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A B S T R A C T   

Ambient fine particulate matter (PM2.5) is strongly associated with various adverse health outcomes. However, 
the lack of extensive PM2.5 measurements, and especially of its components, hinders the assessment of negative 
health effects caused by PM2.5 in many parts of the world. To address this issue, a new satellite instrument, the 
Multi-angle Imager for Aerosols (MAIA), with improved design for providing aerosol optical depth (AOD) of high 
quality, will be helpful in determining concentrations of total and speciated PM2.5. According to the retrieval 
algorithm of MAIA particulate matter (PM) products, level 2 (L2) PM products are generated based on MAIA AOD 
on days of observation. Bias-corrected chemical transport model (CTM) outputs are then merged with the L2 PM 
products to fill their gaps using a Bayesian Model Averaging (BMA) ensemble framework. This process creates the 
MAIA Level 4 (L4) gap-filled PM products. In this study, we aim to implement the MAIA framework and validate 
its feasibility after the launch of the MAIA satellite instrument. We used both Bayesian hierarchical model (BHM) 
and a Bayesian additive regression tree (BART) to predict L2 and CTM-based daily 1 × 1 km2 PM2.5 mass and 
speciation concentrations, along with prediction uncertainties, over the MAIA Primary Target Area in the 
Northeastern US in 2018. We then employed the BMA ensemble model to combine the L2 and CTM-based PM2.5 
mass predictions to fill gaps in L2 PM2.5 mass and produce Level 4 (L4) gap-filled PM2.5 mass. Our cross- 
validation experiments showed that both the BHM (R2 ranging from 0.60 to 0.82) and BART (R2 ranging from 
0.59 to 0.79) models performed well in predicting CTM-based PM2.5 speciation, with better results for sulfate, 
organic carbon, and elemental carbon. At the stage of L4 PM2.5 mass predictions, both BHM-based and BART- 
based BMA ensemble models demonstrated improved performance with their traditional R2 of 0.81 and 0.73, 
surpassing the input L2 and CTM-based PM2.5 mass. Additionally, our models showed excellent prediction un
certainty control with the coverage rates of 95% posterior prediction confidence interval associated of con
centration estimates to be 95% for BHM and 75% for BART across PM2.5 mass and speciation. Results from the 
proposed modeling techniques contribute to a deeper understanding of the health effects of PM2.5 for future 
epidemiological studies and provide insights into the MAIA mission for producing improved PM products for 
health research.   

1. Introduction 

Previous studies have documented the adverse health effects of air 
pollution, accounting for 6.4 million premature deaths and 209 million 
disability adjusted life years worldwide (Chowdhury et al., 2023). 
Among different types of air pollution, many studies have focused on 
airborne particulate matter, particularly the ambient fine particulate 

matter (PM2.5, particles with a diameter of <2.5 μm). PM2.5 has been 
linked to premature death (Orellano et al., 2020), cardiovascular and 
respiratory diseases (Yang et al., 2022; Zhang et al., 2022b), lung cancer 
(Pun et al., 2017), and adverse birth outcomes (Li et al., 2019). It is also 
increasingly recognized that different PM2.5 chemical components show 
distinct health impacts. For example, decreased sulfate levels were 
found to be associated with decreased cases of non-accidental and 
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cardiopulmonary deaths (Meng et al., 2023). Sulfate and nitrate were 
suggested to play important roles in the effects of PM2.5 exposure on 
being lower or higher for gestational age (Shen et al., 2022). However, 
these studies are often limited due to sparsely distributed monitoring 
networks that provide PM2.5 observations (Zhang et al., 2020c) or PM2.5 
simulations with coarse spatial-temporal resolutions (Liu et al., 2017). 
Additionally, monitors capable of measuring PM2.5 speciation are 
especially rare due to the high operating and analysis cost, severely 
constraining our ability to examine the toxicity of different chemical 
components of PM2.5 in population-based epidemiological studies 
(Diner et al., 2018; Geng et al., 2020; Meng et al., 2018). To increase the 
spatial and temporal coverage of both PM2.5 mass and speciation 
exposure estimates, data fusion models that incorporate information 
from monitoring measurements with complementary data sources are 
needed. 

Aerosol optical depth (AOD) retrieved by satellite instruments can 
provide insights into the abundance of airborne particles. Since the 
launch of NASA’s Terra satellite in late 1999, multiple AOD products 
have been developed based on measurements from advanced space
borne instruments such as the Multi-angle Imaging SpectroRadiometer 
(MISR) (Garay et al., 2020), Cloud–Aerosol Lidar and Infrared Path
finder Satellite Observations (CALIPSO) (Winker et al., 2009), Moderate 
resolution Imaging Spectroradiometer (MODIS) (Lyapustin et al., 2018), 
and Visible Infrared Imaging Radiometer Suite (VIIRS) (Murphy et al., 
2006). Because of the high spatiotemporal resolution and large 
geographical coverage, satellite-retrieved AOD has been widely used as 
a predictor of near-surface PM10 and PM2.5 concentrations in various 
statistical and machine learning models (Chen et al., 2018; He et al., 
2021; Pu and Yoo, 2022; She et al., 2020). For example, Zheng et al. 
(Zheng et al., 2017) explored the factors that influence the relationship 
between PM2.5 and AOD in Beijing. To overcome the issue of AOD 
missingness due to cloud cover or bright surfaces, chemical transport 
model (CTM) simulations are increasingly being adopted in AOD gap 
filling (Xiao et al., 2017; Xue et al., 2019). Satellite-driven PM2.5 mass 
concentrations have been extensively applied to investigate the associ
ations between PM2.5 exposure and various adverse health outcomes 
(Cohen et al., 2017; Crouse et al., 2015). On the other hand, only a few 
satellite aerosol data products possess the capability to characterize 
particle types, which is essential for filling the information gap created 
by the sparsely distributed speciation monitors. Since MISR fractional 
AOD values contain information on particle size distribution, shape, and 
light absorption, they have been used as important predictors of PM2.5 
speciation (Franklin et al., 2017; Geng et al., 2020; Hang et al., 2022; Liu 
et al., 2007a; Liu et al., 2007b; Meng et al., 2018; Meng et al., 2023; 
Zhang et al., 2020b). This level of information is not currently available 
from MODIS and VIIRS. However, MISR’s relatively low spatial resolu
tion (4.4 km for the aerosol product), narrow swath (~400 km), and low 
revisit frequency (~ once in 9 days), often limit its ability to generate 
PM2.5 speciation estimates to support large-scale air pollution epide
miological research. CALIPSO is also limited by its narrow swath (~ 60 
km) and low revisit frequency (~ once in 16 days) (Yang et al., 2021). 

In addition to the sensors’ limitation, another challenge in air 
pollution exposure assessment is exposure error, which tends to atten
uate the estimated health risks towards the null (Goddard et al., 2020; 
Keller et al., 2017; Levy et al., 2019). Current exposure models focusing 
on fusing CTM simulations with AOD values or imputing missing AOD 
values primarily use multi-stage regression models or machine learning 
algorithms (Amini et al., 2022; Ma et al., 2022; Zhang et al., 2020a). 
However, most of these models are unable to estimate, or effectively 
estimate, prediction uncertainty with the scarce ground-based obser
vations, CTMs, and satellite aerosol products. To address this issue, 
Bayesian inference methods have been proposed, offering more realistic 
and model-based uncertainty estimations by leveraging Markov chain 
Monte Carlo (MCMC) techniques and posterior probability distributions 
(Box and Tiao, 2011). For example, Chang et al. (Chang et al., 2014) 
introduced a Bayesian hierarchical model (BHM) that calibrates MODIS 

AOD to predict daily PM2.5 concentrations in the southeastern US, 
achieving an R2 of 0.78 in cross validation (CV) experiments. Murray 
et al. (Murray et al., 2019) used the Bayesian Model Averaging (BMA) 
ensemble framework to integrate PM2.5 estimates from both the CMAQ- 
based BHM and AOD-based BHM. The BMA ensemble model out
performed its input BHMs in 10-fold CV and yielded with an R2 of 0.83 
and a 97.15% coverage rate of the 95% prediction confidence interval 
(CI). 

Recognizing the limitations of current aerosol sensors such as MISR, 
and the challenges in exposure error quantification, an advanced satel
lite instrument, the Multi-Angle Imager for Aerosols (MAIA), has been 
developed to address these shortcomings. The MAIA mission is a 
collaborative endeavor between NASA and the Italian Space Agency 
(Agenzia Spaziale Italiana or ASI). This collaboration encompasses a 
joint scientific program, an integrated spaceborne observatory 
comprised of NASA’s MAIA satellite instrument and ASI’s PLATiNO-2 
spacecraft, networks of surface-based pollution sensors, and systems to 
launch and manage the observatory. MAIA aims to provide high- 
resolution ground-level PM composition information in a select set of 
large population centers around the world (Primary Target Areas or 
PTAs in MAIA terminology), and examine their associations with various 
adverse health outcomes (Liu and Diner, 2017). The MAIA instrument 
integrates multispectral, polarimetric, and multiangular capabilities for 
detailed mapping of total and speciated PM at the neighborhood level. A 
two-axis gimbal is used to mount the MAIA camera, which allows for 
more frequent sampling of selected target areas. Unlike MISR, which 
uses 9 fixed cameras, MAIA employs a pointable single camera, 
providing enhanced flexibility in its observations. While MISR is 
equipped with 4 spectral bands, MAIA has a detailed set of 14 spectral 
bands, spanning ultraviolet to shortwave-infrared. Notably, MAIA in
troduces 3 polarimetric bands, a feature unavailable in MISR, which 
amplifies its capability to measure additional aerosol microphysical 
properties. The MAIA observatory will be deployed in a low-Earth polar 
orbit, 740 km above the surface. The anticipated launch is set for 2025. 

Built upon MISR’s legacy with improved instrumental design, MAIA 
employs a sophisticated PM modeling framework that integrates MAIA 
aerosol retrievals, CTM simulations from the Unified Inputs for WRF- 
Chem (UI-WRF-Chem), and ground observations. The framework pro
duces different level of PM products reflecting daily average PM2.5 
components concentration at 1 × 1 km2 resolution. In MAIA’s termi
nology, the Level 2 (L2) products utilize satellite aerosol retrieval for 
input. The CTM-based products are developed by calibrating CTM sim
ulations. The final Level 4 gap-filled products (L4) are the ensemble 
merging of the L2 and the CTM-based products (Diner et al., 2018). To 
quantify the prediction uncertainty, MAIA adopts the BHM and BMA 
models as the basis of the modeling framework, as these models also 
suggest potential benefits of downscaling spatial resolution (Geng et al., 
2018; Wang et al., 2013). Specifically, BHM is used to produce L2 
products and CTM-based PM estimates, and they are subsequently 
merged in a BMA ensemble model to derive L4 gap-filled PM2.5 products. 

In this study, we assessed the ability of the MAIA PM2.5 modeling 
framework in producing L2 products, CTM-based estimates and L4 PM2.5 
products in one of MAIA’s domestic PTAs. UI-WRF-Chem PM2.5 simu
lations were used as operational CTM in the MAIA framework and AOD 
from the Geostationary Operational Environmental Satellite (GOES) 16 
satellite (GOES-16) was used as the proxy of MAIA AOD. We closely 
followed the Algorithm Theoretical Basis Document (Diner et al., 2019) 
of the MAIA PM2.5 products framework to design a pre-launch version of 
the BHM and BMA models that estimate MAIA-like total PM2.5 mass and 
PM2.5 speciation concentrations with prediction uncertainties. As an 
alternative to BHM, we also explored the performance of a novel ma
chine learning algorithm called the Bayesian Additive Regression Trees 
(BART) and tested the BMA ensemble model’s extensibility. Taking 
advantage of the relatively abundant ground PM2.5 speciation mea
surements in our chosen target area, we conducted sensitivity analyses 
using reduced model training datasets in order to evaluate the reliability 
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of our proposed models in data-poor regions (e.g., the PTAs located in 
low- or middle-income countries with sparser ground observations). 
Similar to many satellite-derived products, the generation of the MAIA 
PM product is iterative. This iterative process evolves as more training 
samples are incorporated over time. As the launch of MAIA is 
approaching, our study establishes a foundational performance bench
mark and provides valuable insights into the MAIA-based PM products 
that aim to support future air pollution health effect research. 

2. Material and methods 

2.1. Study domain 

Our study domain is located in the northeastern US (Fig. 1), and 
covers part of Pennsylvania, New Jersey, New York, Vermont, New 
Hampshire, Maine, Massachusetts, and the entirety of Connecticut and 
Rhode Island, which corresponds to the MAIA Northeastern US PTA 
(Diner et al., 2018). After excluding the grid cells off the coast, there are 
a total of 102,896 1 × 1 km2 grid cells remaining. 

2.2. Data 

2.2.1. Air quality monitoring data 
The daily (24-h average) concentrations of total PM2.5 mass and 

PM2.5 species (sulfate, nitrate, organic carbon [OC], elemental carbon 
[EC], and dust) across the study domain in 2018 were obtained from the 
US Environmental Protection Agency’s (EPA) Air Quality System (AQS) 
and the Interagency Monitoring of Protected Visual Environments 
(IMPROVE) Network. The data was collected from 49 total PM2.5 mass 
monitoring stations and 16 PM2.5 species monitoring stations. To 
maximize our sample size, we included one station located slightly 

outside our study domain. The mean concentration and component 
percentages of PM2.5 mass and speciation are summarized in Table S1, 
with an average PM2.5 concentration of 6.88 μg/m3. OC contributes 
26.76%, representing the largest proportion, whereas dust constitutes 
the smallest proportion at 5.98% of the total PM2.5. 

2.2.2. GOES-16 ABI AOD 
The Geostationary Operational Environmental Satellite (GOES) 16 

satellite (launched in November 2016) carrying the Advanced Baseline 
Imager (ABI) is the first of the new GOES-R series operated by NASA and 
the National Oceanic and Atmospheric Administration (NOAA) (Laszlo 
and Liu, 2016). To simulate future MAIA AOD products, we utilized 
GOES-16 ABI 5-min Level 2 AOD retrievals at 550 nm at a 2 × 2 km2 

resolution as a proxy. Given our limited model training period (i.e., 12 
months), we chose GOES-16 because it provides high temporal resolu
tion (5-min) AOD over North America, ensuring the largest dataset for 
training when matched with ground-based observations (Laszlo and Liu, 
2016). Among the widely used AOD products, MAIAC has a superior 
spatial resolution of 1 km. However, its daily revisit rate, even operating 
in both Terra and Aqua MODIS sensors, does not provide sufficient data 
for our 12-month modeling period. While MISR provides fractional AOD 
retrievals, its revisit frequency of 1–2 times weekly is insufficient to 
compile our model training dataset. Finally, VIIRS AOD has a coarse 
spatial resolution of 6 km along with a daily revisit schedule. 

To ensure the consistent temporal resolution with the MAIA AOD and 
PM products and reduce missingness, we aggregated the 5-min level 
AOD values into hourly AOD, then further averaged the hourly data into 
daily means. This process also reduced the average AOD missing rate in 
the PTA from 91.10% at the 5-min level to 37.85% at the daily level 
(Fig. S1). 

Fig. 1. Study region showing all available PM2.5 mass (red color) and species (blue color) monitors. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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2.2.3. UI-WRF-Chem 
In this study, the Unified Inputs (initial and boundary conditions) for 

WRF-Chem (Sha et al., 2021; Zhang et al., 2022a) was used to simulate 
meteorological fields and total PM2.5 and PM2.5 speciation. UI-WRF- 
Chem is specialized by its application of NASA GEOS-5 data to pro
vide both meteorological and chemical initial and boundary conditions 
for performing standard WRF-Chem forecast and was developed as the 
CTM to support the MAIA satellite mission (Fast et al., 2006; Grell et al., 
2005). We set up the UI-WRF-Chem simulation as a nested domain with 
a 12 × 12 km2 horizontal spatial resolution for the outer domain and a 4 
× 4 km2 horizontal spatial resolution for the inner domain focusing on 
the MAIA target areas. Both outer and inner domains have 47 vertical 
levels from surface to 50 hpa. Here, we conducted UI-WRF-Chem 
simulation from January 1 through December 31, 2018. The model 
was initiated on December 25, 2017 and allowed to run 7 days as a spin- 
up period to allow the model results to equilibrate. We used the hourly 
UI-WRF-Chem outputs from the inner domain (4 × 4 km2) for our study 
PTA, including total PM2.5 mass, sulfate, nitrate, OC, EC, and dust. We 
adopted the simulations at the lowest model layer to better capture the 
near-surface air pollution, and we calculated the 24-h averages as daily 
means, which were further assigned to the 1 × 1 km2 grid using nearest 
neighbor method. Table S1 illustrates significant variability in the cor
relation between observed PM2.5 and WRF-Chem simulations. The 
strongest correlation is observed with OC, while the weakest is with 
dust. More details about the UI-WRF-Chem can be found in the Sup
plementary S1. 

2.2.4. Other predictors 
To account for the influences of meteorological conditions and 

human activities, a number of spatially and temporally varying char
acteristics of the surface and atmosphere were considered in the MAIA 
models, including meteorological variables, Normalized Difference 
Vegetation Index (NDVI), population density, elevation, and road den
sity. Hourly meteorological variables such as air temperature (in 
Kelvin), planetary boundary layer height (in meters), relative humidity 
(in percentage), and surface wind speed (in meters/s) at 4 × 4 km2 

resolution were obtained from the UI-WRF-Chem simulation. They were 
similarly processed for each 1 × 1 km2 grid as UI-WRF-Chem PM2.5 
simulations. Monthly NDVI data was obtained from the MAIA Ancillary 
Geographic Product (AGP), derived from multi-year averages of the 
MODIS/Terra 16-Day L3 global 250 m vegetation index product 
(MOD13Q1 V006). MOD13Q1 has a spatial resolution of 250 m, so 16 
raster grids were aggregated to calculate the NDVI for each 1 × 1 km2 

grid. We acquired the LandScan Global population data (people/km2) 
from 2018 at 1 × 1 km2 resolution (Rose et al., 2019). We used elevation 
data at 1 arc sec resolution (approximately 30 m) from ASTER Global 
Digital Elevation (DEM) Model Version 3. The original elevation data 
was aggregated at each 1 × 1 km2 grid and averaged. The roadway 
density (meters/km2) of primary and secondary roadways for each 1 ×
1 km2 grid was calculated based on the 2018 TIGER/Line Shapefiles 
produced by the US Census Bureau. Several geospatial predictors are not 
currently generated by MAIA AGP in our PTA during 2018, including 
population, elevation, and roadway density, so we used alternative data 
sources instead. 

2.3. Statistical methods 

The MAIA L2 PM products are generated using a set of Bayesian 
hierarchical models (BHM), specifically one separate BHM per particle 
type (total PM2.5 mass concentration, PM10 mass concentration, and the 
concentration of major PM2.5 constituents including sulfate, nitrate, 
elemental carbon, organic carbon and dust) per target area. The L2 
PM2.5 retrievals depend on valid aerosol retrievals; therefore, gaps still 
exist due to the missing AOD values. In contrast, the CTM-based PM2.5 
retrievals rely on CTM simulations that have complete coverage. The L4 
PM2.5 product then takes a statistical data fusion approach called 

Bayesian Model Averaging (BMA) using L2 PM2.5 retrievals and CTM- 
based PM2.5 retrievals as inputs to achieve full coverage in space and 
time (Diner et al., 2018). In this study, we followed the MAIA opera
tional retrieval algorithm by building a BHM to generate the MAIA-like 
L2 PM2.5 product (Fig. 2). Here, GOES-16 AOD retrievals and UI-WRF- 
Chem simulations were used to represent future MAIA AOD retrievals 
and CTM simulations. In this step, we also included a Bayesian statistical 
model called the Bayesian additive regression trees (BART) as a possible 
alternative to the BHM. BHM, BART, and BMA are all Bayesian statistical 
models that enable us to obtain the mean prediction and SD from pos
terior predictions. For the gap-filled PM2.5 speciation products, we only 
produced the CTM-based results since GOES does not provide multi- 
angle images, which makes GOES unsuitable for speciated PM re
trievals. Moreover, the ground-based PM2.5 speciation observations are 
insufficient to generate the necessary model training dataset during our 
study period. The CTM-based PM2.5 speciation estimates may serve as 
the lower bound of performance for the future MAIA L4 PM2.5 speciation 
product. The details of our model development are provided below. 

2.3.1. Bayesian spatial-temporal hierarchical model (BHM) 
The BHM is a hierarchical model that considers the dependencies 

between observations across different spatial locations and scales and its 
detailed description has been published elsewhere (Chang et al., 2014; 
Geng et al., 2018; Murray et al., 2019). This approach allows for a 
smooth and stable representation of the spatial patterns in the data, as 
well as the incorporation of prior knowledge and information from other 
sources. As the operational MAIA PM product algorithm, the BHM model 
has several technical advantages. Firstly, it provides uncertainty quan
tifications for PM predictions. Secondly, it allows for flexibility in ac
counting for different data availability across targets (Banerjee et al., 
2014). The data for certain monitors may be limited or incomplete, 
making it difficult to obtain accurate estimates for those monitors. BHM 
can address this issue by allowing for different levels of data availability 
across different monitors, but this flexibility may also cause the model 
difficulties in estimating the model parameters accurately (Banerjee 
et al., 2014). In this study, we designed two BHM models to allow the 
integration of ground-based observations with either the UI-WRF-Chem 
simulations or GOES AOD retrievals as the main predictor. Our BHM 
model can be expressed as follows: 

Yst = αst + βstXst + εst (1)  

where Yst is the measured concentrations of PM2.5 mass or speciation at 
site s on day t. Xst is the main predictor value at site s on day t, which can 
be either GOES AOD value or UI-WRF-Chem simulations for estimating 
the L2 PM2.5, YL2

st , and the CTM-based PM2.5, YCTM− based
st , respectively. αst 

and βst represent the spatial-temporal random intercepts (additive bias) 
and random slopes (multiplicative bias) that are assumed to be day- 
specific and site-specific, respectively. εst is the residual error term 
that is assumed to be independent and normally distributed with a mean 
of zero and variance σ2. 

The spatial-temporal regression coefficients, αst and βst , are obtained 
from two second-level regression models as follows: 

αst = α′s + α′t + γZst (2)  

βst = β′s + β′t (3)  

where α′ and β′ are the unobserved correlation random effects account
ing for the solely spatial and solely temporal trends in the intercepts and 
the slopes. The fixed-effect regression coefficient, γ, is associated with 
the Zst vector, which contains additional spatial and spatiotemporal 
predictors including meteorological variables, NDVI, population den
sity, elevation, and roadway density. 

2.3.2. Bayesian additive regression trees (BART) 
MAIA offers a range of products besides the final Level 4 PM product, 
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including AOD retrievals products, Level 2 and CTM-based PM products. 
Consequently, many studies may not solely use the level 4 product but 
leverage other MAIA products to develop their own PM products. 
Furthermore, the BMA ensemble framework enables MAIA users to 
combine any number of Bayesian statistical models and models that are 
unable to generate prediction uncertainties. In this context, we used 
another Bayesian inference method, BART, as an alternative Bayesian 
model to test the model extensibility of BMA as well as the predictive 
ability of BART. BART combines the notion of sum-of-trees ensemble 
framework and Bayesian inference (Chipman et al., 2010). These con
cepts provide BART with the ability to capture the non-linear relation
ship and complicated interactions among predictors with high- 
dimensional data. Specifically, let Y represent the output correspond
ing to the input p-dimensional vector input (X = x1,x2,…,xp). A BART 
model with m trees can be expressed as: 

Y =
∑m

j=1
Tj
(
Mj;X

)
+ ε (4)  

where Tj
(
Mj;X

)
denotes a single decision tree of BART that is charac

terized by the tree structure (Tj) and a set of terminal nodes (Mj, also 
known as leaves) that are determined by the predictor vector X. Each 
decision tree includes a root and two node sets (internal nodes and 
terminal nodes). Internal nodes are formed by splitting decision rules 
based on a single predictor, xi ≤ c or xi > c, where c is the threshold and 
xi is the splitting variable. The splitting process continues until reaching 

a terminal node and an observation value μlj ∈ Mj =
{

μ1j, μ2j,…, μbj

}
is 

assigned to the terminal of tree j with b terminal nodes. ε is the error 
term following a normal distribution with variance σ2. 

The BART algorithm, which is based on the Markov Chain Monte 
Carlo (MCMC), can be fitted and generate all the possible predictions 
from its corresponding posterior probability distribution. In this study, 
the hyperparameters m,α, β, k, v, q were optimized through grid search 
in spatial cross-validation to strike the best balance between accuracy 
and uncertainty. The R package BART was used to fit the BART model. 
More details about the BART model’s structure and hyperparameters 
can be found in the Supplementary S2. 

2.3.3. Bayesian model averaging (BMA) ensemble model 
The total PM2.5 mass concentrations of AOD-based L2 products and 

CTM-based estimates are combined using a Bayesian Model Averaging 
(BMA) ensemble framework, which uses the Markov Chain Monte Carlo 
(MCMC) approach to obtain the weights at each monitoring location 
(Raftery et al., 2005). The BMA model fills the gaps in L2 PM2.5 mass and 
incorporates the predictive power of base models (e.g., BHM, BART) to 
improve the final predictions. As shown in Eq. (5), a Beta (1,1) prior is 
assumed on each monitoring station’s weight, ws, which is then updated 
using a random variable with Bernoulli distribution at each iteration 
(Raftery et al., 2005). The median value of the chain of values obtained 
after all iterations is used as the final weight. We similarly applied the 
framework (Fig. 2) to fuse the L2 and CTM-based PM2.5 mass predictions 
from Bayesian models (BHM or BART) developed with GOES-16 AOD or 
UI-WRF-Chem simulations as the main predictor. The weights for L2 and 
CTM-based PM2.5 mass estimates are calculated using the BMA ensemble 
framework for each monitoring stations and interpolated to grid cells 
without available monitors using a simple inverse distance weight 
(IDW). 

We built the following model for final prediction of L4 PM2.5 mass: 

YL4
st = wsYCTM− based

st + (1 − ws) YL2
st (5) 

Where YCTM− based
st and YL2

st are posterior means of CTM-based and L2 
total PM2.5 mass estimates obtained from the UI-WRF-Chem simulation 
and the GOES-16 AOD at site s on day t, respectively. ws is the optimized 
weight for the UI-WRF-Chem downscaler at site s. Separate BMA 
ensemble models were built for either BHM modeled or BART modeled 
pairs of CTM-based and L2 PM2.5 mass. 

Similarly, the SD for Yensemble
st is defined as 

σ̂ensemble
st =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
wsσCTM− based

st

)2
+
(
(1 − ws) σL2

st

)2
√

(6)  

which enables the calculation of uncertainties and inferences through 
the Bayesian ensemble model. 

Fig. 2. Framework of the MAIA-like Level 4 gap-filled PM products.  
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2.4. Model performance evaluation 

We conducted a two-stage cross-validation (CV) to evaluate the 
model performance in predicting PM2.5 concentration at grid cells where 
both monitoring observations and UI-WRF-Chem/GOES-16 AOD were 
available. The CV was conducted in two types: traditional CV and spatial 
CV. The spatial CV enabled us to assess model’s ability to predict PM2.5 
in regions without monitoring networks. 

In the first stage, the entire dataset was divided into a specific 
number of groups according to different CV types. At each iteration, one 
group was randomly selected as the testing dataset, while the rest served 
as the training dataset for building the BHM or BART model. The model 
was subsequently used in generating the fitted value from the testing 
dataset. This process was repeated after all iterations. In the second 
stage, because large data gaps existed in the GOES-16 AOD, we filtered 
the CV results from the first stage to include only grid-day records with 

both UI-WRF-Chem and GOES-16 AOD data available. This process en
ables us to better reflect the model’s predictive performance in real- 
world situations. The filtered pairs of L2 and CTM-based PM2.5 mass 
estimations were then divided into testing datasets and training datasets 
and used to build and test the BMA ensemble model. The ensemble 
weights are also computed and interpolated at each iteration. The 
traditional CV was conducted by randomly dividing the dataset into 10 
folds, while leave-one-station-out is used for the spatial CV in evaluating 
PM2.5 speciation prediction due to fewer stations, and 10-fold CV 
divided by stations was used for PM2.5 mass. The CV results were eval
uated in terms of accuracy and uncertainty using multiple performance 
metrics, including coefficient of determination (R2), the root-mean- 
square error (RMSE), slopes, the coverage rate of 95% prediction CI, 
and prediction SD. The 95% CI of predictions was derived by the 2.5th 
and the 97.5th quantiles of posterior samples, which are based on the 
mean values and the SD measure of posterior predictions. Therefore, the 

Fig. 3. Traditional and spatial Cross-validation (CV) results for BHM and BART models. (a), R2 (b), Root-mean-square error (RMSE, μg/m3) (c), Slope (d), 95% 
Confidence interval (CI) coverage rate (%) (e), Standard deviation (SD) of posterior predictions. Note: this figure is subtitled by rows. 
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coverage rate of 95% prediction CI measures both prediction accuracy 
and uncertainties. For example, a coverage rate of 90% means 90% of 
the 95% CIs of posterior predictions captured the ground-based 
observations. 

3. Results 

3.1. Model performance evaluation 

Fig. 3 displays the traditional and spatial CV results from BHM and 
BART models. The BHM generally showed better accuracy compared to 

Fig. 4. Maps of traditional CV R2 and confidence interval (CI) coverage rate at PM2.5 speciation and mass stations. (a), BHM (b), BART.  
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the BART model, with higher R2 (Fig. 3a) and slightly lower RMSE 
(Fig. 3b). The slope plot (Fig. 3c) illustrates that the BART models tend 
to underestimate the concentrations. The spatial CV results also indicate 
that the BHM model has a better predictive ability at locations without 
monitoring data. Both BHM and BART performed differently for 
different PM2.5 species, with both exhibiting the best performance for 
OC (BHM [traditional CV R2 = 0.85]; BART [traditional CV R2 = 0.78]) 
and the worst performance for dust (BHM [traditional CV R2 = 0.64]; 
BART [traditional CV R2 = 0.53]). The BMA ensemble model demon
strated improved performance in predicting L4 PM2.5 mass, with a 
traditional CV R2 of 0.81 and 0.73, which outperformed their input 
modeled PM2.5 mass by BHM (L2 [R2 = 0.79]; CTM-based [R2 = 0.77]) 
and BART (L2 [R2 = 0.66]; CTM-based [R2 = 0.69]). The BART model 
consistently showed a lower coverage rate of 95% prediction CI 
(Fig. 3d), which means that prediction CIs from BART are less likely to 
contain the true values. The higher coverage rates of BHM models also 
imply wider prediction CIs caused by higher SD (Fig. 3e), suggesting that 
CI coverage rate alone does not provide a complete picture of the 
model’s performance. Comparing the results between traditional CV and 
spatial CV, BHM performed more robustly among the two CV experi
ments, while BART models showed worse spatial CV performance as 
measured by R2, RMSE, slope, and SD. The higher SD, on the contrary, 
significantly improve the CI coverage rates of BART in spatial CV. For 
details of CV results, please refer to Table S2. 

To evaluate the spatial variation of model performance, we further 
analyzed the CV results at specific monitor locations. Both BHM and 
BART models’ results for L2, CTM-based, and L4 products had higher R2 

in the southern part of the study domain (Fig. 4), especially in New York 
City (NYC) with a denser monitor network. Among different PM2.5 

speciation, EC and dust showed a generally weaker accuracy that the 
other speciation, especially in the southern urban centers. However, the 
difference of CI coverage rates across space was not significant for 
different PM2.5 products. BHM had higher R2 (mean R2 = 0.72) and CI 
coverage rates (mean R2 = 0.95) than BART (mean R2 = 0.61; mean CI 
coverage rate = 0.74) at the station level (Fig. 4), as seen in Fig. 3. For 
stations that are sparsely located outside the NYC area, their perfor
mance is acceptable in both traditional and spatial CV experiments 
(Fig. 4 and Fig. S2), but not as robust as that of the stations densely 
situated within the NYC region. This suggests that stations which are 
densely distributed offer a more precise reflection of PM2.5 levels in a 
particular area compared to those spaced further apart. 

The performance of the models varied by season (Fig. 5), with 
generally better prediction accuracy (lower RMSE) during autumn, 
when PM concentrations were lower. There was no obvious seasonal 
pattern for the BHM in terms of the CI coverage rate, but the rates were 
lower during summer and winter for BART. We further investigated 
model performance at different concentrations intervals (Fig. S3), and 
the results consistently indicated the worst performance (highest RMSE 
and lowest coverage rate) in predicting the highest 10% values of each 
PM2.5 product, which may explain the unsatisfactory results during 
seasons with higher pollutants concentration. 

3.2. PM2.5 predictions 

Fig. 6a and b depict the annual L4 PM2.5 mass predictions from the 
BHM-based and BART-based BMA ensemble models in the study 
domain, respectively. The results of both models show higher concen
trations in NYC, Boston, and coastal cities. The BART-based BMA tends 

Fig. 5. CV RMSE and CI coverage rate by seasons. Note: The relative heights of the four seasons in each separated box of the plot refer to the concentration difference 
for each PM2.5 product. The overall range of concentrations is labeled below each pollutant’s name, corresponding to the seasons with the lowest and highest 
concentrations in each box. The seasons were defined as follows: spring (March–May), summer (June–August), autumn (September–November), and winter 
(December–February). 
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to be less spatially smooth compared to the BHM-based BMA, which was 
also illustrated in terms of the spatial variation of prediction un
certainties (Fig. S4). The SD of predictions was clearly higher along 
urban center, highways and Hudson River for BART model (Fig. S4b and 
S4d), while the BHM-based BMA displayed more consistent prediction 
uncertainties across the study domain (Fig. S4a), despite a slight in
crease in Manhattan (Fig. S4c). The same spatial patterns of concen
trations and differences between the two models are also evident in 
PM2.5 speciation predictions (Fig. S5). Higher pollution levels of all 
CTM-based PM2.5 speciation were estimated in NYC, Albany, Boston, 
Providence, coastal areas in New Jersey and Connecticut, areas along 
the Hudson River, and along the city lines of New Haven, Hartford, and 
Springfield, while Vermont and New Hampshire exhibit the lowest 
concentration level. Prediction SD also showed larger uncertainties in 
regions with high estimated concentrations. Among different PM2.5 
components, nitrate and dust disseminated further northward within 
New York State. The BART model had larger spatial variation for pre
dictions and SD, and showed drastic higher uncertainties at highways 
and water bodies than peripheries. In contrast, BHM model showed a 
broader dissemination of the aerosol with high concentrations covering 
more rural areas than the BART models. OC showed the least spatial 
difference between BHM and BART models. 

As an independent validation, we compared our predictions with 
PM2.5 measurements of the New York City Community Air Survey 
(NYCCAS) network. The NYCCAS includes 93 stations (Fig. S6) and 
provided bi-weekly mean PM2.5 mass and sulfur measurements. Both 
BHM and BART models accurately depicted the substantial differences 
in PM2.5 mass concentrations between urban and rural areas in NYC 
(Fig. 6c and d). Furthermore, they captured the temporal variation 
within 2018 (Fig. 7a) and aligned with the real-world observations from 
NYCCAS (Fig. S7). The 95% CI of the BART model was slightly wider 
than the BHM, yet the NYCCAS observations were covered within the 

95% CIs of both models. We estimated the sulfate (SO2−
4 , molecular 

mass: 96 g/mol) concentration by multiplying NYYCAS sulfur (S, mo
lecular mass: 32 g/mol) by three, based on the assumption that all sulfur 
is fully oxidized in the form of sulfate (Brown et al., 2002). Despite 
underestimation due to the assumption, both BHM and BART models the 
BHM and BART models adequately capture the temporal variation 
(Fig. 7b), and the 95% CI of both models covered the transformed sulfate 
of NYCCAS. 

4. Discussion 

In our study, we followed the MAIA modeling framework and 
applied the BHM and BART models to estimate the L2 and CTM-based 
daily average PM2.5 mass and speciation at a 1 × 1 km2 spatial resolu
tion for the MAIA Northeastern US PTA, which encompasses New York 
City and Boston in 2018. To fill the gaps in the L2 PM2.5 mass products, 
we used the BMA ensemble models to integrate the L2 and CTM-based 
PM2.5 mass predictions. The proposed modeling framework effectively 
captures the spatiotemporal variation of PM2.5 and quantifies the pre
diction uncertainties, thereby reducing potential exposure misclassifi
cation in future health studies. Previous studies have primarily focused 
on estimating total PM2.5 mass using various statistical and machine 
learning models such as extreme gradient boosting (CV R2 = 0.87) (Just 
et al., 2020), Gaussian Markov Random Field (CV R2 = 0.83) (Sarafian 
et al., 2019), and mixed effects model (CV R2 = 0.88) (Kloog et al., 
2014). In our study, we employed a BHM-based BMA ensemble model, 
which achieved slightly lower prediction accuracy (CV R2 = 0.81), 
potentially due to fewer predictors in the operational MAIA algorithm 
and fewer monitors for training dataset in our study domain. Less 
attention has been paid to estimating PM2.5 composition and most 
published studies focused on California and the Northeastern US, which 
have denser PM2.5 speciation monitoring networks. For example, Geng 

Fig. 6. Mean prediction results of L4 PM2.5 mass in 2018. (a), Mean PM2.5 mass concentrations predicted by BHM-based BMA model (b), Mean PM2.5 mass con
centrations predicted by BART-based BMA model (c), Mean PM2.5 mass concentrations in NYC predicted by BHM-based BMA model (d), Mean PM2.5 mass con
centrations in NYC predicted by BART-based BMA model. 
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et al. used MISR AODs and CMAQ simulations in random forest models 
to estimate sulfate, nitrate, OC and EC levels in California over 
2005–2014 (Geng et al., 2020). Di et al. calibrated GEOS-Chem simu
lations using a backward propagation neural network in the North
eastern US, achieving mean CV R2 of 0.81, 0.83, 0.69, 0.71, and 0.42 for 
sulfate, nitrate, OC, EC, and dust (Di et al., 2016), which were lower than 
our results except for nitrate. The inclusion of spatially and temporally 
lagged terms in Di et al. may not be practical for most MAIA PTAs, which 
typically have limited monitor coverage and less frequent measurements 
of PM2.5 composition. Our study also revealed variations in calibration 
performance among major PM2.5 components, with the poorest perfor
mance observed in dust. This might be attributed to the fact that the 
WRF-Chem dust simulation have the poorest agreement with observa
tions (Table S1). Nonetheless, with the utilization of actual MAIA AOD 
retrievals, we anticipate that the operational L4 PM2.5 speciation esti
mates will have better quality than our simulated results. 

There is a scarcity of studies in the air pollution exposure modeling 
literature that have addressed PM2.5 prediction uncertainty, primarily 
because few reported techniques are capable of quantifying prediction 
uncertainty. Murray et al. explored the use of BHM and Bayesian 
ensemble model to estimate total PM2.5 mass in the Southeastern US 
(Murray et al., 2019). Their ensemble model showed improved pre
dictions with an R2 of 0.83 and a 95% CI coverage rate of 97%. Our 
BHM-based BMA ensemble model produced similar results, with an R2 

(0.81) and a 95% CI coverage rate of 94%, while the results of our BART- 
based BMA ensemble model were inferior. We have observed a slight 
reduction in the coverage rates of prediction CIs in our BMA ensemble 

model, despite the improvement in prediction accuracy, which differs 
from the results reported by Murray et al. This might be attributed to Eq. 
(4), where it is typical to achieve lower SD and coverage rate of pre
diction CIs than those of the base models. The complex relationship and 
interactions between L2 PM products and CTM-based PM estimates with 
varying degrees of accuracy and uncertainty may influence the calcu
lation of ensemble weight and contribute to this effect as well. 

We further investigated our weight results (Fig. S8) and found that 
the CTM-based PM2.5 mass from the BHM-based BMA was assigned a 
higher weight value, as also found in Murray’s paper, while the BART- 
based BMA favors L2 PM2.5 mass. The BART-based weights show less 
spatial variation than the BHM-based weights, which display higher 
weights in the northern part of the PTA where monitors are sparsely 
distributed, corresponding to rural areas. To understand the sources of 
the weights’ difference, we analyzed the associations between weights 
and prediction accuracy (R2) and uncertainties (SD) (Fig. S9 and 
Fig. S10). The results of both BHM and BART implied that the PM 
product with higher accuracy at site s will receive a higher weight than 
the other PM2.5 mass product (Fig. S9). A larger difference between the 
accuracy of PM2.5 mass products will also result in a larger difference in 
the weights (Fig. S10). However, the prediction uncertainties play a 
limited role in determining the weights. The BMA ensemble model fa
vors the PM product with higher accuracy even though it may have 
larger uncertainties as well. 

Regarding the prediction uncertainties of PM2.5 components, Zhang 
et al. used BART to model PM2.5 components, including sulfate, nitrate, 
OC, and EC, in California during 2005–2014 (Zhang et al., 2020b). By 

Fig. 7. Comparison between NYCCAS observations and predictions with confidence intervals. (a), L4 total PM2.5 mass product (b), CTM-based sulfate estimate. Note: 
Observations from different sites have been averaged. The x-axis represents the day of year corresponding to the bi-weekly dates of available NYYCAS records. 

Z. Jin et al.                                                                                                                                                                                                                                       



Remote Sensing of Environment 303 (2024) 113995

11

employing variable selection and including CTM PM2.5 simulation as 
input, their BART model demonstrated good predictive ability (R2 

ranging from 0.78 to 0.84) and maintained proper CI coverage rates of at 
least 95%, outperforming the BART models in our study. BART is con
structed with various tuning parameters, such as tree structure tree Tj 
and terminal nodes Mj, which promote smaller trees and prevent over
fitting (Chipman et al., 1998, 2010). Additionally, BART has the 
advantage of selecting variables that appear most frequently in the fitted 
sum-of-trees models when the number of trees is small. Both features of 
BART enable it to handle datasets with high-dimensional predictors. 
However, we did not incorporate fractional AOD component data in our 
models’ inputs, which reduced our input dimensions and impacted our 
models’ prior hyperparameters. We tried different settings of hyper
parameters for each PM products during CV-based tuning, but the tuning 
results (Table S3) consistently tended to construct models with larger 
sum-of-trees with deeper depth. This suggests complex relationships in 
the dataset requires more complex BART model settings. In addition, our 
study only includes observations from 16 PM2.5 speciation monitors in 
2018, which is approximately 3 times fewer than Zhang et al.’s study in 
California from 2005 to 2014. A smaller dataset was used to train the 
BART models, which may also be responsible for the model complexity. 
Our findings suggest that the BART model is not able to leverage its 
advantages but goes against the philosophy of BART under our study 
design, implying its overfitting and inability to model PM2.5 speciation 
in data-poor PTAs. This also helps explain the sensitivity of BART to 
different land covers and the worse performance in spatial CV experi
ments (Fig. 3), which is caused by the lack of generalizability of the 
overfitted BART and the fact that BART algorithm does not explicitly 
consider dependencies across different locations. 

Our study found that the BHM models outperformed BART models in 
estimating both total PM2.5 mass and speciation. Despite limited 

monitoring data for PM2.5 species and low-dimensional inputs, the BHM 
model showed its simplicity and efficiency. It has the potential to be 
applied in data-poor areas such as the developing countries with sparse 
PM2.5 monitoring networks. Our PTA in northeastern US has few mon
itors, yet it is already richer than most regions of the world, highlighting 
that most other MAIA PTAs and Secondary Target Areas suffer from an 
even greater scarcity of monitors for PM2.5 speciation modeling. We 
further performed sensitivity analyses to evaluate the model’s perfor
mance under data-poor scenarios by removing monitors from the 
training dataset. The results (Fig. 8) showed that the BHM model col
lapses when the number of available monitors is less than four. In 
addition, it was found that nitrate, EC, and dust require more monitors 
to achieve an acceptable performance (R2 > 0.6) compared to sulfate 
and OC. This highlights the challenges that data-poor regions may face 
when trying to estimate PM2.5 speciation, particularly for nitrate, EC, 
and dust. 

Our study has several limitations that are worth noting. Firstly, PM2.5 
speciation monitors are very sparse within our study domain and there is 
a considerable amount of missing data in the GOES AOD data. The lack 
of larger training dataset may limit the model performance, especially 
for BART models, in estimating PM2.5 speciation. This is expected to 
improve with the use of MAIA, which will have multi-angle capabilities 
and higher spatial resolution. Secondly, the input covariates were 
designed in a simple manner with fewer predictors, and the satellite 
AOD data or CTM simulations of PM2.5 mass were not included in the 
PM2.5 speciation modeling. PM2.5-AOD relationships are complicated 
and have obvious spatiotemporal heterogeneities (Ma et al., 2022). We 
expect the relationships will be better captured by a large-scale model 
that incorporates more AOD information provided from multi-angle 
satellites instruments such as MISR and MAIA. Thirdly, we used a sim
ple IDW function to interpolate and extrapolate the ensemble weights, 

Fig. 8. Sensitivity analyses of BHM models’ performance in predicting CTM-based PM2.5 speciation with different numbers of stations used in model training. Note: 
For each number of stations, all possible combinations were listed and up to 500 combinations were randomly selected. The R2 results from selected combinations 
were averaged. 

Z. Jin et al.                                                                                                                                                                                                                                       



Remote Sensing of Environment 303 (2024) 113995

12

which may introduce additional uncertainties. More appropriate inter
polation methods, such as kriging and splines interpolation, could be 
tested and used instead. However, the choice of the best interpolation 
method will depend on the specific characteristics of the data. Moreover, 
the contribution of better interpolation methods may be limited in data- 
poor areas with extremely few monitors. Fourthly, our BHM models 
collapse when the available monitors for PM2.5 speciation are less than 
four, which limits the applicability of BHM model over data-poor re
gions and small countries that do not even have four monitors. There
fore, A simpler BHM model that does not consider spatial or temporal 
random effect is needed. Finally, MAIA will retrieve fractional AODs 
along with other aerosol properties, which will be used as additional 
predictors in the PM product retrieval algorithm. Our study utilized 
GOES-16 AOD at 550 nm as the proxy of MAIA given the data limitation. 
The GOES-16 AOD retrievals do not capture the information in particle 
microphysical properties provided by fractional AODs. The current 
WRF-Chem simulations also show weaker correlations with certain 
PM2.5 species such as nitrate and dust (Table S1). However, our study 
results establish a performance benchmark for the MAIA mission. Once 
the actual MAIA AOD retrievals are incorporated, the operational PM2.5 
products are expected to surpass the quality of the results presented in 
the current study. 

5. Conclusions 

Our study follows the MAIA modeling framework and provides a 
reliable estimation of MAIA-like PM2.5 mass and speciation with good 
control over prediction uncertainty. We previewed and validated the 
feasibility of the MAIA framework and variables in producing L2, CTM- 
based and L4 PM products. BHM models exhibited greater predictive 
ability despite a limited number of monitors and low-dimensional input 
predictors, making it applicable in developing countries with poorly 
constructed monitoring networks. On the other hand, BART models 
favor larger datasets with a larger number of input predictors to avoid 
complex sum-of-trees structures, which may limit its usage in data-poor 
PTAs. The BMA ensemble models showed improved prediction perfor
mance of L4 PM2.5 mass compared to their base models of BHM and 
BART using only UI-WRF-Chem or GOES-16, suggesting it is beneficial 
in spatial gap-filling by incorporating L2 and CTM-based PM products. 
The uncertainty measures can be used in cost-benefit assessments and 
epidemiological studies to account for the bias of effect estimates due to 
exposure errors (Fann et al., 2018; Gryparis et al., 2009; Johnson and 
Garcia-Menendez, 2022; Rappold et al., 2014). The study also validated 
the capability of MAIA framework for fusing satellite AOD data, CTM 
simulations, meteorological variables, and land-use information to 
produce gap-filled PM2.5 products. After the launch of MAIA aerosol 
instrument, more comprehensive satellite aerosol-based data will be 
used in the framework to provide improved PM products for health 
studies. 
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