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ABSTRACT: The Multi-Angle Imager for Aerosols (MAIA),
supported by NASA and the Italian Space Agency, is planned for
launch into space in 2025. As part of its mission goal, outputs from
a chemical transport model, the Unified Inputs for Weather
Research and Forecasting Model coupled with Chemistry (UI-
WRF-Chem), will be used together with satellite data and surface
observations for estimating surface PM2.5. Here, we develop a
method to improve UI-WRF-Chem with surface observations at
the U.S. embassy in Ethiopia, one of MAIA’s primary target areas
in east Africa. The method inversely models the diurnal profile and
amount of anthropogenic aerosol and trace gas emissions. Low-
cost PurpleAir sensor data are used for validation after applying
calibration functions obtained from the collocated data at the
embassy. With the emission updates in UI-WRF-Chem, independent validation for February 2022 at several different PurpleAir sites
shows an increase in the linear correlation coefficients from 0.1−0.7 to 0.6−0.9 between observations and simulations of the diurnal
variation of surface PM2.5. Furthermore, even by using the emissions optimized for February 2021, the UI-WRF-Chem forecast for
March 2022 is also improved. Annual update of monthly emissions via inverse modeling has the potential and is needed to improve
MAIA’s estimate of surface PM2.5.
KEYWORDS: PM2.5, diurnal variation, inverse modeling, UI-WRF-Chem, Addis Ababa, Ethiopia, anthropogenic emission

1. INTRODUCTION
Numerous epidemiological studies have shown that respirable
atmospheric particulate matter (PM) can have many effects on
human health and has been associated with heart disease, stroke,
lung cancer, respiratory diseases, and other adverse effects.1−4

Statistically, the Global Burden of Disease (GBD) study
estimates that, in 2016 alone, there were more than four million
premature deaths associated with exposure to ambient PM with
aerodynamic diameters less than 2.5 μm (PM2.5).

5 In 2016,
NASA selected the Multi-Angle Imager for Aerosols (MAIA)
investigation as part of the Earth Venture Instrument (EVI)
program to investigate the health impacts of exposure to
ambient PM.6 A set of 11 Primary Target Areas (PTAs) covering
several highly populated cities around the world has been
selected for conducting theMAIA-EVI investigation. TheMAIA
satellite instrument, currently planned for launch in 2025 on the
Italian Space Agency’s PLATiNO-2 spacecraft, will collect
targeted measurements of backscattered sunlight from which
aerosol microphysical properties will be retrieved. These data
will be integrated with measurements from a network of ground-
based PM monitors and outputs of a chemical transport model
(CTM) in a geostatistical regression model (GRM) to generate
daily maps of near-surface total PM10, total PM2.5, and speciated
PM2.5 (sulfate, nitrate, organic carbon (OC), elemental carbon

(EC), and dust) mass concentrations at 1 km spatial resolution.
The derived PM concentration maps will be cross-analyzed with
health records to understand the association of PM mass and
chemical composition with various short- and long-term health
outcomes.
One of the MAIA-EVI PTAs is in Ethiopia in east Africa. This

region is characterized by high cloud cover (and consequently
limited availability of valid satellite measurements of aerosol
optical depth data) as well as a dearth of ground-based PM
observations. In other PTAs in North America, Europe, the
Middle East, East Asia, and Southeast Asia there already exists a
wealth of datasets and research on particulate air pollution from
the past two decades.7−13 In Ethiopia, however, there was no
observational network of surface PM2.5 before 2016. As of 2022,
to our knowledge, the only hourly observations of surface PM2.5
concentrations from reference grade monitors using beta
attenuation monitoring (BAM) technique, with a duration of
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more than one year and for which the data are publicly available,
are from the U.S. Embassy Central and Jacros sites in Addis
Ababa.
In the Ethiopia PTA, the sparsity of the aerosol measurements

from space (due to the high cloud cover) and the lack of a
surface PM2.5 monitoring network effectively makes the MAIA’s
production of surface PM2.5 data rely heavily on the CTM
outputs to provide fidelity as well as spatial and temporal
coverage. Here, with limited surface observations in Addis
Ababa, we conduct the first attempt to improve the simulation of
surface PM2.5 by a Unified Inputs (initial and boundary
conditions) for Weather Research and Forecasting model
coupled with Chemistry (UI-WRF-Chem) that is customized
for MAIA data production. UI-WRF-Chem is developed upon
the standard version of WRF-Chem 3.8.1. WRF-Chem is an
online meteorology and chemistry model that simulates
meteorological fields and aerosol concentration, vertical
distribution, and speciation simultaneously.14 WRF-Chem has
been widely applied to research on the temporal and spatial
variation of PM2.5.

15−18

We focus on improving the diurnal variation of surface PM2.5
in UI-WRF-Chem in Ethiopia by updating its emissions
inventory. The fidelity of any CTM simulation is limited by
many factors, such as the parameterization accuracy for physical
and chemical processes, the time lag of emission inventories, and
the accuracy of estimation of model initial and boundary
conditions.19−21 In the past decade, as one of the countries with
a fast urbanization rate and the highest urban population growth
rate in Africa, Ethiopia has experienced rapid growth in the
anthropogenic PM2.5 emission rate.22,23 The primary contrib-
utors to air pollutant emissions in Ethiopia include motor
vehicles, industrial sources, biomass burning, waste incineration,
and dust.24,25 In particular, in its capital city, Addis Ababa,
anthropogenic emissions account for over 95% of total aerosol
and trace gas emission and contribute 85 to 93% to PM2.5 mass

concentration (based on the model sensitivity results for the
time period of study, see Figure S1 in Supporting Information).
However, due to the temporal lag in the bottom-up estimates of
emissions, the emissions inventory of PM2.5 in Ethiopia has not
considered the growth of these anthropogenic sources in recent
years and therefore is expected to be a large source of uncertainty
for the simulation of UI-WRF-Chem in that region. To solve this
issue, our study updates anthropogenic PM2.5 emission
inventories using an inverse modeling method.
The rest of this Article is organized as follows. The detailed

description of UI-WRF-Chem model and ground-based PM
measurements, as well as the methods to calibrate the PurpleAir
sensors and to update emission inventory by using the surface
observations are described in Section 2. The results from UI-
WRF-Chem with and without using the updated emissions, as
well as the independent assessment of the results, are shown in
Section 3.

2. MATERIALS AND METHODS
2.1. UI-WRF-Chem.WRF-Chem is an online coupled model

between Weather Research and Forecasting (WRF) and a
chemistry package, which can be used for weather forecasting
and simulating gas-phase chemistry and aerosol cloud−radiation
interactions.26,27 For MAIA-EVI, we build upon standard WRF-
Chem and we developed the UI-WRF-Chem, which has the
ability to integrate chemical and meteorological fields from the
same Earth system model outputs as self-consistent initial and
boundary conditions. The datasets for updating both chemical
and meteorological initial and boundary conditions include the
Modern-Era Retrospective Analysis Research Application,
Version 2 (MERRA-2) data and GEOS-Forward Processing
(GEOS-FP) data. For this study, MERRA-2 0.5° × 0.625°
reanalysis data are used for both meteorological and chemical
boundary and initial conditions;28−30 this capability is

Figure 1. (a)Model domains. The outer domain (D1) contains major part of Ethiopia with 12 km× 12 km resolution; the inner domain (D2) includes
Addis Ababa and neighboring area with 4 km× 4 km resolution. The dashed orange line shows theMAIA-EVI PTA bounding box in Ethiopia. (b)Map
of ground based PM2.5 monitoring stations used in this study. The sites marked as red dots are PurpleAir monitors; the sites marked as blue dots are the
reference BAM monitors at the U.S. Embassy and Jacros warehouse in Addis Ababa. The background street map has been obtained with permission
from the open-source map dataset created by Stamen Design (http://maps.stamen.com).

Table 1. Calibration Coefficient of PurpleAir PM2.5 Measurements

a0 a1 a2 a3 a4 MBE (μg m−3)

Method 1 15.0718 0.8613 −0.0718 0.0380 −0.3106 −3.40
Method 2 5.75 0.524 −0.0862 −16.22
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developed in-house and has been used to study ozone and
PM.17,31

To expedite the computations needed to generate timely
CTM outputs for MAIA, the Regional Acid Deposition Model,
Version 2 (RADM2) is applied for gas-phase chemistry in UI-
WRF-Chem.32 Although more sophisticated modules are
available, they are more computationally demanding. For
aerosol simulations in UI-WRF-Chem, we adopt the Modal
Aerosol Dynamics Model for Europe (MADE)33 and the
Secondary Organic Aerosol Model (SORGAM).34 In the
MADE/SORGAM scheme, different chemical components of
aerosols, including sulfate, nitrate, ammonium, black carbon,
organic matter, and secondary organic aerosol are simulated.
Aerosol size distribution is represented using a modal approach
that includes three modes (the Aitken, accumulation, and coarse
modes). Each mode assumes a log-normal distribution.35 When
calculating aerosol optical properties, the mass and number
concentration of each aerosol species from these three modes
are distributed into eight size bins, following a sectional
approach.36 Internal mixing is assumed in each bin, and bulk
properties such as the refractive index for each bin are based on a
volumetric approximation.
For our UI-WRF-Chem simulations over Ethiopia, we set an

outer domain (“D1”; Figure 1a) covering most of Ethiopia with
a horizontal resolution of 12× 12 km and a total area of 1200 km
× 1200 km, and a nested inner domain (“D2”; Figure 1a). The
D2 mainly covers the MAIA-EVI PTA in Ethiopia (centered at
8.2°N, 38.8°E) with a horizontal resolution of 4 km× 4 km and a
total area of 360 km × 480 km. Our model divides the
atmosphere into 48 vertical layers based on pressure gradients
(from surface to 50 hPa) and 4 levels of soil for both domains.
We have developed the WRF Emission Preprocessing System

(WEPS), an in-house utility to redistribute both global and
regional anthropogenic and biomass burning emission invento-
ries to each domain of UI-WRF-Chem.17,31 In this research, a
0.1° × 0.1° gridded Emissions Database for Global Atmospheric
Research (EDGAR) emission inventory provided by the Task
Force Hemispheric Transport of Air Pollution (HTAP or
EDGAR-HTAP)37 is utilized for simulation in Ethiopia. The
EDGAR-HTAP datasets include maps of monthly emission
rates of CH4, CO, SO2, NOx, nonmethane volatile organic
compound (NMVOC), NH3, PM10, PM2.5, Black Carbon (BC),
and Organic Carbon (OC) for the years 2008 and 2010. In our
WRF-Chem simulations, we exclusively utilized data from 2010
as the initial guess. For biomass burning emission inventories,
we use the Fire Locating and Modeling of Burning Emissions
Inventory (FLAMBE).38 Dust emissions follow the Goddard
Global Ozone Chemistry Aerosol Radiation and Transport
(GOCART) with the Air Force Weather Agency (AFWA)
modifications.39 Prior research has substantiated the utility of
these emission inventories in Africa.40−42 The temporal
resolution of these emission inventories varies, and WEPS
uses linear interpolation to assign emission rates to each hour of
the simulation period. The injection height of PM2.5 has a large
impact on model simulation and needs to be determined in
WEPS. WEPS distributes anthropogenetic PM2.5 emission from
EDGAR-HTAP inventory at the surface and fire emissions of
PM2.5 uniformly in the model layers below the injection height.
Previous studies indicate that in west Africa the injection height
for smoke is on the order of 650 m,42,43 while other research
suggests plume heights from large source complexes of >1000 m
in some conditions.44 We adopted 800m as the aerosol injection
height in our simulation. The simulation period is from February

1 to February 28 in 2021 and February 1 to March 31 in 2022.
The model spin-up period is from January 15 to January 31 in
both years. During February and March, Ethiopia is in the
middle of the long dry season (from October to next May), and
the overall concentration of PM2.5 is relatively high. The model
generates results for each hour. We used the model and
observation data in 2021 to conduct the inverse modeling of
emissions and then evaluated the robustness of the updated
emissions for UI-WRF-Chem improvement in 2022.
2.2. Ground-Based Measurements of PM2.5 Concen-

tration. Hourly surface PM2.5 mass concentrations, measured
between 2021 and 2022 at the U.S. Embassy monitoring sites in
Addis Ababa, are used as reference observations to assess the
model and constrain emissions. The U.S. State Department has
established two PM2.5 monitoring sites in Addis Ababa: one is in
the north of the city, near the U.S. Embassy building; the other is
in a warehouse in Jacros, east of the city. PM2.5 concentrations at
these sites are measured by the Met One Instruments’ Model
BAM-1020 Continuous Particulate Monitor, which follows the
U.S. EPA Federal Equivalent Method for PM10 and PM2.5
monitoring (https://metone.com/products/bam-1020/), and
the data are available on the AirNow website (https://www.
airnow.gov/).
TheMAIA-EVI project has installed 11 low-cost PurpleAir-II-

SD (PA-II) sensors across Addis Ababa to increase the spatial
coverage of surface PM2.5 measurements in this PTA. The PM2.5
measurements between February andMarch 2022 from seven of
the PurpleAir sensors that were operational are included in this
research for the independent validation of UI-WRF-Chem
simulations. Figure 1b visually presents the names and locations
of the BAM-1020 and PA-II sensors incorporated in this
research study. PA-II sensors are strategically deployed in
various locations, including urban arterial roads (“Skyline”),
hospitals (“ALERT_H”), a Waste-to-Energy plant (“REPPIE”),
schools (“AAU_4K”), and in collocation with BAM instru-
ments. The selection of instrument locations is deliberate and
aimed at calibrating instruments, detecting air pollutant
emissions, and evaluating potential impacts on individuals who
are particularly vulnerable. PurpleAir sensors have been used
extensively worldwide for monitoring local PM2.5 concentrations
and have been calibrated through various methods.45−48 The
calibration method for the PurpleAir PM2.5 concentrations used
in this study is described in Section 2.3.
Diurnal variations of calibrated PurpleAir PM2.5 data in Addis

Ababa in 2022 are used to compare them with UI-WRF-Chem
simulations to verify the accuracy of the model simulations. The
diurnal variation of the PM2.5 concentration is calculated by
averaging the hourly data at each hour from either model
outputs or measurements. We applied several quality control
methods to ensure the reliability of the measurement data from
BAM and PurpleAir measurements. If there are less than 10
measurements available within a one-day period, the data of that
day are rejected. If the difference in PM2.5 measurements
between any two consecutive hours is larger than 50 μg m−3, the
data are also rejected from the diurnal variation calculation. For
PurpleAir sensors, measurements without inner temperature
and relative humidity records at the same time are not accepted.
2.3. Correction of PurpleAir PM2.5 Measurements.After

ground-based measurement data of the PM2.5 concentration
from PurpleAir sensors are collected, bias corrections must be
applied by using collocated reference grade sensors to derive
calibration coefficients. This bias correction method takes place
prior to quality assessment and data screening. Previous studies
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show that PurpleAir PM2.5 sensors generally show high
correlations with reference monitors, but the accuracies are
affected by environmental conditions such as temperature and
relative humidity.49 Hygroscopic growth of particles occurs at
high relative humidity and increases the reading from laser
scattering particle sensors in PurpleAir. For PurpleAir measure-
ments in Addis Ababa, two correction methods are utilized in
this study. The first method applies multivariate linear
regressions on collocated PurpleAir and BAM measurements
at two sites in Addis Ababa (marked as U.S. Embassy Central/
AQN1 and U.S. Embassy Jacros/AQN2 in Figure 1b) with the
following equation:

= + × + × + ×

+ ×

a a a a T

a

PM PM PM

RH

2.5,corrected 0 1 2.5,raw 2 2.5,raw
2

3

4 (1)

where PM2.5,raw is the hourly mean of uncalibrated PurpleAir
readings in μg m−3 and RH is the relative humidity in percent, T
is air temperature in °F, and a0−a4 are the calibration
coefficients. T and RH measured by the PurpleAir sensors are
used in this equation. Before calibration, the raw PurpleAir
sensor data displayed a R2 of 0.70 and a RMSE of 12.46 μg/m3 in
comparison to BAM measurements. Post-calibration, the
validation dataset indicated improved performance, reflected
by a R2 of 0.77 and a RMSE of 6.83 μg/m3 against the BAM data
(see Figure S2 in Supporting Information). The second
correction method adopted the work from the literature,46

which results from the calibration of PurpleAir sensors based on
their collocations with regulatory instruments across the United
States:

= + × + ×a a aPM PM RH2.5,corrected 0 1 2.5,raw 4 (2)

Table 1 lists two sets of calibration coefficients for the two
methods applied to PurpleAir measurements from January to
March 2022.
2.4. Inverse Modeling for PM2.5 Emission Diurnal

Profile. To improve the model simulation of diurnal variation
of PM2.5 in Ethiopia PTA, we developed an inverse modeling
technique to update the diurnal profile of anthropogenic aerosol
and the trace gas emission rate related with primary PM2.5 in this
region. Emission rates of NO, SO2, NH3, EC (also referred to as
black carbon (BC)), OC, and uncharacterized PM2.5 are
included in this research. EDGAR-HTAP emission inventory
in Ethiopia PTA has four sectors: energy (power plant), industry
(mining and manufacturing), transport, and residential
emission. WEPS first interpolates the EDGAR-HTAP monthly
emission inventory of each aerosol and trace gas from each
sector linearly into daily data. Then, for the representation of the
diurnal change in emission rate, we apply a diurnal profile to
distribute daily data into each hour following the literature.50,51

The diurnal profile is normalized to ensure conservation of the
emission rates.
The diurnal profile of the anthropogenic emission is updated

via inverse modeling. Inverse modeling is an approach to
constrain the variables in models with atmospheric observation
data. For this study, we utilized the ground-based hourly
measurement of PM2.5 concentration from the U.S. Embassy
Central site in February 2021. This information allowed us to
modify the diurnal profile, including the amount of the EDGAR-
HTAP emission inventory in the Ethiopia PTA. It is worth
noting that the Jacros site was not operational in 2021 and was
not taken into consideration for inverse modeling.

We selected the 2021 data as input for the inverse modeling
process and employed the 2022 observation data to validate the
corresponding simulation outcomes, ensuring the avoidance of
using identical observation sets concurrently for both inverse
modeling and verification purposes. In this way, the stability and
effectiveness of the inverse modeling can be effectively verified.
For this purpose, the Jacobian matrix K, which gives the
sensitivity of UI-WRF-Chem simulated PM2.5 concentration to
the emission diurnal profile is defined as

= = =

µ

µ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

C
E

C
E

C
E

C
E

K C
C
EE

1

1

1

24

24

1

24

24 (3)

where C is a vector with 24 elements representing the diurnal
profile of simulated ground-level primary PM2.5 mass concen-
tration at each hour (denoted with subscript number) in μg m−3,
and C is calculated from the average concentration at each hour
across days of the simulation; similarly, E represents the diurnal
profile of the total emission rate of aerosols and trace gases,
encompassing NO, SO2, NH3, EC, OC, and uncharacterized
PM2.5 within the EDGAR-HTAP dataset. E is calculated in
WEPS by applying a scaling factor to each species:

= × = ×
=

E eE S S
j

n

jdaily
1

,daily

s

(4)

where S is the vector of total scaling factor of EDGAR-HTAP at
each hour and Edaily is the daily averaged emission rate in units of
μg m−2 s−1 from EDGAR-HTAP, which is the sum of ej,daily, the
emission rate of each species mentioned before, and ns = 6 is the
total number of species included in this method. Since neither
PurpleAir nor BAM measures aerosol speciation, and the
number of their observation sites are limited, we did not seek to
use these data to directly constrain or resolve scaling factors for
each sector of emissions. Rather, once hourly scaling factors in S
for the lump sum of primary emissions from each sector are
optimized from using BAM data at one embassy location only,
the same set of hourly emission factors is applied to emissions
from each sector. By doing so, their relative ratios of the
emissions after the optimization are kept the same as those in the
prior emissions of EDGAR-HTAP at each model grid box. This
approach also assumes and ensures that the spatial distribution
of primary emission rates from each sector is intact after the
optimization. While this assumption might be incorrect, the
limited observations for this study likely have insufficient
information content to resolve diurnal and spatial variations of
emissions among each sector, and future studies may tackle this
challenge with well-designed field campaigns or observation
networks for measuring aerosol speciation observations or
emission for each sector in the study area.
The elements in the state vector of S are optimized

simultaneously, with their prior values adopted from the
literature.51 The Jacobian matrix for the Ethiopia PTA is
constructed numerically from the results of several sensitivity
tests of UI-WRF-Chem. In each test, a perturbationΔEi is added
to emission rate Ei at hour i for each day in the simulation period
by modifying the total scaling factor at that hour:

ACS ES&T Air pubs.acs.org/estair Article

https://doi.org/10.1021/acsestair.3c00008
ACS EST Air XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/suppl/10.1021/acsestair.3c00008/suppl_file/ea3c00008_si_001.docx
pubs.acs.org/estair?ref=pdf
https://doi.org/10.1021/acsestair.3c00008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


= × = × =
=

E E S e S i, 1, ..., 24i i
j

n

j idaily
1

,daily

s

(5)

The change in PM2.5 concentration, ΔC, can be obtained by
forward simulation with and without the perturbated emission
rate E + ΔE. With ΔC, each column of K is solved as

=
E E

iC C
, 1, ..., 24

i i (6)

Since each column of the Jacobian matrix is the sensitivity vector
for emission rate Ei, a maximum of 24 sensitivity simulations and
one control simulation with default emission inventory are
needed to construct the matrix. Preliminary tests show that if the
perturbation ΔEi is in range of ±Ei × 100%, ΔC exhibit a nearly
linear change in response to changes in emission rate, resulting
in the same value of ΔC/ΔEi. Therefore, an increment, ΔEi = Ei
× 100%, is applied to the sensitivity test. With Jacobian matrixK
and ground-based observation data Cobs, the diurnal profile of
emission rate can be modified by minimizing the quadratic cost
function Ψ(E) according to the Optimal Estimation meth-
od:52−56

= [ ] [ ] +

×
=

E F E C S F E C E E

S E E

( )
1
2

( ) ( )
1
2

( )

( )
j

J

j j j
T

j j
T

1
obs,

1
obs, a a

a
1

a

j

(7)

where F represents the forward modeling operator, e.g., the
WRF-Chem modeling, Sϵ is the error covariance matrix of the
observation Cobs, Sa is the error covariance matrix of the a priori
estimate Ea, γj and γa are the regularization parameters, and J is
the total number of hourly reference observations involved from
the Embassy site, which is 24 × 28 for February 2021. We
assume that errors are mutually independent of the diurnal
factors and of the hourly observations. This assumption yields
matrices Sϵ and Sa with zero off-diagonal elements. Following
previous studies, the diagonal elements of Sϵ are set as 20%Cobs,
and the diagonal elements of Sa are set as 100% Ea.

2,57

Equation 7 consists of two terms on its right-hand side, each
representing a specific aspect: the first term quantifies the total
squared fitting error, which arises due to discrepancies between
the model predictions and the observed data; the second term
accounts for the penalty error, which arises when there are
discrepancies between the estimates and the a priori values of
emission factors. In summary, minimizing Ψ(E) serves the
purpose of enhancing the alignment between the model and the
observations while guaranteeing that the solution remains well-
constrained within a practical range. The regularization
parameters used in the calculation of the Ψ(E) function
effectively balance the trade-off between the fitting error and the
penalty error. In this study, we adopt an equal weighting
approach for the observational constraint term and the
combined a priori constraint terms within the cost function
following previous studies:54,56

= =J n,
1
2j j

1 1

(8)

Here n = 24 is the number of emission rates E. In essence,
tackling this inverse problem equates to a purely mathematical
minimization process. Iterative algorithms typically demonstrate
superior numerical stability and the capability to concurrently
estimate post-fitting errors. Therefore, we employ an iterative
approach to determine the optimal value of E. A quasi-Newton

approach, L-BFGS-B algorithm,58 is used here to minimize
Ψ(x). The L-BFGS-B algorithm necessitates knowledge of both
x and Ψ(x), along with the gradient of Ψ(x), which can be
determined by the Jacobian matrix K:

= [ ] +
=E
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j

J
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One advantage of selecting the L-BFGS-B algorithm is that it
allows implementation of bounded optimization and thus in this
study prevents any component of the solution from being
negative.
The iteration process halts when the reduction in Ψ(E) is less

than 1% within a sequence of 10 consecutive iterations. After
emission rate is optimized (hereafter denoted as Ê), emissions of
each aerosol and trace gas species within each category will be
increased by a part of Ê − Ea, while maintaining the original
proportions:

= + = + × =e e e e
e

e
j nE E( ) , 1, ...,j j j j

j
sa

total
(10)

where etotal is the sum of ej. Once the inversion is achieved, the
inversion uncertainty can be obtained by constructing the error
covariance matrix of the a posteriori state Ŝ:

= +
=
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where K̂ is the Jacobian matrix at the solution Ê. After the
inversion, the diagonal term of Ŝ is around 8.5∼19.2% of Ê at
different hours.
This inversion can be repeated if the difference between

measurement and the simulation results with an updated
emission diurnal profile is still greater than the threshold (10% of
Cobs). In the Ethiopia PTA, our tests show that normally up to 2
iterations will be sufficient. Here, we didn’t seek to add any
penalty term or high order term in eq 7 to consider either
measurement uncertainty or model uncertainty, because of our
limited observation as well as the high accuracy of BAM
measurement (with an uncertainty of 1 μg m−3) and relatively
high concentration of PM2.5 (20 μg m−3 in average) in our study
area.
It is worth noting that eq 4 does not hold for large values of

ΔC. Therefore, when the deficiency between simulation and
measurement is larger than a certain threshold (ΔC > 2×Cobs in
our study), the emission rate needs to be scaled in proportion to
the observed and simulated values:

= ×E E
C C

C
( )

daily,new daily
obs mod

obs (12)

The scaled daily emission rate Edaily,new is applied to the inverse
modeling. This method also requires at least a 1 week span of
each forward simulation so that the impact of changes in
meteorological fields could be neglected.

3. RESULTS AND DISCUSSION
After updating the diurnal (hourly) scaling factor of the
EDGAR-HTAP emission inventory in February through inverse
modeling for year 2021, we conducted simulations using UI-
WRF-Chem for a duration of 59 days, encompassing the entire
period of February and March 2022. We analyzed simulation
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results of these two months separately to test if the results of the
diurnal profile updates in February are effective for March when
no observation data were used to constrain the model.
The revised emission diurnal scaling factor for the northwest

Addis Ababa district, which encompasses the AQN1 site, is
presented in Figure 2. This diurnal variation of scaling factors for
the total emission at each hour is similar to the diurnal profile of
residential emissions in the literature, both of which have dual
peaks in the early morning and later afternoon, respectively. This
similarity may also suggest the dominant contribution (>50%)
from the residential sector to the total emissions of PM2.5, which
is indeed the case in the prior emission inventory (e.g., EDGAR-
HTAP). In other words, the observational constraints of surface
observation may have the largest signal to constrain the diurnal
variation of emissions from the residential sector. In contrast, the
diurnal profiles for emissions from other sectors, while based on
literature primarily for east Asia,50,51 could be incorrect for east
Africa, which could only be a hypothesis here for future studies.
The comparison between the PM2.5 concentration diurnal

variation profile from simulation and measurements in February
2022 is shown in Figure 3a−c. The model simulation data from
PurpleAir and two U.S. Embassy monitors’ locations are used to
calculate the mean (dots) and standard deviation (error bars)
that are shown as red and green dotted lines, respectively. The
diurnal variation of UI-WRF-Chem PM2.5 after applying the
inverse modeling method (labeled as WRF-Chem update) at
different hours is increased by 41∼225% (from 12.14−16.24 μg
m−3 to 17.16−36.50 μg m−3) compared with a simulation using
the same emission inventory but without an update (labeled as
WRF-Chem default).
Diurnal variation curves of PM2.5 simulated by UI-WRF-

Chem with an updated emission show remarkably similar
patterns with the diurnal variation observed at the U.S. Embassy
Central (blue dotted lines) and U.S. Embassy Jacros (gray
dotted lines) and the mean of seven diurnal variation curves
from the PurpleAir sensor (orange and purple dashed lines)
network. Two peaks of occurrence can be observed in the same
time range (East Africa time, UTC+3): one in the early morning
between 8 and 9, and another in the late night between 20 and
24. The appearance of these two peaks is likely to be related to
the daily activities of local citizens, corresponding to the
morning traffic peak and evening residential heating and other
biomass burning activities. For the simulation of the morning
peak, the differences between the updated model and both the

Embassy Central and PurpleAir averaged observations are less
than 4 μg m−3, while for the simulation of the evening peak, the
value from the updated model is about 5−10 μg m−3 higher than
the average value from the PurpleAirs. The BAM observations at
the U.S. Embassy Jacros site are generally higher than those of
other areas, mainly because most of the industrial facilities in the
city are in this area. But, this site also exhibits a similar diurnal
variation pattern, supporting that the inverse modeling method
works just as well.
In a stand-alone statistical analysis, the correction method

calculated by local observation (Method 1) is more consistent
with reference observation (comparing Mean Bias Error of
Method 1 = −3.40 μg m−3, Mean Bias Error of Method 2 =
−16.22 μg m−3, andMean Bias Error of uncorrected observation
= −18.82 μg m−3 at collocated U.S. Embassy Jacros/AQN2
site). It can also be seen from the comparison of R and RMSE of
the two methods shown in Figure 3c that Method 1 is more
consistent with the updated model simulation. This supports
that even for a relatively mature low-cost sensor such as the
PurpleAir monitor, it is also necessary to perform independent
calibration on the detection results of each region. Our
calibration method based on multiple linear regressions can be
used in the subsequent detection of PM2.5 in Ethiopia PTA.
For the March 2022 simulation that uses an optimized

emission for February 2021, as is shown Figure 3d−f, it still
captures similar patterns of PM2.5 diurnal variation, as the
morning peak still appears at around 8−9 and the evening peak
appears at around 20−22. This consistency shows the
robustness of the results in February. Figures 4 and 5 show
the hourly average of simulated PM2.5 concentrations in Addis
Ababa in February and March 2022 for four time periods, with
lower PM2.5 concentrations at 3 and 15, and higher PM2.5
concentrations at 8−9 and 20. Simulations with both default and
updated EDGAR-HTAP emission inventories are shown in
panels a−d and e−h, while the circles in these panels represent
monthly mean of ground PM2.5 measured at the Embassy
Central, Embassy Jacros, and PurpleAir sites at each hour. UI-
WRF-Chem with an updated emission inventory captures better
spatial variability and higher PM2.5 concentrations compared to
the default emission inventory. Among them, the high PM2.5
concentration event mainly occurs in the northwest and west of
Addis Ababa. This is also the most densely populated area of the
city, Addis Ketema, where the population density reaches more
than 36000 people per km2, and the maximum PM2.5 value
reaches around 50 μg m−3 (population data provided by city
government of Addis Ababa: http://www.addisababacity.gov.
et).
For both February and March simulations, the improved

agreement between the PM2.5 concentration from the updated
model simulation, and the observations can be further confirmed
from point-to-point comparisons shown in Figures 4, 5, and S3
and S4 in Supporting Information. During the morning and
evening peaks, the decreases in RMSE by applying the inverse
modeling method can reach 50 to 90%, while in other hours of
relatively low PM2.5 concentration, the decreases in RMSE are
around 5−80% (panels i−l in both Figure 4 and Figure 5). Note,
while the spatial distribution of the model simulated PM2.5
concentration is improved after emission optimization (which
can be found by contrasting the first column with the second
column in both Figure 4 and Figure 5), it noted that the spatial
distribution is mainly determined by two factors: meteorological
fields and the spatial pattern of the emission inventory. With the
updated emission scaling factor, the spatial pattern of emission

Figure 2. Optimized scaling factors for total emissions at each hour
after applying the inverse modeling method (blue line), and default
scaling factors for emission from the residential sector (green line). The
light-blue shaded area is the range of 95% confidence interval of total
updated scaling factor.
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inventory becomes more distinct and thus increases the spatial
variability of simulated PM2.5. EDGAR-HTAP_v2 was released

in 2010, so the spatial pattern in its data could not include recent
changes in anthropogenic emissions. Nevertheless, when

Figure 3. (a) Average diurnal variation of ground level PM2.5 concentration during February 2022 in Addis Ababa from surface measurements and UI-
WRF-Chem simulations. Green dotted line represents the model simulation with default emission diurnal profile and red dotted line with updated
diurnal profile. Blue and gray dotted lines represent the measurement from the BAM instrument at the U.S. Embassy Central and Jacros site. Orange
dashed line and Purple dashed line represent averaged diurnal variation from seven PurpleAir measurements using the first and second correction
methods related to eq 4 and eq 5, and the orange shaded area is the range of PurpleAir diurnal variation from the first correction method; (b, c)
Comparison between default and updated WRF-Chem simulated diurnal variation and PurpleAir observation with calibration methods 1 (in orange)
and 2 (in purple). Error bar shows the standard deviation; (d), (e), and (f) show the same results as (a), (b), and (c), but forMarch 2022. In theMarch
2022 case, the emission inventory is still updated using a U.S. Embassy Central observation in February 2021 to show the robustness of the inverse
modeling method.
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compared to the more recent EDGAR-HTAP_v3 emission, the
optimization of v2 emission here reduced its original MBE by
83% in the inner domain of this study (see Figure S5 in
Supporting Information). Over the entire simulation range, our
method captures the increase in emission rates with the same
magnitude. To further improve the model simulation and
update the spatial distribution of the emission inventory, other
ancillary data are needed to further update the emission
inventory, such as changes in land surface types or population
density.
Simulation of anthropogenic PM2.5 diurnal variation is crucial

to the ability of model simulation and forecast of impact of the
human activity on outdoor air quality, especially in countries and
areas where the PM2.5 concentration at the satellite overpass
time is not representative of 24 h average, which is typically used
for assessing daily air quality. The case study presented here

presents an approach for improving model simulations based on
limited surface observation of PM2.5. Climatic factors such as the
average temperature and rainfall lead to large differences in
PM2.5 diurnal variation between different months. Therefore,
future work will be needed to further test themethod and finding
here for other months and in other areas. With the planned
launch of MAIA, observation of PM2.5 speciation and more
PM2.5 observation sites will become available, which can be used
to study PM2.5 levels over the entire Ethiopia PTA and develop
the inverse modeling method to constrain emissions from
different sectors, thereby further increasing the accuracy of the
simulation and forecast of PM2.5, including its chemical
speciation, in Ethiopia.

Figure 4.Monthly mean of February 2022 simulated (grid boxes) and observed (dots) ground-level PM2.5 concentration in Addis Ababa at 3 am, 9 am,
15 pm, and 21 pm. Panels a−d: UI-WRF-Chem simulation with default emission inventory; Panels e−h: UI-WRF-Chem simulation with updated
emission inventory for Feb. 2021; Panel i−l: scatter plot of measured and simulated PM2.5 concentration at monitors’ location.
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