P (fire emission and ARF turned off), and AF0RP0 where fire 
emission and APE are turned off (Table 1). The fire impact on APE and 
ARF is estimated using the below equations 

Contribution of APE from fire = (AFRP – AFRP0) – (AF0RP – AF0RP0)(ii)

Contribution of ARF from fire = (AFRP – AFR0P) – (AF0RP – AF0R0P)(iii)

Each simulation is performed from 22 October to 30 November 2018 
with the first 10 days as the model spin up.

2.3. Observational data

Ground-based measurements of PM2.5, O3, and meteorological pa
rameters (temperature and relative humidity) at different stations over 
NCR Delhi (Fig. 1b and Table S2) for the period of November 2018 are 
obtained from the Central Pollution Control Board (CPCB), India. The 
instruments are periodically calibrated, and measurements are regularly 
checked and controlled with quality assurance by the CPCB (cpcb.nic. 
in/quality-assurance-quality-control/) (CPCB, 2018; Singh et al., 2021). 
Additional data assurance is considered by removing very high (>1500 
μg m− 3) and low (<10 μg m− 3) PM2.5 values following Kumar et al. 
(2020). For O3 data filtering, we excluded days with abnormally low O3 
values during daytime hours, as well as data points with constant O3 
values over extended periods or showing abrupt variations. Further
more, we ensured that the selected data reflected the typical diurnal 
pattern of O3 concentrations in the urban environment.

3. Results

3.1. Model evaluation

The AFRP and AFR0P0 simulations are first used for the evaluation of 
the overall impact of ARI on the model results. The diurnal pattern and 
magnitude of 2 m air temperature (T2) and relative humidity (RH) are 
captured well by the UI-WRF-Chem in both simulations, with a rela
tively smaller bias in the AFRP case (Fig. 2a and b and Table S3). The 
normalized mean bias (NMB) between the observation and model is 
reduced from − 11% in AFR0P0 to − 5% in AFRP for RH and 5% to 2% for 
T2.

Fig. 2(c and d) illustrate the monthly averaged diurnal variation of 
observed and simulated surface PM2.5 and O3 concentrations in mega
city Delhi during November 2018. The average observed PM2.5 con
centration in Delhi is 156.7 μg m− 3, with modeled values of 155 μg m− 3 

and 138 μg m− 3 in the AFRP and AFR0P0 simulations, respectively, all 
exceeding the WHO daily guideline of 15 μg m− 3 (WHO, 2021) by 9 to 
10 times. While the figure shows the diurnal variation of O3, the 
observed maximum 8-h mean O3 concentration is 83 ppb, with modeled 
values of 102 ppb and 110 ppb in the AFRP and AFR0P0 simulations, 
respectively, which are about 1.5 to 2 times higher than the WHO 
guideline of ~51 ppb (100 μg m− 3). The UI-WRF-Chem captured the 
observed diurnal variations of surface O3 and PM2.5 with a good corre
lation (of 0.96–0.97 and 0.52–0.62, respectively) in both AFRP and 
AFR0P0 simulations (Fig. 2c and d and Table S3). However, the model 
overestimates the daytime O3 peak in both simulations (MB of 16 ppb in 
the AFR0P0 case), with relatively less bias in the AFRP case (MB of 11 

Fig. 1. Simulation domains showing terrain height (meter). (a) Domain 1 covers the Northern Indian subcontinent at 12 km resolution (b) Domain 2 covers NCR 
Delhi at 4 km resolution. Red circles represent the observation sites, the dashed black and grey lines represent national highways and other roads, the white dashed 
lines represent railways, and the solid blue lines show the state boundaries.

Table 1 
UI-WRF-Chem experiments performed in the study.

Sl No Exp Anthro Fire Radiation Photolysis

1 AFRP ON ON ON ON
2 AFR0P0 ON ON OFF OFF
3 AFRP0 ON ON ON OFF
4 AFR0P ON ON OFF ON
5 AF0RP ON OFF ON ON
6 AF0R0P ON OFF OFF ON
7 AF0RP0 ON OFF ON OFF
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ppb). Additionally, the peak of the observed PM2.5 mass related to the 
morning rush hour traffic emissions is not captured well by the 
UI-WRF-Chem. Nevertheless, the modeled correlation of diurnal varia
tion with observation has coefficients of 0.52–0.62. The differences 
between the model and observation could be associated with un
certainties in the input emissions, boundary layer processes, meteo
rology, and chemical processes. Furthermore, the absolute levels of O3 
and PM2.5 simulated here are also consistent with the earlier 
model-based studies in this region (Hakim et al., 2019; Ojha et al., 
2020). However, the model performed better in the AFRP experiment i. 
e., when both the APE and ARF are considered. The overall NMB be
tween the model and observed O3 is reduced from 20% in AFR0P0 to 
13% in the AFRP experiment. Similarly, the NMB decreased from 12% in 
AFR0P0 to 2% in the AFRP simulation for PM2.5. This supports previous 
findings by Kumar et al. (2020) where they reported that ARF can lead to 
~21–25% reduction in the mean bias of the PM2.5 forecast in Delhi; 
however, the APE effects on O3 and synergistic APE and ARF effects 
were not quantified in their study. The contrast between AFRP and 
AFR0P0 suggests the need to consider both the role of APE and ARF 
toward the improvement of UI-WRF-Chem simulation of surface O3 and 
PM2.5.

3.2. Pure contribution of APE and ARF

Fig. 3(b, c, f, g, j, k) and Table 2 illustrate the pure contribution of 
APE and ARF on surface O3, NO2, and PM2.5 concentrations over NCR 
Delhi. The pure APE contributed to a reduction in the O3 concentration 
by 3.29 ppb (6.1%) via weakening the efficiency of the photolytic re
action. In the pure APE scenario, the surface photolysis rates J[NO2] and 
J[O1D] are decreased by ~23% over NCR Delhi (Figs. S1a and d, 
Table 2), which in turn reduces the surface O3 and OH radical concen
tration (Fig. S1g). The reduction in J[NO2] and J[O1D] is particularly 
significant (Fig. S2) during the early morning (07:30–08:30 LT) and late 
afternoon hours (15:30–16:30 LT, i.e., when the solar zenith angle is at 
around 60◦), signifying the influence of long path length of aerosol 

optical extinction for incoming ultraviolet radiation. In contrast, the 
pure impact of ARF increases surface O3 over most areas of the simulated 
domain by up to 3 ppb but slightly decreases in the megacity Delhi by up 
to 0.5 ppb. Overall ARF increases the surface O3 by 2.5% over the entire 
simulated domain (Fig. 3c), primarily due to the reduction of the PBL 
height and surface energy budget by ARF. The aerosol-induced solar 
dimming (− 47 Wm-2) leads to a cooling of –1K at the surface and de
creases the surface wind speed (− 0.11 ms− 1) and noontime boundary 
layer height by ~143 m over the simulated domain (Fig. 4). The reduced 
ventilation due to the shallower atmospheric boundary layer and weaker 
winds caused by the ARF enhances the precursor levels resulting in 
greater O3 chemical formation. Contrarily, in megacity Delhi, which is a 
VOC-limited regime (Nelson et al., 2021), increased NO2 (Fig. 3g) con
centrations at the surface associated with the ARF inhibit O3 formation 
due to the enhanced titration by NO, although this O3 reduction due to 
ARF in megacity Delhi is far less significant than the changes caused by 
APE.

In the case of PM2.5, pure ARF contributes substantially to the PM2.5 
accumulation near the surface with an average contribution of 17.5% 
(16.8 μg m− 3) over the simulated domain (Fig. 3k). The increased at
mospheric stability due to pure ARF hinders the PM2.5 dispersion and 
subsequently aggravates PM2.5 pollution near the surface. On the other 
hand, pure APE inhibits the PM2.5 concentrations and leads to a decrease 
of 2.4% (2.29 μg m− 3). To corroborate this finding, changes in the sec
ondary inorganic aerosols such as sulfate, nitrate, and ammonium (SNA) 
in pure ARF and APE scenarios are analyzed (Fig. S3). Bawase et al. 
(2021) reported that SNA ions (31.44 ± 20.69 μg m− 3) are one of the 
largest contributors to PM2.5 along with organic matter in Delhi. As seen 
in Fig. S3 and Table 2, pure ARF substantially enhances the surface SNA 
concentration while pure APE leads to a slight reduction. On average, 
sulfate, nitrate, and ammonium concentrations are increased by 0.26 μg 
m− 3 (6.1%), 10.4 μg m− 3 (25.9%), and 3.1 μg m− 3 (23%), respectively 
due to pure ARF. The extent of SNA changes due to APE is relatively 
smaller than the changes caused by the pure ARF effect. Pure APE de
creases sulfate, nitrate, and ammonium concentration by 0.25 μg m− 3 

Fig. 2. Diurnal variation of observed (black) and simulated variables (blue for AFRP and red for AFR0P0 experiments). (a) 2m temperature (◦ C), (b) relative hu
midity (%), (c) O3 (ppb), and (d) PM2.5 (μg m− 3) in megacity Delhi during November 2018.
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(5.9%), 1.6 μg m− 3 (4%) and 0.56 μg m− 3 (4.2%), respectively. The 
lower abundances of atmospheric oxidants due to the modification of 
photolysis by pure APE decreases the rate of SNA formation and sub
sequently alleviates the PM2.5 concentrations near the surface.

3.3. Synergistic contribution of APE and ARF

The synergistic impact includes the mutual interactions between the 
APE and ARF. The synergistic contribution of APE and ARF results in an 
overall decrease of − 0.54 ppb (1%) in the monthly mean O3 concen
tration averaged during the daytime (07:30–17:30 LT) (Fig. 3d). In the 

Fig. 3. Spatial distribution of the monthly mean concentrations and changes of O3 (upper panel), NO2 (middle panel), and PM2.5 (lower panel) averaged during the 
daytime (07:30–17:30 LT) in November 2018. (a, e, i) are from AFRP simulation; (b, f, j) are the change of concentrations due to pure APE, (c, g, k) are similar to (b, 
f, j) but due to pure ARF, and (d, h, l) are the changes due to synergistic APE and ARF. The calculated values averaged over NCR Delhi (denoted as white box panel 
(a)) are shown at the top of each panel.
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case of daily peak (13:30–16:30 LT) O3, the synergistic APE and ARF 
contributed − 0.8 ppb of total concentration (Fig. S4d). However, in 
VOC-limited regimes such as in megacity Delhi, the synergistic impact is 
nearly insignificant (<0.5%) (Fig. 3d and S4d). Similarly, synergistic 
APE and ARF have a negligible effect on modifying the photolysis rates 
(<0.5%) (Figs. S1c and f) and consequently little impact on the OH 
radical (1%) (Fig. S1i) and secondary particulate concentration (<2%) 
(Figs. S3d, h, l). In the case of NO2 and PM2.5, the synergistic impact 
contributed less than ±1 % of the total concentrations (Fig. 3h and l). 
Overall, the synergistic impact of APE and ARF on O3 and PM2.5 con
centrations is nearly negligible and far less significant than pure APE and 
ARF impact.

3.4. Impact of ARF and APE from fire emissions

The mean distribution of PM2.5 and O3 and their precursors due to 
fire emissions over NCR Delhi during November 2018 is presented in 
Figs. S5 and 6. Smoke burning enhances the monthly PM2.5 concentra
tions ranging from 1 to 12 μg m− 3 (daily values up to 10%, Fig. S7), with 
an average contribution of 4% over the simulated domain (Fig. S5). BC 
and primary organic aerosol (POA) contributions from fire emissions are 
6% and 15%, respectively. An enhancement of 1–3% in the secondary 
inorganic aerosols is also simulated due to fire emissions (Figs. S5d, e, f). 
Fire emissions enhance the surface CO concentration up to 65 ppb (14%) 
over the simulated domain (Fig. S6b). Large enhancement in the gas and 
aerosol concentrations due to fire is found over the north-western states 
of Punjab and Haryana where crop residue burning is more intense 

Table 2 
Pure and synergistic contributions of APE and ARF on O3, PM2.5, NO2, SNA, photolysis rates, and OH radical concentration.

Contribution O3 

(ppb)
PM2.5 (μg 
m− 3)

NO2 

(ppb)
Sulfate (μg 
m− 3)

Nitrate (μg 
m− 3)

Ammonium (μg 
m− 3)

J[NO2] (10− 3 

s− 1)
J[O1D] (10− 6 

s− 1)
OH 
(ppt)

AFRP 54.110 95.900 27.140 4.258 40.175 13.290 3.898 9.519 0.075
Pure ARF 1.330 16.770 2.970 0.260 10.397 3.118 0.003 − 0.084 − 0.007
Pure APE − 3.290 − 2.290 1.300 − 0.250 − 1.600 − 0.558 − 0.872 − 2.260 − 0.024
Synergistic APE & 

ARF
− 0.540 − 0.890 0.200 − 0.029 − 0.640 − 0.197 − 0.024 − 0.044 − 0.001

Fig. 4. Changes in the (a) downward shortwave (SW) irradiance (Wm− 2), (b) 2m temperature (K), (c) sensible heat (Wm− 2), (d) latent heat (Wm− 2), (e) surface 
wind (ms− 1), (f) PBL height (m), and (g) relative humidity (%), caused by pure ARF during the daytime (07:30–17:30 LT) in November 2018. Shown on the top of 
each panel are the values averaged over NCR Delhi (denoted as the white box in the top left panel).
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during the late autumn, which then are transported in the downwind 
directions covering NCR Delhi. In monthly average, the ARF from smoke 
enhances the PM2.5, BC, and POA concentrations by 8%, 10%, and 18%, 
respectively (Fig. 5). ARF contributes 5–7% enhancement in the sec
ondary inorganic aerosol concentrations (Fig. S8). The ARF contribu
tions from the fire emissions show an overall enhancement of 5 ppb in 
surface CO and 0.1 ppb in surface O3 concentration in the simulated 
domain (Fig. 5a and b). Aerosols from fire emissions decrease the 
shortwave radiation reaching the surface up to 10 Wm-2 and tempera
ture up to 0.1 K and increase the relative humidity (Fig. S9). On the other 
hand, APE from fire results in a 6% reduction in the surface O3 con
centration which is attributed to the lower photolysis rate (Fig. S10), and 
less than 2% reduction in surface PM2.5.

3.5. Discussions

Fig. 6 summarizes the different pathways of APE and ARF affecting 
O3 and PM2.5. The ARF cools the surface, reduces turbulent mixing, and 
is conducive to the increase of relative humidity (Fig. 4g), all of which 
are contributory to the enhancement in surface PM2.5 and precursor gas 
concentration. The enhanced chemical loss via strong NO titration effect 
(NO + O3 →NO2+O2) associated with the high NOx emissions plays a 

critical role in weakening O3 production in the megacity Delhi.
In the case of pure APE, the weakening O3 and OH concentration 

further impedes the secondary aerosol formations and subsequently al
leviates the near-surface PM2.5 concentrations. A substantial reduction 
(~23%) in surface J[NO2] due to APE has been observed in Beijing, 
China during haze events further hindering the secondary aerosols 
(3.5–9.4%) and PM2.5 (4.2%) concentrations (Wu et al., 2020), which is 
consistent with our results. The pure contributions of APE and ARF on 
surface O3 as a function of PM2.5 in megacity Delhi (Fig. S11) further 
show that the extent of O3 changes due to APE is larger than that due to 
ARF. The APE-induced O3 reduction is higher when surface PM2.5 can 
reach high levels larger than 180 μg m− 3 (Fig. S11). Relatively strong 
APE effects on the surface O3 formation compared to ARF have also been 
reported in North China (Yang et al., 2022); however, the synergistic 
effects were not quantified in their study. Despite the little impact of 
synergistic APE and ARF effects observed in our study, these findings 
help to advance our understanding of the complex interactions between 
aerosol, radiation, and photolysis interactions.

Overall, the elucidation of the role of APE and ARF shows the 
importance of adopting a comprehensive mitigation strategy to co- 
control both O3 and PM2.5 concentrations in the megacity Delhi. A 
combined approach that considers both APE and ARF is important as 

Fig. 5. Spatial distribution of the contributions of ARF from fire emissions on (a) O3, (b) CO, (c) NO2 (d) PM2.5 (e) BC, and (f) POA averaged during the daytime 
(07:30–17:30 LT) in November 2018.
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Fig. 6. Different pathways showing APE and ARF effects on PM2.5 and O3. The ‘+’ and ‘–’ signs denote increasing and decreasing effects, respectively.

Fig. 7. (a, d) O3 (b, e) OH and (c, f) PM2.5 responses to the 30% and 50% reduction of VOC emissions over NCR Delhi in November 2018.
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neglecting either factor could lead to unexpected consequences for the 
other pollutant. For example, controlling PM2.5 concentration by 
reducing emissions may lead to O3 escalation by increasing photolysis 
and at the same time reduce O3 by increasing the solar input at the 
surface and hence, the turbulent mixing. Since surface O3 formation in 
Delhi is VOC limited and VOCs are common precursors for both O3 and 
PM2.5, effective control of VOC emissions is required to counterbalance 
future O3 escalations.

To examine the O3 and PM2.5 responses to VOC emission reduction, 
we have performed two more sensitivity experiments by reducing VOC 
anthropogenic emissions by 30% and 50% (Figure S12 and Fig. 7) with 
fire emissions turned on and accounting both APE and ARF effects. This 
integrated approach has significant importance, as biomass burning 
emissions also contribute to VOC emissions, with CO being one such 
component that is considered in this study. The 30% VOC reduction 
resulted in a decrease of surface O3 concentration by 21% over NCR 
Delhi (Fig. 7a). The O3 decrease became 38% in the 50% VOC emission 
reduction scenario and led to a large decrease (48%) in the OH radical 
concentration (Fig. 7d and e). As OH is the key reactive species in the 
formation of secondary inorganic aerosols, the reduction in VOC emis
sions by 30–50% reduces the SNA concentration by 12–26% (Fig. S13). 
As a result, the 30% and 50% reduction of VOC leads to a decrease in 
PM2.5 concentration by 8% and 16%, respectively (Fig. 7c–f). Our study 
suggests that controlling VOC emissions effectively helps in lowering O3 
levels directly and also indirectly via weakening ARF effects from the 
reduced PM2.5, emphasizing the need and efficacy of VOC control for 
simultaneous mitigation of O3 and PM2.5 in Delhi. Additionally, 
considering the notable influence of APE and ARF from fire emissions, it 
is imperative to comprehensively account for the contribution of crop 
residue burning to the pollution levels and their transport processes 
across the northern Indian region in the air quality mitigation efforts.

In our study, we explored how APE and ARF influence surface O3 and 
PM2.5 levels within the same fire and anthropogenic emission in
ventories and chemical mechanism. While the choice of emission in
ventories (including fire and anthropogenic) and chemical mechanisms 
can significantly influence the magnitude of these effects on O3 and 
PM2.5, our key findings remain consistent across different inventories. 
We conducted a comparative analysis for PM2.5 emissions from multiple 
inventories, such as HTAPv2 (Janssens-Maenhout et al., 2015), EDG
ARv5 (Crippa et al., 2021), and the latest HTAPv3 (Crippa et al., 2023) 
with detailed sectoral disaggregation. Notable differences were 
observed over the Indian region (see Fig. S14), specifically, over main
land India, HTAPv2 emissions exceeded EDGARv5 by 14% and HTAPv3 
by 13%, while in the NCR Delhi, HTAPv2 emissions were 30% higher 
than HTAPv3 and exhibited similar performance to EDGARv5 (Fig. S14). 
The monthly averaged diurnal variation plot between observed and 
model simulated PM2.5 concentrations using both HTAPv2 and HTAPv3 
revealed an overall normalized mean bias (NMB) of 36.8% for HTAPv3 
and 2% for HTAPv2 in megacity Delhi during November 2018 
(Fig. S15c). While there are variations in the magnitude of observed 
effects with different inventories, the overall direction of the impacts 
remains consistent across different emission inventories. Model results 
using both HTAPv2 and HTAPv3 inventory showed significant impact 
on PM2.5 levels due to emissions, although differences in absolute 
values. Nevertheless, the relative differences remained similar across 
different inventories. Regardless of the inventory used, our key findings 
regarding the contribution of APE to the reduction in surface O3 and 
PM2.5 concentrations and the role of urban VOC control in reducing both 
O3 and PM2.5 remain unchanged. Additionally, the synergistic impact of 
APE and ARF on O3 and PM2.5 concentrations is less significant than 
their individual impacts, irrespective of the emission inventory 
employed. We focused on HTAPv2 for this study as the model simulated 
chemical variables using HTAPv2 compared well with observed data 
and showed better agreement than HTAPv3 in our analysis. In our future 
work, we plan to explore how the absolute values of observed effects 
change with different emission inventories (fire and anthropogenic) and 

chemical mechanisms and to consider additional emission sources, such 
as open waste burning (Sharma et al., 2019) and fine-tune the latest 
HTAPv3 based on regional inventory data over Indian region.

Moreover, we intend to focus on latest Fire Inventory from NCAR 
version 2.5 (FINNv2.5) emission inventory (Wiedinmyer et al., 2023), 
which employs both MODIS and VIIRS-based fire counts, and provides 
VOC species for various chemical mechanisms, including MOZART, 
GEOS-Chem, and SAPRC99, resulting in substantially higher fire emis
sions compared to FLAMBE (See Fig. S16) and FINNv1.5 (Wiedinmyer 
et al., 2023). Previous studies by Zhang et al. (2014) also found signif
icant differences among smoke inventories, with FLAMBE showing the 
largest emissions in tropical Africa. These comparisons highlight the 
need for a comprehensive evaluation of fire emissions. While differences 
in emissions between FLAMBE and FINNv2.5 affect the magnitude of the 
fire impact, the main findings of our work remain consistent across 
different emission inventories, similar to cases involving anthropogenic 
emissions. For instance, reducing VOC emissions (e.g., by 50%) leads to 
a decrease in oxidant levels (O3 and OH) and secondary aerosols, 
resulting in a reduction in PM2.5, regardless of the emission inventory 
used. To provide a more comprehensive assessment of emission effects, 
especially for understanding VOC emissions, we plan to expand our 
analysis by mapping non-methane organic compounds (NMOC) emis
sions to the RADM2 chemical mechanism for FINNv2.5.

4. Summary and conclusions

The pure and synergistic impacts of APE and ARF on surface O3 and 
PM2.5 are quantified using a regional model UI-WRF-Chem employing 
the FSA method over NCR Delhi in November 2018. The model per
formance in simulating surface O3 and PM2.5 is improved after the in
clusion of both APE and ARF with a significant reduction in mean bias in 
the megacity Delhi. The results reveal that APE reduces the surface O3 
and PM2.5 concentrations by 6.1% and 2.4%, respectively over NCR 
Delhi. On the other hand, the increased atmospheric stability due to ARF 
hinders the pollutant’s outflow and enhances the PM2.5 (17.5%) and O3 
(2.5%) concentrations. The synergistic APE and ARF contributed very 
little (~1%) to the surface O3 and PM2.5 concentration. The ARF de
teriorates the air quality during the crop residue burning period, 
enhancing the monthly average PM2.5, BC, and POA concentrations by 
8%, 10%, and 18%, respectively. This study implies that reducing PM2.5 
concentrations may lead to O3 escalation due to weakened aerosol ra
diation interactions. Considering the remarkable impact of APE and ARF 
on O3 and PM2.5, these effects need to be considered in designing policies 
for co-controlling O3 and PM2.5. Reducing VOC emissions (by 50%) re
sults in a decrease in the oxidant levels (38–48% decrease in O3 and OH) 
and secondary aerosols (22–26%) and leads to a 16% PM2.5 reduction, 
highlighting the effectiveness of VOC control in achieving O3 and PM2.5 
reductions in Delhi. Furthermore, in light of the significant influence of 
APE and ARF from fire, it becomes crucial to consider both pollution 
sources and transport processes across the Indian subcontinent when 
implementing air quality mitigation strategies.

This study provides first-hand information on evaluating the effects 
of APE and ARF on O3 and PM2.5 using a meteorology–chemistry 
modeling framework in Delhi. The elucidation of the role of APE and 
ARF is particularly significant in understanding the complex PM2.5 – O3 
nexus over polluted regions and the co-benefits attributed to the 
reduction in both pollutants. However, other factors such as heteroge
neous reactions associated with aerosol and aerosol-cloud interactions 
also need to be considered for further insights into the impact of aerosol 
radiative effects on O3 and PM2.5 concentration. Furthermore, expand
ing the systematic observations of aerosol composition and optical 
properties in the study region along with development of up-to-date 
time varying regional inventories can lead to a more comprehensive 
evaluation of aerosol radiative effects and their contribution to the 
regional climate dynamics. Future research will explore how the abso
lute values of observed effects vary with different emission inventories 

L. Chutia et al.                                                                                                                                                                                                                                  Atmospheric Environment 339 (2024) 120890 

9 



(fire and anthropogenic) and chemical mechanisms, while also consid
ering additional emission sources such as open waste burning and fine- 
tuning global inventories based on regional inventory data over Indian 
region.
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