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ABSTRACT: Wildfire is one of the main sources of PM2.5
(particulate matter with aerodynamic diameter < 2.5 μm) in the
Alaskan summer. The complexity in wildfire smokes, as well as
limited coverage of ground measurements, poses a big challenge to
estimate surface PM2.5 during wildfire season in Alaska. Here we
aim at proposing a quick and direct method to estimate surface
PM2.5 over Alaska, especially in places exposed to strong wildfire
events with limited measurements. We compare the AOD−surface
PM2.5 conversion factor (η = PM2.5/AOD; AOD, aerosol optical
depth) from the chemical transport model GEOS-Chem (ηGC) and
from observations (ηobs). We show that ηGC is biased high
compared to ηobs under smoky conditions, largely because GEOS-
Chem assigns the majority of AOD (67%) within the planetary boundary layer (PBL) when AOD > 1, inconsistent with satellite
retrievals from CALIOP. The overestimation in ηGC can be to some extent improved by increasing the injection height of wildfire
emissions. We constructed a piecewise function for ηobs across different AOD ranges based on VIIRS-SNPP AOD and PurpleAir
surface PM2.5 measurements over Alaska in the 2019 summer and then applied it on VIIRS AOD to derive daily surface PM2.5 over
continental Alaska in the 2021 and 2022 summers. The derived satellite PM2.5 shows a good agreement with corrected PurpleAir
PM2.5 in Alaska during the 2021 and 2022 summers, suggesting that aerosol vertical distribution likely represents the largest
uncertainty in converting AOD to surface PM2.5 concentrations. This piecewise function, η′obs, shows the capability of providing an
observation-based, quick and direct estimation of daily surface PM2.5 over the whole of Alaska during wildfires, without running a 3-
D model in real time.
KEYWORDS: Alaska, wildfire smoke, VIIRS, CALIOP, low-cost sensor, PM2.5

1. INTRODUCTION
Wildfire is one of the major sources for surface PM2.5

1−4 and has
become a major cause for respiratory diseases and reduction in
life expectancy.5,6 In recent decades, wildfires have shown an
increasing trend in the western United States and boreal
region,7−12 and this trend will likely continue. The majority of
Alaskan wildfires occur over interior Alaska boreal forest region
between the Brooks and Alaska mountain ranges. Alaska’s
wildfire season usually starts in April and ends in August but has
become longer over the past 40 years. The burned area of
Alaskan fires has also increased due to more frequent lighting
strikes. In Alaska, wildfire has burned 31.4 million acres in the
past 20 years, over 2.5 times more than the burned area in the
previous two decades. In the 2005, 2009, 2015, and 2019
summers, wildfire burned more than 3 million acres in Alaska,
mostly due to lightning-caused fires. As a result, wildfire is now a
major threat to the air quality in the Alaskan summer.13

Currently, there are a limited amount of PM2.5 ground

measurements in Alaska, making it challenging to estimate air
quality, especially that of tribal villages, in Alaskan summer fire
seasons.

Satellite AOD has been widely used to derive surface PM2.5 in
global and regional scales.14−16 Several satellite AOD products,
including Moderate Resolution Imaging Spectroradiometer
(MODIS, on board Aqua and Terra) and Multi-angle Imaging
Spectro Radiometer (MISR, on board Terra), are extensively
used. With these satellites far beyond their life expectancies and
facing degradations, the Visible Infrared Imaging Radiometer
Suite (VIIRS, on board Suomi National Polar-orbiting Partner-
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ship (SNPP), NOAA-20 and -21) becomes the new generation
polar-orbiting instrument for AOD in the daytime17 and has the
potential to provide nighttime AOD as well for mapping surface
PM2.5.

18,19 Several statistical methods have been developed to
relate satellite columnar AOD to surface PM2.5, such as simple
linear regression,14,16 multivariant linear regression,20−22 geo-
graphically weighted regression (GWR),23−27 and machine
learning.28−30 Another widely used method to derive surface
PM2.5 is to integrate a chemical transport model (CTM) that
provides a conversion factor η = PM2.5/AOD or a relationship
between PM2.5 and top-of-atmosphere radiance; the former can
be applied to satellite-based AOD31−33 while the latter can be
applied to satellite-measured radiance.34,35 In both cases, the
spatiotemporal relationship between surface PM2.5 and satellite
data are accounted for by a CTM. Statistical methods have been
more successful where ground measurements are available and
at shorter time scales (hourly and daily), whereas the η method
is easier for implementation and is mostly used for longer term
averages (annually and monthly).

One major challenge of deriving surface PM2.5 concentrations
with satellite AOD is for extreme events such as wildfire.36 This
is largely due to the unpredictable nature of wildfire emissions as
well as the model representation of wildfire plumes. First,
wildfire plumes are often injected at various altitudes depending
on burning conditions,37 resulting in a wide range of the AOD−
PM2.5 relationship due to the diverse vertical distribution of
aerosols.16,32,36 Second, the transport and evolution of wildfire
plumes introduces spatial and temporal variability into the
relationship between AOD and surface PM2.5.

38 As a result, it is
difficult to establish a unified AOD−surface PM2.5 relationship
across time and space. Third, the time scale of wildfire plumes
(days) makes it difficult to establish a constant AOD−surface
PM2.5 relationship on annual or monthly time scales.39

Evaluation of a global model ensemble using satellite AOD
and aerosol vertical profile products over three key wildfire
regions shows that most models underestimate AOD and the
altitude of the wildfire aerosol layer during fire seasons,
dominated by biomass burning aerosol errors.40 So far there
has been little success in converting AOD to surface PM2.5
concentrations during wildfire events.

2. MATERIALS AND METHODS
2.1. Ground-Based Observations. We first use ground

observations of AOD from the Aerosol Robotic Network
(AERONET) at eight sites within the Alaska domain (Figure 1
and Table S1) to evaluate satellite and modelled AOD. The
ground-based CIMEL sun/sky radiometer at each AERONET
site provides AOD in nine spectral channels with low
uncertainty (∼0.01−0.02) and high temporal resolution under
cloud-free conditions.41 Here, we interpolate the AOD at 550
nm using the standard Ångström exponent (440−675 nm)42 to
match with the satellite AOD band. In this work we use version
3, level 2.0 AERONET AOD during summertime (May 1−
August 31) from 2005 to 2019.

We include two sets of surface PM2.5 measurements to
evaluate modelled PM2.5, as shown in Figure 1. The first data set
is hourly PM2.5 mass concentrations recorded since 2005 at five
AirNow sites in Alaska (Table S2), measured using a beta
attenuation monitor (BAM). The second data set comprises
hourly surface PM2.5 ambient concentrations collected since the
summer of 2019 by the PurpleAir low-cost sensor network,
which included 41 PurpleAir sensors across the state of Alaska in
2019 (Figure 1) and expanded to 106 sensors in 2022. The

PurpleAir data use a conversion factor (CF) = 1, indicating
“average particle density” for standard environment (indoors/
chamber), with bias and correction discussed in section 3.1. For
comparative analysis, we averaged the hourly PM2.5 data from
both AirNow and PurpleAir on a 24 h average daily basis.
2.2. Satellite Aerosol Retrievals. In this study, we use daily

averaged high resolution gridded (0.1° × 0.1°) level 3 AOD at
550 nm fromMODIS-Aqua and VIIRS-SNPP during the 2005−
2019 and 2012−2019 summers over Alaska, respectively.43−46

The quality control of level 3 products refers to Gupta et al.46

The MODIS instruments aboard NASA Terra and Aqua
satellites have been operating since 1999 and 2002, respectively.
MODIS AOD retrievals have been widely used to characterize
global and regional air quality distributions47,48 and evaluate
population exposure to PM.33,49 The VIIRS instrument, on
board NASA−NOAA SNPP and NOAA-20 satellites that were
launched in 2011 and 2017, was designed as a new generation of
satellite sensors that can extend and improve the aerosol
products initiated by its predecessors. VIIRS aerosol algorithms,
including Deep Blue (DB) and Dark Target (DT), inherit from
the precedents established from MODIS.17,50 The MODIS-
Aqua and VIIRS-SNPP level 3 products both are created by
fusing DT51 and DB algorithm52 retrieved level 2 AOD at 10 ×
10 km2 spatial resolution, ensuring the consistency of AOD from
the two satellites in this study.46

Recent evaluation of MODIS AOD over AERONET sites in
Alaska indicates the capability of MODIS AOD product in
quantifying the air quality in Alaska during the summertime.53 A
global validation of VIIRS retrieved 550 nm AOD against
AERONET shows a global uncertainty of ±(0.05 + 20%) (R =
0.82, mean bias = 0.01, root mean square error (RMSE) = 0.12),
which is comparable to MODIS aerosol products; the VIIRS
uncertainty at boreal regions (R = 0.82, mean bias = 0.01, RMSE
= 0.16) aligns with the global values.54 Following the
recommendation from the Multi-sensor Aerosol Products
Sampling System (MAPSS),55 we use a 27.5 km radius circle
buffer to extract spatially averaged AOD time series around
AERONET AOD locations from MODIS-Aqua and VIIRS-
SNPP.

We further use the data from the Cloud-Aerosol LIdar with
Orthogonal Polarization (CALIOP) instrument on board the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observa-
tion (CALIPSO).56 CALIOP observes the backscattered
radiations of simultaneous, co-aligned laser pulses it sends at

Figure 1. Locations of ground AOD and PM2.5 measurements in
Alaska. Black crosses are AERONET sites. Purple filled circles show
PurpleAir sensors deployed in Alaska in the 2019 summer. White
triangles are AirNow sites.
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1064 and 532 nm. In this study, we use the CALIOP level 3
daytime cloud-free aerosol extinction vertical profiles version 4,
for aerosol species together (Variable name: Extinction_Coeffi-
cient_532_Mean). The primary data sets in the CALIOP level 3
product are monthly mean AOD at 532 nm and vertical profiles
of the aerosol extinction coefficient. This product is reported at
2° latitude × 5° longitude horizontal resolution and 60 m
vertical resolution grid cells, based on quality screened CALIOP
level 2 aerosol profiles and layer classification information.57

CALIOP level 3 532 nmAOD is computed by first averaging the
set of quality-screened aerosol extinction profiles for the month
and then vertically integrating the mean extinction profile.
CALIOP level 3 products are reported for all aerosol species
together and for three individual aerosol species: dust, polluted
dust, and smoke, since 2006. During the Alaskan wildfire seasons
from 2006 to 2019, the predominant aerosol source was elevated
smokes (Figure S1).

CALIOP level 3 aerosol product contains sampling biases,
which could be mitigated through averaging and quality
screening. CALIOP operates on a 16 day repeat cycle, and
this temporal limitation could introduce sampling biases during
comparisons to polar orbit satellite retrievals or daily ground-
based observations. The coarse horizontal resolution of
CALIOP level 3 product could smooth wildfire signals, resulting
in a low bias in the monthly mean AOD and aerosol extinction
profiles. Additionally, CALIOP may lose sensitivity to aerosols
at lower altitudes or under low AOD conditions. In the
meantime, these sampling biases can be reduced by the large
data volume over a long study period (2006−2019), monthly
averaging, and quality screening of the level 2 product. The
quality screening reduces errors in layer detection, layer
classification, extinction retrieval, and biases from surface signal
anomalies. The “average-then-integrate” method for computing
AOD could reduce potential low bias due to uneven sampling of
the atmospheric geometric depths in different integrated
profiles. Under consistent sampling conditions, CALIOP AOD
shows a reasonable linear agreement with regridded MODIS
data, though with a low bias (Figure 3g).

CALIOP AOD shows a low bias compared to AERONET and
MODIS over land in northern high latitudes,58 which could be
due to the coarse spatial resolution, different wavelength, and
possible missing AOD especially under extreme high and low
aerosol loads, and due to quality screening. Quality filtering is

relatively more aggressive over regions and can reduce AOD by
30% where aerosol loading is low, because the relatively fewer
aerosol samples in the lowAOD region could bemore effectively
impacted by rejecting even a small number of samples.57 The
low bias is reduced in CALIOP version 4 product compared to
version 3, but differences between CALIOP andMODIS/VIIRS
AOD are expected especially where the aerosol load is below
CALIOP’s detection limits.58

2.3. GEOS-Chem Simulations. We use a nested GEOS-
Chem model (version 12.7.2, https://doi.org/10.5281/zenodo.
3701669) to reproduce the regional 3-D distribution of aerosol
mass and AOD. Two GEOS-Chem simulations are performed:

(a) In the control run, the wildfire emissions are injected at
the surface layer. This configuration has been used in our
previous work.13,59

(b) In the sensitivity run, 35% of wildfire emissions are
injected to the free troposphere; 65% are injected within the
planetary boundary layer (PBL). Other configurations are the
same as in the control run.

Our nested simulations are performed over the Alaska domain
([50, 75]° N, [−170, −130]° E) during the summers (May 1−
August 31) of 2005−2019. Driven by the assimilated
meteorology from the Modern-Era Retrospective analysis for
Research and Applications, version 2 (MERRA-2) by the Global
Modeling and Assimilation Office (GMAO) at NASA’s
Goddard Space Flight Center (GSFC),60 the nested simulation
has a 0.5° × 0.625° horizontal resolution with 47 vertical layers
and a transport time step of 15 min. The boundary conditions of
the nested model are updated every 3 h from a global GEOS-
Chem simulation at 2° × 2.5° resolution.

In this work, we use the detailed O3−NOx−HOx−VOC
chemistry (“tropchem” mechanism)61−63 with online aerosol
simulation including sulfate−nitrate−ammonium, primary and
secondary organic aerosols (POA and SOA), black carbon
(BC), sea salt, and dust. The sulfate−nitrate−ammonium−
water system is modelled by the ISORROPIA II thermodynamic
equilibrium model. The scheme of planetary boundary layer
mixing follows a nonlocal scheme implemented by Lin and
McElroy.64 Biogenic VOC emissions are fromMEGAN2.1.65−67

Anthropogenic emissions are from the Community Emission
Data System (CEDS).68,69 Biomass burning emissions use the
Global Fire Emission Database (GFED4.1s) biomass burning
emissions processed for GEOS-Chem.70 We use 3 h emissions

Figure 2. Workflow of evaluating AOD and PM2.5 from satellite, model, and ground-based measurements and estimating surface PM2.5 in Alaskan
summer.
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calculated in GFED4.1s based on fire detection and burning area
from the MODIS satellite.71

2.4. Workflow. Figure 2 shows the workflow of this study.
The workflow contains five parts: (a) evaluation of AOD from
MODIS-Aqua, VIIRS-SNPP, CALIOP, and GEOS-Chem using
eight AERONET sites in Alaska, for the summers of 2005−

2019; (b) evaluation of surface PM2.5 from PurpleAir sensors
and GEOS-Chem using surface PM2.5 measurements from five
AirNow sites in Alaska, for the summers of 2005−2019; (c)
comparison between modelled and observational AOD−PM2.5

relationships under various AOD ranges and comparison
between modelled and observational proportions of AOD

Figure 3. Comparison of AOD from AERONET, MODIS-Aqua, VIIRS-SNPP, CALIOP, and GEOS-Chem. (a−d) Spatial pattern of monthly mean
AOD from MODIS-Aqua, VIIRS-SNPP, CALIOP, and GEOS-Chem in Alaska, averaged by daily data (except CALIOP) for 2006−2019 summers
(2012−2019 summers for VIIRS-SNPP). (e, f, h) Scatterplots of daily AOD from MODIS-Aqua, VIIRS-SNPP, and GEOS-Chem (Y-axis) versus
AERONETdaily AOD (X-axis) at eight AERONET sites. (e, h) Summers of 2006−2019; (f) summers of 2012−2019. (g) Scatterplots of monthly 532
nm AOD from CALIOP versus monthly 550 nm AOD from regridded MODIS-Aqua, in 2006−2019 summers. In each panel of (e)−(h), texts show
the linear regression parameters, number of points, R2, RMSE, and the mean and standard deviation values of X and Y.

Figure 4. Scatterplot of daily surface PM2.5 at AirNow and PurpleAir sites. (a) GEOS-Chem versus AirNow daily surface PM2.5, during fire days (AOD
> 0.5) from May to August in 2005−2019. Red, green, cyan, orange, and gray crosses are daily data pairs at NCore, Garden, Butte, Floyd Dryden
Middle School, andHurst Road sites. (b) Similar to (a) but in nonfire days (AOD< 0.1). (c) PurpleAir versus AirNow daily surface PM2.5, fromMay to
August in 2019. PurpleAir data are corrected based on eq 1. (d) GEOS-Chemmonthly median surface PM2.5 in Alaska, July 2019. Dots show monthly
median PM2.5 from 41 PurpleAir sensors in July 2019.
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within the PBL, under various AOD ranges; (d) performance of
the GEOS-Chem sensitivity run to evaluate the impact of
increasing wildfire injection height on aerosol vertical
distribution and the AOD−PM2.5 relationship; (e) estimation
of surface PM2.5 over Alaska by applying the observational
AOD−PM2.5 relationship to satellite AOD, for the 2021 and
2022 Alaskan summers. PurpleAir PM2.5 in these two years is
used to evaluate the satellite derived PM2.5.

3. RESULTS
3.1. Evaluation of AOD and Surface-Level PM2.5 in

Alaskan Summertime. Figure 3 compares the monthly AOD
products from MODIS-Aqua, VIIRS-SNPP, CALIOP, and
GEOS-Chem in the Alaskan summers of 2006−2019. To
calculate the monthly patterns, VIIRS-SNPP, CALIOP, and
GEOS-Chem AOD are resampled based on the data availability
of MODIS-Aqua AOD, which was initially regridded to match
the corresponding horizontal resolution. We show in Figure 3e,f
that MODIS-Aqua and VIIRS-SNPP AOD are in excellent
agreement with AERONET AOD from eight sites in Alaska for
the summers of 2005−2019, with biases less than 30%. The
good linear agreement between satellite and AERONETAOD is
exhibited across the entire AOD range in Alaska, which spans
approximately 0−3, indicating a relativelyminor issue with AOD
saturation in satellite measurements during Alaskan fire periods.
The two satellite AOD show similar temporal and spatial
variabilities (Figure 3a,b,e,f), with enhanced AOD over interior
Alaska where most boreal forest fires occur. In Figure 3c, despite
its much coarser resolution, CALIOP AOD also shows
enhancements over interior Alaska similar to those observed
in MODIS-Aqua and VIIRS-SNPP AOD. This highlights the
potential of using CALIOP to evaluate Alaskan summertime
aerosol vertical profiles on a monthly scale. The low bias of
CALIOP AOD relative to MODIS-Aqua and VIIRS-SNPP can
be in part due to diluted wildfire signal during the
spatiotemporal average in a relatively coarse resolution and in
part due to the large attenuation by heavy smoke that affects the
retrieval of total column. This low bias is consistent with
previous global AERONET evaluation against CALIOP version
4 total column AOD in Alaska.58

We further compare GEOS-Chem with the three satellite
AOD products and the AERONETAOD.We show in Figure 3d
that GEOS-Chem AOD is lower than that of MODIS-Aqua and
VIIRS-SNPP but still captures the AOD enhancements over
interior Alaska largely due to wildfires. Overall, the GEOS-Chem
AOD is around 44% of the AERONET AOD (Figure 3h), but
the correlation with AERONET is diminished compared to the
satellite products, likely due to inaccuracies in the model’s
representation of wildfire emissions. The discrepancy between
modelled and satellite AOD over the Gulf of Alaska may be
attributed to issues in the model’s representation of sea salt
aerosols.72

Figure 4 illustrates the evaluation of 24 h mean daily surface
PM2.5 from GEOS-Chem and the PurpleAir network, using
AirNow PM2.5 measurements from five sites in Alaska during the
summers of 2005−2019. The surface PM2.5 enhancement in
Alaskan summertime is primarily attributed to wildfires. Here we
classify days with AOD > 0.5 and AOD < 0.1 as fire and nonfire
days, respectively. Figure 4a,b shows that, during nonfire days,
GEOS-Chem surface PM2.5 is underestimated compared to
AirNow measurements (Y = 0.03X + 2.28), while in fire days
GEOS-Chem overestimates surface PM2.5 by a factor of 2.36,
especially over NCore and Garden sites where there are

significant wildfire activities. The model demonstrates limited
skills in accurately representing the variability of PM2.5
compared to AirNow measurements both during fire days (R
= 0.57) and nonfire days (R = 0.09). This limitation is likely
attributed to the challenges in estimating wildfire emissions,
simulating the aerosol physical and chemical processes, as well as
the spatial and temporal evolution of wildfire plumes.

The raw PurpleAir PM2.5 correlates well with AirNow PM2.5 in
the 2019 Alaskan summer but is a factor of 1.72 higher than the
latter. Several studies have examined the possible bias and
correction for PurpleAir PM2.5.

73−77 In particular, Barkjohn et
al.76 developed a U.S.-wide correction for PurpleAir PM2.5:

corrected PurpleAir PM raw PurpleAir PM (CF 1)

0.524 RH 0.0862 5.75
2.5 2.5= =

× × + (1)

In eq 1, raw PurpleAir PM2.5 is the average of channels A and B
from the higher correction factor (CF = 1) and RH is the relative
humidity in percent.

We find that PurpleAir PM2.5 corrections based on colocated
AirNow measurements (Figure 4c) are in good agreement with
the EPA U.S.-wide correction (Figure S2), exhibiting a bias of
approximately 10% and an RMSE of around 3.08 μg m−3, which
is consistent with the previous study.76 This suggests the efficacy
of the EPA’s U.S.-wide correction approach for PurpleAir PM2.5
in Alaskan summers. In this work, we follow the EPA U.S.-wide
correction method (eq 1) to correct all PurpleAir PM2.5 in
Alaska during summertime. Figure 4c shows that the corrected
PurpleAir PM2.5 has a good agreement with AirNow PM2.5 at
NCore and Garden sites (Y = 0.85X + 1.91, R = 0.93, RMSE =
6.13).

Figure 4d shows the monthly median surface PM2.5 from both
GEOS-Chem and available PurpleAir sensors for July 2019.
GEOS-Chem and the PurpleAir network show good agreement
in the spatial distribution of surface PM2.5, largely driven by
wildfires. We also show that surface PM2.5 from GEOS-Chem
tends to have a high bias compared to that from PurpleAir,
especially over wildfire plumes.
3.2. Evaluation of AOD−PM2.5 Relationship in Alaskan

Summer. The AOD−PM2.5 relationship is quantified by the
conversion factor

surface PM
AOD

2.5=
(2)

Here we calculate η by using the 24 h average surface PM2.5
and the local noon average AOD. The 24 h average surface PM2.5
and satellite AOD have been linked together in previous
studies.78−81 Ground-based measurements also demonstrate a
good correlation (Y = 0.86X + 2.61, R = 0.81, RMSE = 16.27)
between the local noon average and 24 h average surface PM2.5
(Figure S9), supporting the practicality of linking the satellite
daytime AOD with 24 h average PM2.5.

To capture the short-term variability of wildfire smokes, while
increasing data availability and the robustness of the statistics,
we analyze the η−AOD relationship for GEOS-Chem and
observations on a weekly basis. In this analysis, we adjust
modelled AOD and PM2.5, as well as satellite AOD, using the
linear regression slope obtained from comparisons with standard
measurements shown in Figures 3 and 4, to ensure a collocated
comparison. For the summers of 2005−2019, we calculate the
weekly ηobs usingMODIS-Aqua/VIIRS-SNPP AOD and surface
PM2.5 from five AirNow sites and 41 PurpleAir sensors.
Additionally, we compute weekly ηGC using 24 h averaged
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surface PM2.5 and local noon averaged total column AOD,
similar to a previous study.32 Weekly η values are the ratio
between the weekly mean PM2.5 and weekly mean AOD. Both
ηobs and ηGC are binned into five AOD ranges: [0, 0.1], [0.1, 0.2],
[0.2, 0.3], [0.3, 1], and >1.

In Figure 5a, we show a sharp increase in ηGC as AOD rises,
with the median value exceeding 100 when AOD > 1. Notably,
the dependency of ηGC on AOD seems consistent across five
AirNow sites and 41 PurpleAir sites. The high bias in ηGC at
AOD > 0.3 is expected as the model tends to underestimate
AOD and overestimate surface PM2.5 (Figures 3 and 4).

ηobs, though exhibiting a high variability, presents a weak
dependence on AOD and significantly lower values than ηGC
when AOD > 1. Below an AOD threshold of 0.3, ηobs remains
stable and slightly decreases, in line with ηGC; when AOD > 0.3,
ηobs increases with a much weaker increasing rate (25−50%)
than ηGC does, as shown in Figure 5b,c. The case study
conducted at the NCore site during the 2005−2019
summertime period shows a stable magnitude of weekly ηobs
(Figure S4), representing a weak dependence of ηobs on AOD
which is consistent with the ηobs−AOD relationship in Figure 5b.
ηobs could exhibit high variability in low and high AOD
conditions. The high variability of ηobs under low AOD
conditions (up to 300% when AOD < 0.1) does not significantly
impact the estimated PM2.5 level using eq 2, due to the low AOD
levels. The high variability of ηobs under high AOD during strong
wildfires could be attributed to the spatial heterogeneity of
wildfire plumes, making it challenging to effectively estimate ηobs
during wildfires.

Similar patterns of the ηGC−AOD and ηobs−AOD relation-
ships are also shown in daily andmonthly bases (Figure S8). The
daily based ηobs values have more available data points compared
to weekly and monthly based ηobs, but they can show larger
variability due to the strong daily variability of wildfire smokes.
Across daily, weekly, and monthly bases, the ηGC−AOD
relationship shows a significant increasing trend when AOD >
0.3, while ηobs appears to have a weaker dependence on AOD.
This discrepancy highlights a significant overestimation in ηGC
under high AOD, which could be qualitatively confirmed despite
both ηGC and ηobs exhibiting substantial variability within each
AOD bin. The ηGC−ηobs discrepancy under high AOD could be
due to systematic biases in the model during wildfires.

The variations of ηobs and ηGC during wildfire progresses are
further examined through a case study conducted at the NCore
site during the 2005−2019 summers (Figure S4). During

periods of intense wildfire activities, especially three strong fire
periods in the summers of 2009, 2015, and 2019, ηGC rises to
>300 as the modelled wildfire PM2.5 reaches a maximum. In
contrast, ηobs shows a similar magnitude to ηGC during weak fire
periods but does not show significant increases in the three
strong fire periods. This is consistent with the ηobs−AOD and
ηGC−AOD relationships shown in Figure 5. In GEOS-Chem,
during strong wildfires, organic carbon accounts for the majority
(∼90%) of total AOD, while black carbon accounts for around
5% of total AOD; outside wildfire periods, organic carbon takes
around 10−50% of total AOD while the proportion of black
carbon is negligible (Figure S7).

In cases of exceptionally intense wildfires, it’s possible that η
could be affected by AOD saturation issues. The availability of
data during periods of strong wildfires (AOD > 1) is relatively
limited compared to conditions of weaker fire activity (AOD <
0.3), potentially introducing uncertainties into ηobs and ηGC
values under high AOD in Figure 5. To thoroughly investigate
the impact of AOD saturation issues on ηobs, a more extensive
observational record of AOD and PM2.5 levels in Alaska during
intense wildfire events is essential.
3.3. Evaluation of Aerosol Vertical Profiles. To explore

the influence of aerosol vertical profiles on the ηobs−ηGC
discrepancy, we employ two independent approaches: (a)
assessing the sensitivity of ηGC to the variations in the proportion
of wildfire emissions within PBL; (b) evaluating aerosol vertical
profiles using satellite lidar data.

Figure S6 shows that, at the NCore site during the summer of
2019, allocating 35% of the total wildfire emission into the free
troposphere results in a 30% decrease in modelled PM2.5 levels
and ηGC under strong wildfires (daily surface PM2.5 > 200 μg
m−3), thereby improving the consistency with ηobs and AirNow
PM2.5 measurements. However, the modelled PM2.5 based on
the adjusted injection height still exhibits an overestimation
compared to AirNow measurements, by a factor of 1.6. Thus,
further refinements are warranted to accurately correct the
modelled PM2.5 during fire days.

We utilize CALIOP level 3 aerosol extinction vertical profiles
to characterize the aerosol vertical distributions across various
AOD ranges and examine themodel biases.We introduce f PBL as
a metric to quantify the fraction of AOD within the PBL relative
to the total column of AOD. f PBL is defined as

f
AOD

AODPBL
PBL=

(3)

Figure 5. η−AOD relationship from model and observations in Alaskan summertime. (a) Boxplot of weekly ηGC from GEOS-Chem under various
AOD ranges, in 2005−2019 summers. Red, green, cyan, orange, and gray boxes represent the statistics of weekly η within 27.5 km radius circle around
NCore, Garden, Butte, Floyd Dryden Middle School, and Hurst Road sites. Purple and blue boxes represent weekly η statistics for 41 PurpleAir sites
and for all GEOS-Chem continental pixels in Alaska. (b) Boxplot of weekly ηobs from MODIS-Aqua AOD and AirNow PM2.5 surface measurements
under different AOD ranges. (c) Similar to (b) but using VIIRS-SNPP AOD.
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Here AODPBL represents the aerosol optical depth integrated
from surface to the top of the PBL. We calculate f PBL across all
Alaskan continental pixels using GEOS-Chem and CALIOP
monthly extinction coefficients in the 2006−2019 summertime
period. The PBL height (PBLH) is obtained from theMERRA-2
data set. Figure 3c,g shows that CALIOP AOD, despite
exhibiting a low bias compared to VIIRS-SNPP and AERONET
AOD, is able to capture the AOD enhancement over interior
Alaska and the Gulf of Alaska. A case study at the NCore site
(Figure S5) shows that, during wildfire periods in interior
Alaska, both GEOS-Chem and CALIOP present AOD and
AODPBL enhancements. In the meantime, Figure S3 shows a
linear relationship between CALIOP f PBL and ηobs at the NCore
site during the 2006−2019 summers, indicating the capability of
CALIOP to capture the proportion of aerosol loading within the
PBL during strong wildfire events on a monthly basis. Previous
studies also show that CALIOP aerosol products exhibit
sensitivity in detecting aerosol plumes within the PBL in the
presence of wildfire smokes.82,83 Despite the limited global
coverage provided by CALIOP, we assert that this long-term
record (2006−2019) offers sufficient statistical power to be
representative of the Alaskan summer wildfire season.

Figure 6 shows that observational f PBL remains low under all
AOD ranges while GEOS-Chem suggests high f PBL under high
AOD. When AOD < 0.3, f PBL from both GEOS-Chem and
CALIOP are very similar to a median value around 0.39−0.47.
When AOD > 0.3, f PBL from CALIOP remains low (0.36), while
the GEOS-Chem f PBL rises to 0.64 when AOD > 1. The
persistent low f PBL in CALIOP when AOD > 0.3 is consistent
with the weak dependence of ηobs on AOD (Figure 5), as they
both suggest that the fraction of near surface aerosol loading to
the total column does not increase significantly with increasing
AOD. In contrast, we show the model deviates from
observations in both f PBL and η under high AOD conditions.
Modelled ηGC and observational ηobs both increase with f PBL
rising, but ηGC increases faster than ηobs under high f PBL,
indicating that the overestimation of f PBL and ηGC in themodel is
consistent (Figure S3).

Figure 6 also shows that increasing wildfire emission injection
height could reduce modelled f PBL by 15% when AOD > 0.3,
leading to a better agreement with the CALIOP observations.
This is consistent with previous studies that suggest increasing
plume injection height with strong wildfire plumes.84−86 In
Figure 6, increasing injection height only leads to a minor

influence (<15%) on modelled f PBL, and large discrepancy still
exists between the adjusted modelled f PBL and that from
CALIOP. This indicates that an underestimated injection height
of wildfire emissions in GEOS-Chem could partly explain the
overestimated surface PM2.5 and ηGC, but model overestimation
in f PBL and ηGC may be difficult to correct by adjusting the
fraction of wildfire injection between the free troposphere and
the PBL.

The analysis of the f PBL−AOD relationship is not directly
used to derive η′obs, but it provides independent qualitative
insights into the aerosol vertical distribution across different
AOD levels. These results can corroborate the ηobs−AOD
relationship.
3.4. Estimating Surface PM2.5 Using Observational

ηobs−AOD Relationship. In this section, we estimate surface
PM2.5 using the ηobs−AOD relationship and compare the
estimates with PurpleAir ground-based measurements.

Figure 5b,c presents similar median values of ηobs, derived
from observations across various locations in Alaska. Figure S4
demonstrates that the ηobs−AOD relationship remains con-
sistent across different summers from 2006 to 2019 in Alaska.
This consistency suggests that ηobs within specific AOD ranges,
particularly under high AOD conditions, tends to be largely
homogeneous across the Alaskan domain and exhibits stability
over different years. To provide an observation-based estimation
method of surface PM2.5 over the Alaska domain, we assume that
ηobs is a piecewise function across varying AOD ranges and does
not change with time. We construct the piecewise function for
ηobs based on VIIRS-SNPP AOD and PurpleAir PM2.5 over
Alaska in the 2019 summer:

l

m

ooooooooooo

n

ooooooooooo

79.07, 0 AOD 0.1

38.66, 0.1 AOD 0.2

32.76, 0.2 AOD 0.3

54.62, 0.3 AOD 1

83.96, AOD 1

obs =

<
<
<
<

> (4)

In eq 4, the value of η′obs for each AOD range is the median
value of weekly ηobs derived from VIIRS-SNPP AOD and
PurpleAir PM2.5 at 41 PurpleAir sensors during the summer of
2019 (Figure 5c). By inputting daily VIIRS-SNPP AOD to eq 4,
we can obtain η′obs over the whole Alaska on a daily basis.

Figure 6. f PBL−AOD relationship from model and observations in Alaskan summertime. f PBL across different AOD ranges, from GEOS-Chem and
CALIOP. The red, pink, and cyan boxes represent monthly f PBL statistics from GEOS-Chem with wildfire emissions injected at the surface, GEOS-
Chem with 35% of wildfire emissions injected into the free troposphere and 65% within the PBL, and CALIOP, respectively, across specific AOD
ranges over the Alaska domain during the summers from 2006 to 2019.
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Additionally, we calculate the spatiotemporal patterns of
weekly ηGC,surface and ηGC,35/65 from theGEOS-Chem control run

and sensitivity run. ηGC,surface is derived from the GEOS-Chem
control run, which assumes 100% of wildfire emissions are

Figure 7.Modelled and observational monthly η in 2019 Alaskan summer. (a−d)Monthly ηGC,surface averaged from weekly ηGC,surface, based on GEOS-
Chem simulation that injects wildfire emissions at surface layer. (e−h)Monthly ηGC,35/65, based on GEOS-Chem simulation that injects 35 and 65% of
wildfire emissions in the free troposphere and within the PBL. (i−l) Monthly η′obs averaged from daily η′obs, which is calculated based on eq 4 and
VIIRS-SNPP daily AOD.

Figure 8. Satellite AOD derived surface PM2.5,SAT based on daily η′obs calculated by eq 4 from VIIRS-SNPP daily AOD. (a−d) Monthly mean surface
PM2.5,SAT derived from VIIRS-SNPP AOD, in Alaska in 2021 summer. (e−h) Similar to (a)−(d) but in 2022 summer. (i) Scatterplot of VIIRS-SNPP
derived PM2.5,SAT versus PurpleAir PM2.5 in Alaska in 2021 and 2022 summers. Blue boxes are boxplot of satellite derived PM2.5,SAT in each PurpleAir
PM2.5 bin. Yellow bars are median values of each box.
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injected at the surface. In contrast, ηGC,35/65 is derived from a
GEOS-Chem sensitivity run where 35% of wildfire emissions are
injected into the free troposphere and 65% into the PBL.

Figure 7 illustrates the monthly patterns of ηGC,surface, ηGC,35/65,
and η′obs over Alaska during the summer of 2019. Figure 7a−d
shows that the hotspots of ηGC,surface (the pixels with ηGC >150 μg
m−3) are primarily located in interior Alaska, with locations
shifting throughout the month due to wildfire development.
Increasing wildfire injection height reduces the magnitude of
ηGC,35/65 by around 30% over hotspots, in better agreement with
ηobs. Although improved, ηGC,35/65 is still overestimated (Figure
7e−h), as indicated by the high biased PM2.5 in the sensitivity
test (Figure S6) which is a factor of 1.6 higher than AirNow
PM2.5 measurements in the 2019 summer. Compared to
ηGC,35/65, η′obs is more homogeneous and has a lower magnitude
(Figure 7i−l). The closer agreement between η′obs and ηGC,35/65
suggests that underestimating wildfire emission injection height
may contribute to the model−observation discrepancy in η.
Figure S4c shows that surface PM2.5 estimated by using weekly
ηobs could reproduce the daily variability of surface PM2.5
measurements during wildfires. η′obs is particularly valuable as
it offers a straightforward method to estimate surface PM2.5
across Alaska using satellite AOD, which is practical for future air
quality monitoring operations.

We calculate daily surface PM2.5 concentrations over the
Alaskan summertime, using the piecewise function η′obs from eq
4 and satellite daily AOD:

PM AOD2.5,SAT obs= (5)

The η′obs piecewise function is derived from observations in the
summer of 2019 and is used to estimate surface PM2.5 for the
Alaskan summers of 2021 and 2022. This approach avoids a
circular problem and evaluates the capability of the piecewise
function in reproducing the magnitude and spatial variation of
surface PM2.5 over Alaska during summertime. The primary goal
of η′obs is to estimate PM2.5 levels under different aerosol
loadings, with the daily variability of estimated PM2.5,SAT mainly
driven by the daily variability in satellite AOD.

Figure 8a−d and e−h show the estimated monthly mean
surface PM2.5,SAT derived from VIIRS-SNPP AOD using η′obs
from eq 4, in the summers of 2021 and 2022, respectively. In the
2022 summer, satellite derived PM2.5,SAT shows an enhancement
over interior Alaska, although the spatial pattern differs from that
of 2019 (Figure S10) due to varying spatiotemporal patterns of
wildfire smokes between the two years. In contrast, the summer
of 2021 shows much lower PM2.5,SAT enhancements compared
to 2019 and 2022, reflecting the lower wildfire activity in 2021.

We then compare PM2.5,SAT to colocated PurpleAir PM2.5
measurements for the summers of 2021 and 2022. As shown in
Figure 8i, PM2.5,SAT has a good agreement with 64 and 106
PurpleAir sensors in 2021 and 2022 (Y = 0.80X + 4.7, R = 0.66),
though η′obs is calculated based on 2019 data when the PurpleAir
network had less spatial coverage. This indicates that η′obs can
effectively estimate PM2.5 in locations where ground measure-
ments were not available in 2019. In Figure 8a−h, PM2.5,SAT
suggests elevated surface PM2.5 levels in Yukon Flat and tribal
villages, underscoring the need for increased PM2.5 monitoring
in these regions inhabited by underrepresented groups. Our
method demonstrates the potential for filling gaps in PM2.5
estimation where surface measurements are limited. In addition,
our model sensitivity test for the summer of 2019 suggests that
increasing the wildfire emission injection height can improve

modelled PM2.5. However, further adjustments are needed to
reduce the overestimation in ηGC,36/65 and the modelled PM2.5.

4. DISCUSSION
In this work, we present a piecewise function η′obs across various
AOD ranges, utilizing it to compute the 24 h average daily
surface PM2.5 from satellite AOD (eq 4, Figures 7 and 8). The
η′obs piecewise function is established based on the ηobs−AOD
relationship derived from ground PM2.5 measurements and
satellite AOD. The ηobs−AOD relationship indicates a lower
proportion of aerosols at the near surface layer, which can be
corroborated with CALIOP aerosol vertical profile retrievals and
GEOS-Chem sensitivity simulations that involve raising the
wildfire emission injection height. During wildfire periods, ηobs
can exhibit large variabilities within an AODbin, yet it effectively
captures the overestimation in modelled ηGC. This indicates that
our piecewise function η′obs is capable of estimating PM2.5 with
reasonable accuracy. The satellite derived surface PM2.5,SAT,
estimated by the ηobs−AOD relationship from the 2019 Alaskan
summer, shows a reasonable agreement with PurpleAir
measurements for 2021 and 2022 Alaskan summers. This
highlights the efficacy of our approach in estimating surface
PM2.5 in Alaska, particularly in remote regions that are affected
by intense wildfire smoke and lacking ground measurements.

Our study underscores several significant challenges in
estimating surface PM2.5 during Alaskan summer wildfire
seasons. We show that the model representation of aerosol
vertical profiles over a wildfire region is often ill-posed, resulting
from the wildfire injection scheme and vertical mixing. This is
further supported by the GEOS-Chem sensitivity test with
increasing wildfire injection height, as well as CALIOP satellite
retrieval (Figure 6). Injecting 35% of total wildfire emissions to
the free troposphere could lead to a 30% reduction in surface
PM2.5 and ηGC, along with a 15% decrease in f PBL during strong
wildfire events. Despite these improvements, the modelled
PM2.5 remains overestimated by a factor of 1.6, indicating the
need for further improvements in the model before an accurate
ηGC and surface PM2.5 simulation can be achieved.

Despite the improvement in deriving surface PM2.5 from
AOD, we emphasize that this observational η′obs warrants
further investigation.

First, ηobs exhibits significant variability within specific AOD
bins, particularly when AOD > 0.3. This variability could
potentially impact the effectiveness of η′obs in representing the
AOD−PM2.5 relationship during intense wildfires. The high
variability of ηobs could be due to the following: (a) The coarse
AOD bins may blend multiple wildfire events with different
aerosol vertical distributions into one AODbin, leading tomixed
signals in ηobs in each AOD bin. (b) The statistical robustness of
ηobs is limited by the availability of observation data. (c) The
piecewise function approach may oversimplify the spatiotem-
poral variability of η and its dependence on other variables,
introducing biases in the estimation process.

Second, the observational relationship does not take into
account the scenarios when plumes are largely aloft. In this case,
satellite AOD is high but surface PM2.5 levels remain low. This
scenario is likely less an issue for daily PM2.5 than for hourly
PM2.5.

Third, we show that satellite derived PM2.5 can be too low
when surface PM2.5 is higher than 200 μgm−3, suggesting further
improvement is needed under extremely smoky conditions. The
piecewise function can be further improved by increasing AOD
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bins and accounting for more variables, with more ground-based
measurements including low-cost sensors becoming available.
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■ ABBREVIATIONS
AOD = aerosol optical depth
PM2.5 = particulate matter with diameter < 2.5μm
PM2.5,SAT = PM2.5 derived by η′obs and satellite AOD
CF = conversion factor for PurpleAir PM2.5 product
GC = GEOS-Chem
η = conversion factor that converts AOD to surface PM2.5 (

surface PM
AOD

2.5= )
ηGC = η calculated from GEOS-Chem model simulated AOD
and surface PM2.5
ηGC,surface = ηGC based GEOS-Chem model simulation that
injects wildfire emission at the surface layer
ηGC,35/65 = ηGC based GEOS-Chem model simulation that
injects 35 and 65% of wildfire emissions in free troposphere
and within PBL
ηobs = η calculated from observed AOD and surface PM2.5
η′obs = η calculated based on median value of ηobs in various
AOD ranges87

f PBL = ratio of aerosol optical depth within PBL versus in the
total column
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