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A B S T R A C T

Satellite-based measurements have been widely used for estimating fire-emitted pollutants based on the pa-
rameters of either burned area or fire radiative power (FRP). Fire-related remote sensing additionally requires 
information on active fire areas and fire temperature at a subpixel scale, as well as the combustion phases (i.e., 
smoldering and flaming) to infer the plume injection height and to understand the mechanics of resulting at-
mospheric processes like pyro-convection. The FRP is as a key indicator of fire intensity that is frequently 
retrieved using infrared signals. The fire properties at a subpixel level, including the effective fire temperature 
and fire area, can be retrieved by the bi-spectral method. However, these approaches normally neglect the heat 
transport phenomena and subsequently fail to characterize the fire area that could be composed of different 
combustion phases (e.g. smoldering, flaming, or a combination of the two). Neglecting the phenomena of heat 
transfer leads to mis-estimation of the actual fire area and its associated emission profile for combustion products 
that are a function of the combustion phase. To address this challenge, this work presents a new approach to 
resolve the effective temperature variation inside each fire pixel using a semi-empirical heat-transfer algorithm. 
This algorithm utilizes radiance observations from geostationary satellites as inputs. With the aid of fine-spatial- 
resolution spaceborne and airborne observations, we evaluated and validated the fire retrieval performance on 
western US wildfires corresponding to the 2019 season. Our results show that FRP obtained through this heat- 
transfer method exhibits a stronger linear correlation with those retrieved from airborne measurements. More-
over, by analyzing the temperature variation curve obtained using this method, it is possible to further retrieve 
the fire area under different combustion conditions within the fire pixels.

1. Introduction

Wildfires in the western United States (WUS) have increased in 
extent, intensity, and frequency over the recent decades (Abatzoglou 

and Williams, 2016; Westerling, 2016). The fires in the United States 
have burnt more than 13.7 million acres of land in 2020, while about 65 
% of the burned area occurred in the WUS, according to the National 
Interagency Fire Center (NIFC) report (Zhuang et al., 2021). The 
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increased extreme fire events are partly attributed to the elevated at-
mospheric temperature and aridity (Juang et al., 2022; Wilmot et al., 
2022). The changing climate dramatically modulates the availability 
and flammability of fuels in this region, resulting in more frequent and 
severe fires (Bradstock, 2010; Krawchuk and Moritz, 2011). Wildfires 
trigger cascading effects on local ecosystems, and fire emissions pose a 
greater risk to air quality and human health. A few record-breaking 
wildfires have been reported in the past few years in the WUS (Brewer 
and Clements, 2019; Rooney et al., 2020). These large fires not only 
cause irreversible damage to the local living environment but also affect 
air quality far downwind through long-range transport of primary pol-
lutants such as carbon monoxide (CO) and black carbon (BC), and the 
formation of secondary pollutants such as tropospheric ozone (O3) and 
secondary organic aerosol (SOA) (Lamsal et al., 2015; Val Martin et al., 
2015; Rooney et al., 2020). Understanding the overall role of wildfire in 
atmospheric chemistry and air quality is a topic of high scientific and 
public interest.

During the past decade, numerous field campaigns investigated 
emissions from wildfires, their subsequent transport processes and 
associated chemical transformation, and their impacts on air quality, 
regional climate, and human health. Those campaigns include the U.S. 
Department of Energy’s Biomass Burning Observation Project field 
campaign (BBOP) in the summer of 2013 (Hodshire et al., 2021), Studies 
of Emissions and Atmospheric Composition, Clouds and Climate 
Coupling by Regional Surveys (SEAC4RS) from August to September 
2013 (Toon et al., 2016), and the joint NOAA/NASA Fire Influence on 
Regional to Global Environments and Air Quality (FIREX-AQ) in the 
summer of 2019 (Johnson et al., 2021; Warneke et al., 2023). FIREX-AQ, 
as one of the most recent field campaigns in the WUS during the fire 
season, encompassed a variety of measurements onboard multiple 
observation platforms, including satellites, airplanes, and ground-based 
mobile laboratories. On the other hand, numerical models of atmo-
spheric chemistry and transport were widely employed to advance un-
derstanding of the aggregated impacts of wildfire on air quality and the 
climate system and to provide valuable information on regulatory and 
health advisory purposes for decision-making during fire events (Jaffe 
et al., 2020; Ye et al., 2021).

Accurate estimation of fire emission is a prerequisite to evaluating its 
environmental impacts in atmospheric models. Different emission in-
ventories can produce factors ranging from two to four in the predicted 
annual carbon emissions from fires when using the same global climate 
model (Pan et al., 2020). Aircraft and mobile laboratory measurements 
provide direct evidence of trace gas and aerosol emission rates. How-
ever, the sporadic occurrence and the dynamically evolving nature of 
wildfires require measurement techniques with broad spatiotemporal 
coverages and high resolution. Satellite-based products thus have been 
widely used in estimating emission rates of atmospheric pollutants (Jin 
et al., 2021; Shi et al., 2019). Two approaches are frequently applied to 
satellite products to develop fire emission inventories: a burned area 
(BA) based “bottom-up” approach and a fire radiative power (FRP) 
based “top-down” approach (Seiler and Crutzen, 1980; Wiggins et al., 
2021; Wooster et al., 2005). The widely used bottom-up emission in-
ventories include the Fire INventory from NCAR (FINN) (Wiedinmyer 
et al., 2011; Wiedinmyer et al., 2023), the Global Fire Emissions Data-
base (GFED) (Giglio et al., 2013; Van Der Werf et al., 2017), and the Fire 
Locating and Modeling of Burning Emissions (FLAMBE) (Reid et al., 
2009). They are built on estimates of a few combustion parameters, such 
as burned area, fuel types, fuel loads, combustion completeness, and 
emission factors (Andreae, 2019; Andreae and Merlet, 2001). The 
bottom-up approach shows advantages in transferring the knowledge 
from laboratory-determined emission factors, especially for those highly 
reactive or volatile trace species, into field studies. However, complete 
statistics on the above-mentioned fire-related parameters often require 
considerable time, making the bottom-up approach inappropriate for 
application in near real-time systems.

In contrast to the bottom-up approach, fire emission can be alter-

natively derived using a top-down approach involving the multiplica-
tion of the satellite-derived FRP with the specified smoke emission 
factors and coefficients (Kaufman et al., 1998; Ichoku and Kaufman, 
2005). The Global Fire Assimilation System (GFAS) (Kaiser et al., 2012), 
the Fire Energetics and Emissions Research (FEER) (Ichoku and Ellison, 
2014), and the Quick Fire Emissions Dataset (QFED) (Darmenov and da 
Silva, 2015) exemplify the top-down inventories. The top-down 
approach reduces the dependency on the estimates of fuel and com-
bustion metrics required by bottom-up methods (Wooster et al., 2005). 
Moreover, satellites can sensitively detect excessive radiant energy 
provided an active fire covers less than 0.1 % of the pixel area (Andela 
et al., 2015; Whitburn et al., 2015), making this approach more sensitive 
to small-scale and early-stage fires. The FRP-based approach shows the 
potential for near real-time retrievals because it bypasses the latency 
intrinsically associated with the bottom-up inventories (Mota and 
Wooster, 2018). FRP data are widely retrieved through the products 
from different satellite platforms. FRP is frequently derived from the 
conversion of single-waveband radiance at middle-infrared band (~ 4 
μm) (Wooster et al., 2003). This method computes the pixel-based FRP 
(FRPMIR) through the difference in spectral radiance between the fire 
pixel and adjacent background (Giglio et al., 2016; Schmidt, 2020). 
Wildfire intensity characterized by FRP commonly presents a robust 
diurnal cycle that reaches its peak in the midafternoon (Giglio, 2007; 
Prins and Menzel, 1992). This temporal-dependent pattern is consistent 
with the observed fire emission rates (Andela et al., 2015; Li et al., 
2019).

Although FRP has been proven helpful in inferring the emission rates 
of primary pollutants, it alone may still cause significant estimation 
uncertainties under different combustion scenarios. For example, fire 
temperature and combustion type are crucial in determining the relative 
contents of various pollutants in emissions (Rein, 2013; Sofan et al., 
2019). Besides, many studies require FRP data and other ancillary in-
formation to assess fire impacts on the atmosphere. For example, fire 
area at the subpixel scale is also needed in the plume-rise models to 
estimate the convective injection height (Grell and Freitas, 2014; Gonzi 
et al., 2015). Similar fire parameterizations have been applied to a 
plume-rise-enabled chemical transport framework to evaluate the model 
prediction of boundary layer heights (Thapa et al., 2022). In addition to 
fire area and FRP, fire temperature and meteorology should also be 
considered to understand the atmospheric perturbation processes (Kahn 
et al., 2007; Peterson et al., 2014; Peterson et al., 2022).

It is becoming clear that fire metrics at the subpixel level are essential 
for various research and applications. Driven by the need for better sub- 
pixel fire detection and characterization, the US Muon Space and the 
Canadian Space Agency are planning to launch FireSat and WildFireSat 
Constellations with an average ground sample distance of 80 m and 200 
m correspondingly and various degrees of saturation. NASA is actively 
contributing to fire technology, investing in the development of airborne 
and space-borne unsaturated sensors. For example, the compact Fire 
Infrared Radiance Spectral Tracker (c-FIRST) is a NASA Earth Science 
Technology Office (ESTO) Instrument Incubator Project (IIP) competi-
tively selected in 2021 (Gunapala et al., 2023a,b). The instrument, 
currently at Technology Readiness Level (TRL) 4, is designed to meet a 
critical need for small, lightweight, relatively low-power satellite sen-
sors operating at short-wave infrared to mid-wave infrared wavelengths 
(1–5 μm) with fine spatial resolution from orbit (~60 m) and extremely 
high dynamic range (>100 dB). c-FIRST will demonstrate the mea-
surement of spectral radiance and derivation of associated temperatures 
from intense landscape fires, volcanoes, and other high-temperature 
targets, obtaining unsaturated images where current, state-of-the-art 
satellite detectors saturate and would complement low-spatial but 
higher temporal resolution observations of fire energetics available from 
currently operating satellite sensors.

The bi-spectral method has been widely used to retrieve fire size and 
temperature at a subpixel level (Dozier, 1981). Unlike single-band 
method mentioned above, the bi-spectral method resolves the subpixel 
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fire size and temperature by using the measurements of radiances at 
both middle-infrared (MIR) and thermal infrared (TIR) wavebands. The 
pixel-based FRP (FRPBS) is then computed by the Stefan-Boltzmann 
relationship given by 

FRPBS = σ
(

T4
f − T4

b

)
pSpix, (1) 

where σ is the Stefan-Boltzmann constant, Tf and Tb are fire and cool 
background temperatures, respectively, p is the fraction of the fire area 
in a certain pixel, and Spix is the area of the fire pixel. The traditional bi- 
spectral algorithm assumes a fire pixel can be well-separated by two 
distinct effective temperatures, Tf and Tb, which represent the kinetic 
temperature of the fire area and cool background, respectively (Peterson 
et al., 2013; Giglio and Schroeder, 2014). However, this assumption 
mischaracterizes the cases in which active fire areas are normally a 
mixture of areas with different combustion phases. Moreover, this 
method completely neglects the transport of energy fluxes, which results 
in temperature discontinuities at the edge of the retrieved fire area.

This work aims to introduce a new approach that resolves the sub-
pixel fire properties by applying a thermodynamically constrained al-
gorithm to the pixel-based geostationary remote sensing data. This 
algorithm resolves a function representation of the continuously varying 
temperature inside a fire pixel. Fire parameters, including fire area, fire 
temperature, combustion phases, and a pixel-based FRP, can be 
retrieved based on this temperature function. With the aid of coincident 
remote sensing and in situ measurements during 2019 FIREX-AQ 
campaign, we can evaluate the performance of this new algorithm.

2. Data sources and data preprocessing

2.1. GOES-R active fire products

The Geostationary Operational Environmental Satellites-R Series 
(GOES-R) satellites were designed to generate high-temporal-resolution 
observations of the Earth’s surface and the atmosphere. GOES-16 
(GOES-East) and 17 (GOES-West, replaced by GOES-18 in January 
2023) are two operational GOES-R series satellites at 75.2o W and 
137.3o W now over the equator, respectively. The Advanced Baseline 
Imager (ABI) aboard GOES satellites is a 16-channel passive imaging 
radiometer that provides continuous radiance imagery with an effective 
0.5–2.0 km resolution at nadir (Schmit et al., 2017). It monitors atmo-
spheric, oceanic, and other environmental conditions in a default mode, 
producing a full disk image every 10 min, a Continental US (CONUS) 
image every 5 min, and two regional images every 60 s (Schmit et al., 
2017).

The Fire Detection and Characterization (FDC) product is the active 
fire product derived from ABI. FDC builds upon the heritage of the 
Wildfire Automated Biomass Burning Algorithm (WFABBA), and it in-
cludes a data collection of FRP obtained by single-band MIR approach 
(Prins et al., 1998; Schmidt and Prins, 2003), along with retrievals of fire 
temperature and area from a modified Dozier’s method. In this study, we 
mainly utilized the ABI brightness temperatures/radiances at channel 7 
(centered at 3.9 μm) and channel 13 (centered at 11.2 μm) and applied a 
semi-empirical algorithm established based on a thermodynamic theo-
rem to retrieve the temperature variation function inside a fire pixel. 
This new method is different from the Dozier’s method and will be 
detailed in section 3. Additionally, we calculate the FRP based on the 
retrieved temperature variation function, which also distinguishes it 
from the single-band MIR method. The GOES fire pixels used in the 
following case study almost never reach the bands’ saturation temper-
atures (400 K for 3.9 μm band and 330 K for 11.2 μm band). The new 
retrievals of FRP were compared to those obtained by the MIR method 
and further correlates to the retrieved FRP from other observational 
platforms that have a finer spatial resolution, as introduced in the sec-
tion 5. FDC products used in this study are archived in FIREX-AQ online 
data repository (https://www-air.larc.nasa.gov/cgi-bin/ArcView/fire 

xaq).

2.2. VIIRS 375-m active fire products

Active fire products processed from the visible infrared imaging 
radiometer suite (VIIRS) aboard polar-orbiting satellites are used in this 
study to assess the retrieved FRP from GOES ABI products at those 
coincident locations. VIIRS is one of the vital radiance receptors aboard 
the Suomi National Polar-orbiting Partnership (S-NPP) and NOAA’s 
polar-orbiting joint polar satellite system (JPSS) series of satellites 
(Schueler et al., 2002; Xiong et al., 2014; Wolfe et al., 2013). It is a 22- 
channel whiskbroom radiometer ranging from the visible to the thermal 
infrared bands. The VIIRS instrument is built upon the heritage of 
MODIS. Both the MODIS and VIIRS instruments share many common 
features in terms of geometry and retrieval algorithms. Several studies 
have shown that VIIRS has the potential to replace MODIS as a viable 
alternative for global burned area mapping (Fernández-Manso and 
Quintano, 2020; Li et al., 2019; Ouattara et al., 2024). The level-2 VIIRS 
375-m active fire product from S-NPP (VNP14IMG) that contains geo-
location information and pixel-based FRP of fire spots is used in the 
study (Csiszar et al., 2014; Schroeder et al., 2014). The fire detection is 
primarily driven by high-resolution imagery band I4 centered at 3.74 μm 
with a saturation temperature of 367 K. I4 channel data is com-
plemented by band I5 (centered at 11.45 μm) with a higher saturation 
temperature of about 380 K. They both have a nominal spatial resolution 
of 375 m. This detection algorithm was tuned to optimize its response 
over small fires while balancing the occurrence of false alarms. Due to 
the radiance at I4 band being prone to saturation when observing 
intense fires, the FRP values are mainly retrieved by using the MIR 
method based on the signal of 750-m dual-gain M13 (4.05 μm) band. 
M13 band is saturated at temperatures of 343 K and 634 K at high and 
low gain settings, respectively (Csiszar et al., 2014). The retrieved FRP is 
then equally distributed to the collocated I-band fire pixels to generate 
the final 375-m active fire product. Low-confidence fires are excluded 
from the analysis before comparing with the collocated GOES FRP re-
trievals (Giglio et al., 2003; Csiszar et al., 2014; Schroeder et al., 2014; Li 
et al., 2018). The VIIRS FRP data used in this study are archived in the 
NASA Fire Information for Resource Management System (FIRMS).

2.3. FRP and combustion classifications obtained by MASTER

FRP and other associated fire parameters from the airborne platform 
are used in this study to understand the relationship with those retrieved 
from geostationary datasets. We use the data from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS)-Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) airborne simu-
lator (MASTER) aboard NASA DC-8 aircraft to study the fire character-
istics during the 2019 FIREX-AQ campaign. Retrieval of MASTER FRP is 
implemented by the conversion of detected radiance at the mid-infrared 
band (~4 μm) (Wooster et al., 2003; Wooster et al., 2005).

MASTER active fire detection algorithm is based on the contextual 
algorithm developed for MODIS (Giglio et al., 2003). Retrieval of FRP is 
provided for every pixel and used to calculate the flaming and smol-
dering combustion phases of a fire using the MASTER 4 μm spectral band 
(band 32) (Wooster et al., 2003; Wooster et al., 2005). The band 32 of 
MASTER instruments saturate at about 483 K. Pixels with 4 μm radiance 
values greater than 99.5 % of the maximum value are classified as 
saturated (Giglio et al., 2003; Hook et al., 2021). Combustion classifi-
cation is another critical metric provided by MASTER. A pixel is classi-
fied as being in smoldering combustion if its 4μm brightness 
temperature is higher than two standard deviations above the mean 
value of the non-fire 4μm background brightness temperature, and 
meanwhile, the pixel’s 11μm brightness temperature is higher than one 
standard deviation above the mean background 11μm brightness tem-
perature. A flaming pixel is defined similarly as its 4μm brightness 
temperature exceeds three standard deviations of the 4μm brightness 
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temperature of background pixels. Its 4μm brightness temperatures 
must be at least 100 K higher than the brightness temperatures at the 
11μm band. The information on the combustion phase is also utilized in 
this study to compare with those derived from the GOES retrievals.

2.4. Data preprocessing for correlation analysis

The subpixel algorithm was applied to the GOES active fire product 
to retrieve the objective fire parameters. The performance of this sub-
pixel algorithm was assessed through those retrieved parameters of the 
collocated VIIRS-GOES pixels and MASTER-GOES pixels. Two types of 
processes were employed in this study to find the matched collocated 
pixel samples among active fire products. The ray-casting algorithm was 
applied here to determine whether the centers of the fine-spatial- 
resolution pixels were inside or outside a coarse-resolution pixel. The 
pixel-based FRPs of those collocated fine-resolution pixels were aggre-
gated and compared with the FRP of the coarser GOES FRP. This method 
is based on the geographic location of the pixel center, maximizing the 
sample size for correlation analysis. In addition to the ray-casting 
method, we applied the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) method to aggregate the pixel-based FRP 
into clusters for collocation analysis as well (Ester et al., 1996; Shiva-
nasab et al., 2021). For each cluster, the neighborhood of an assigned 
distance (quantified by the epsilon value) contains at least a minimum 
number of fire pixels (Khan et al., 2014). This clustering algorithm does 
not require a predefined number of clusters, making it effective for 
handling irregular-shaped fire regions and distinguishing possible noisy 
pixels. The optimal epsilon is determined by the knee value using k-th 
nearest neighbor’s algorithm and the minimum number of pixels was 
tuned by considering the relative pixel size of two selected fire products.

Due to the much finer spatial resolution of MASTER pixels than the 
GOES pixels, those MASTER detected fire pixels can be considered as 
points or spots. These pixels can always be found within certain GOES 
fire pixels using the ray-casting algorithm. However, applying the ray- 
casting algorithm to VIIRS pixels near the GOES pixel boundaries may 
encounter the mismatch problem. Therefore, we applied the ray-casting 
algorithm to find the collocated MASTER-GOES pixel pairs. For VIIRS- 
GOES collocation analysis, we applied both the ray-casting algorithm 
and the DBSCAN method to compare their pixel-based and cluster-based 
fire parameters, respectively.

3. An improved algorithm to retrieve subpixel fire properties

3.1. Fire area and temperature retrievals at a subpixel level

FRP is the portion of the energy radiated from the burning fuel. 
Theoretically, it is computed by actual fire size and temperature ac-
cording to: 

FRPTheo = efireσ
∑N

k=1
Sfire,k • T4

k , (2) 

where efire is the emissivity of fire, σ is the Stefan-Boltzmann constant 
which is equal to 5.6704× 10− 8 W • m− 2 • K− 4, Sfire,k is the actual area 
of the k-th subpixel fire region, and Tk is the fire kinetic temperature of 
the subregion.

Eq. (2) requires the subpixel fire sizes and temperatures in a hotspot 
pixel to compute the FRP. Moderate-spatial-resolution imaging systems 
cannot directly detect those fine temperature distributions. Therefore, 
FRP values are mainly obtained from either the observed MIR radiances 
of the hotspot pixel or the bi-spectral method, which retrieves the fire 
size and fire temperature by assuming all N thermal components have 
the identical kinetic temperature (Dozier, 1981; Wooster et al., 2005; 
Wooster et al., 2003). The MIR radiance approach is applied in the 
GOES-R FDC Algorithm and the VIIRS 375-m S-NPP Active Fire Product 
to estimate pixel-based FRP. This method assumes that FRP per unit 

surface area is linearly proportional to the spectral radiance recorded in 
the MIR waveband, which is performed by the following equation: 

FRPMIR =
Spixσefire

aeMIR

(
LMIR − LMIR,b

)
, (3) 

where Spix is the area of the fire pixel, eMIR is the emissivity of the 
detected fire pixel at the MIR spectral band. a is an instrumental specific 
constant determined by the empirical best-fit relationship. It is equal to 
3.0 × 10− 9 W⋅m− 2⋅sr− 1⋅μm− 1⋅K− 4 for GOES-R fire characterization al-
gorithm and 2.88 × 10− 9 W⋅m− 2⋅sr− 1⋅μm− 1⋅K− 4 for VIIRS sensor- 
specific active fire algorithm (Wooster et al., 2003; Csiszar et al., 
2014; Schmidt and Prins, 2003). LMIR and LMIR,b are radiances of the 
fire-containing pixel and the non-fire background pixel at the MIR band.

Another approach that was extensively applied to the computation of 
FRP is the bi-spectral method. This method works well when the target 
brightness temperature differs significantly from the background tem-
perature at the selected wavelengths. The first step is retrieving the fire 
area and fire temperature at the subpixel scale. A fire pixel that contains 
a sub-region of fire with a uniform effective temperature Tf and a fire 
area fraction p emits radiances L4 and L11 in specific MIR and TIR bands, 
respectively. The following equations give the relationships: 

L4 = τ4pB
(
λ4,Tf

)
+(1 − p)L4,b (4) 

L11 = τ11pB
(
λ11,Tf

)
+(1 − p)L11,b, (5) 

where B(λ4 or 11,T4 or 11) is the spectral radiance of an object with tem-
perature T4 or 11 at the wavelength λ4 or 11 computed by the Planck 
function. The explicit form of the Planck function used in this study is 
provided in Eq. S1 and S2. τ4 and τ11 represent the upward atmospheric 
transmittance at 4 μm and 11 μm, respectively. In this study, p, as stated 
in Eq. (1), is the fraction of fire area in each fire pixel. The background 
radiances at the top of the atmosphere (TOA), L4,b and L11,b, are defined 
as 

L4,b = τ4
[
e4bB(λ4,Tb)+ (1 − e4b)L4,ref

]
(6) 

L11,b = τ11
[
e11bB(λ11,Tb)+ (1 − e11b)L11,ref

]
, (7) 

where e4b and e11b denote the assumed background surface emissivity at 
4 μm and 11 μm, respectively. The reflectivity of the opaque pixel with 
emissivity e is equal to (1 − e). L4 or 11,ref is the solar radiance reflected by 
land surface at the λi μm band. In the current model setting, the 
contribution of L4 or 11,ref to background, was temporarily set to zero. 
Peterson and Wang (2013) pointed out that the viewing zenith angle and 
column water vapor content affect the differences between atmospheric- 
corrected radiances and radiances at surfaces. In this study, the pro-
cessed data were obtained from geostationary satellite imagers, with 
relatively fixed viewing angles towards the objective region, and the 
retrievals were mainly applied to wildfire events occurring in that region 
with a time window of around one week. Given the spatial and temporal 
constraints, the variations of the stationary satellite’s viewing angles 
were negligible. The effects from variations in surface emissivity and 
atmospheric column water vapor are minor at 4 μm brightness tem-
perature. As a result, the background temperature, Tb, can be approxi-
mated by the brightness temperature of fire-free pixels, T4b (Kaufman 
et al., 1998; Peterson and Wang, 2013). Fire is generally considered as a 
black body, so its emissivity can be approximated as one. Tf and p are 
retrieved by combining Eq. (4) to Eq. (7) with reasonable corrections for 
water vapor attenuation and semi-transparent clouds (Peterson and 
Wang, 2013; Peterson et al., 2013). The subpixel fire algorithm of GOES 
FDC is an application of this approach, which utilizes the radiances at 
ABI Channels 7 (3.9 μm) and 14 (11.2 μm) to quantify Tf and p (Schmidt 
and Prins, 2003; Schroeder et al., 2010; Schroeder et al., 2008). 
Although GOES FDC product uses a modified Dozier method to retrieve 
both active fire area and effective fire temperature, it still calculates FRP 
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using the MIR method defined by Eq. (3), rather than the bi-spectral 
method used in Eq. (1) due to considerations of computational cost 
and reliance on the accuracy of background temperature measurements.

3.2. Heat transfer phenomena in a fire pixel

3.2.1. Model equations related to the heat transfer process
Algorithms for deriving subpixel fire properties based on satellite 

products are limited by the amount of wildfire-related input data, res-
olution, and computational cost considerations. As a result, they often 
require simplifications of real combustion scenarios to obtain those 
effective subpixel parameters. The Dozier bi-spectral method assumes 
that all fires inside one pixel have the same kinetic temperature, while 
the temperature of the non-fire portion in the same pixel equals the 
background temperature. However, the realistic wildfire areas are often 
composed of regions in different stages of combustion, such as smol-
dering and flaming combustion. They have varied radiant energy 
transfer efficiencies and emission rates of pollutants to the ambient 
environment. Transitions between different combustion states are 
continuously occurring during the spread of fires. The retrieval of a 
unique effective temperature using the traditional bi-spectral method 
neglects the diversity of temperature variation and combustion condi-
tions in a detected fire pixel, and it will lead to inaccurate estimates of 
fire energetics and emissions.

Resolving the detailed temperature variations at any scales of a fire 
requires considering the heat transfer phenomena among the above-
ground ignited biomass, the surrounding atmosphere, and the soil 
beneath the canopies. In this study, we proposed a simplified model that 
flattens the abovementioned fire-related mediums into a plane that al-
lows the transport of fire energy and the latent heat released/absorbed 
by the water phase change. The flattened plane, named soil-biomass 
plane (SBP), is a term for the mixture of soil solid particles, liquid 
water contained in soil and vegetation, and air in the soil pores that 
contains water vapor. The thermal properties of the SBP are determined 
by the relative abundance of the species in different phases. Resolving 
the complete heat transfer phenomena requires considering energy 
conservation law and the equilibrium of water between liquid and 
gaseous phases. The complete equation that governs the heat flow can be 
written as Eq. (8): 

Cs
∂T
∂t

− Lvρw
∂ω
∂t

− ∇ • (κ∇T)+ωρacp∇ • (uv
→T) = 0, (8) 

where Cs is the volumetric heat capacity of the SBP, Lv is the latent heat 
of vaporization of water, ρw is the density of water, and ω is the air-filled 
porosity of the SBP. The first two terms characterize the temporal ex-
change of sensible and latent heat attributed to temperature change and 
water vaporization. Furthermore, κ is the thermal conductivity of SBP, 
ρa is the air density, cp is the specific heat capacity of air, and uv

→ is the 
effective velocity of soil airflow. The positive direction of this vector is 
defined as the direction away from the center of the fire. The third and 
fourth terms quantify the heat fluxes by conduction and advection, 
respectively. Within SBP, heat transfer by radiation is much weaker than 
that by the advection-diffusion process. Hence, we neglected the radi-
ation term in Eq. (8). Note that obtaining a converging solution to Eq. (8)
is computationally expensive. It is not feasible to apply the complete 
form of the above-mentioned governing equation to each fire pixel. To 
reduce computational cost, the first assumption we made here was that 
the heat transfer in each fire pixel always reaches its steady state at the 
time of observations, and thereby, two time-variant terms were omitted. 
Secondly, the brightness temperature of a fire pixel was determined by 
the effective temperature of SBP, while the energy exchange between 
the SBP and the air above, and heat fluxes along the vertical direction 
beneath the land surface, were neglected. Finally, the heat flux direction 
in each fire pixel was regarded as unidirectional. Note here a strict so-
lution to Eq. (8) requires consideration of heat transfer in all directions, 

especially when the thermal conductivity of the medium is anisotropic. 
Here we made the abovementioned assumptions are primarily based on 
lowering the computational cost and avoiding too many undetermined 
parameters due to the limited observational data. These assumptions 
degrade the original heat transfer problem to a one-dimensional equa-
tion. The simplified equation is written as: 

d
dx

(

κ
dT
dx

)

= cpρaωuv
→dT

dx
, (9) 

In this equation, the positive x direction was defined as the direction 
from the fire center to the edge of the pixel. The temperatures at the 
pixels’ edges were used as boundary conditions to solve Eq. (9). The 
background brightness temperature at 4 μm was used here as an esti-
mate of kinetic background temperature since the column water vapor 
effects on atmospheric transmittance are minor at that wavelength. 
Background temperatures at boundaries were set to equal the 4 μm 
background temperature of the fire pixel. By solving this governing 
thermal equation, we can calculate an effective temperature variation 
function.The schematic of the retrieved temperature variation using this 
heat transfer algorithm is illustrated in Fig. 1c. As a comparison, the 
retrievals of a homogeneous fire temperature assumption and the tem-
perature variations retrieved by the traditional bi-spectral method are 
shown in Fig. 1a and b, respectively. Fig. 1c depicts the subpixel fire 
model coupled with the heat transfer algorithm proposed in this study. 
The retrieved fire region has a peaking constant fire temperature, with a 
gradually decreasing value towards pixel edges. Note here that the heat 
transfer model is more applicable to large-scale wildfires. In the absence 
of topographic constraints and with sufficient fuel availability, the fire 
perimeter can extend to its maximum extent across the entire pixel.

3.2.2. Parameterizations of heat transfer equations
To solve Eq. (9), it is necessary to first define the parameters in the 

equation. Here, we use the thermodynamic parameters of soil to 
represent the thermodynamic parameters of SBP in Eq. (9). The heat 
transfer model employs basic assumptions and parameterizations, such 
as those of De Vries and Van Wijk (1963), with minor simplifications and 
modifications. Similar processes have been applied by Campbell et al. 
(1994) and Massman (2012). The bulk conductivity κ in Eq. (9) in the 
current model was expressed as the weighted sum of the thermal con-
ductivities of soil compositions, including conductivity of solid particles 
(κs), water (κw), and wet air (κa), 

κ =
fsκs + fwκw + faκa

fs + fw + fa
. (10) 

κs is a soil property parameter that is independent of ambient con-
ditions. In this study, the value of κs is 2.0 W/(m • K), a typical value for 
Palouse B type soil. κw and κa are both temperature-dependent variables 
that can be written as: 

κw = 0.554+ 2.24×10− 3 Tc − 9.87×10− 6 T2
c , (11) 

κa = 0.024+7.73× 10− 5 Tc − 2.6× 10− 8 T2
c + κL, (12) 

where Tc is the Celsius temperature. Soil air conductivity κa is expressed 
as the sum of dry air conductivity and a vapor term, κL, that charac-
terizes the latent heat transfer due to the existence of water vapor. κL is 
computed as: 

κL =
Hvhϕf Dvρms

P − hP* , (13) 

where Hv is the latent heat of vaporization of water that was approxi-
mated by 45144 − 48Tc J/mol, h is the relative humidity, ϕf is a 
weighting function that quantifies the wetness of soil, Dv is the vapor 
diffusivity in air, ρm is the molar density of air. Dv and ρm are defined as: 
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Dv = Dvsat

(
Psl

P

)(
T

Tstd

)1.75

, (14) 

and 

ρm = ρm0

(
P
Psl

)(
Tstd

T

)

. (15) 

Psl and Tstd are sea-level pressure and standard temperature, respec-
tively. Dvsat is the diffusivity at standard condition with a value of 2.12×

10− 5 m2/s, and ρm0 equals 44.65 mol/m3. P* (in Pa) is the saturation 
vapor pressure of water in soil pores, and s (in Pa/K) is the slope of the 
saturation vapor pressure versus temperature function. They are 
approximated by: 

P* = 101325 • exp
(
13.3815T̂ − 1.976T̂

2
− 0.6445T̂

3
− 0.1299T̂

4)
,

(16) 

and 

s = 373.15 • P* •
(
13.3015 − 4.082T̂ − 0.78T̂

2
+10.76T̂

3 )/
T2, (17) 

where T̂ is a dimensionless temperature indicator that equals 1 −

(373.15/T). In Eq. (13), 1/(P − hP*) is a term that represents the shift of 
vapor equilibrium when the soil moisture varies. The weighting factors 
for each soil component in Eq. (10), fs, fw, and fa, have a uniform format 
of 

fi =
xi

3

⎡

⎢
⎢
⎣

1

1 +

(
κi
κf
− 1

)

ga

+
1

1 +

(
κi
κf
− 1

)

gb

+
1

1 +

(
κi
κf
− 1

)

gc

⎤

⎥
⎥
⎦, (18) 

where the subscript i refers to solid (s), water (w), and air (a). xi is the 
volumetric fraction of soil component i. Under this definition, total 
porosity can be written as xw + xa, and air-filled porosity ω equals xa. ga, 
gb, and gc are three shape factors of soil. This study uses the same re-
lationships described in De Vries and Van Wijk (1963), including: (1) the 
sum of three shape factors equals to unity and (2) ga equals gb. 
Furthermore, κf is an effective thermal conductivity of fluid components 
that can be written as the weighted mixture of κa and κw. An interpo-
lation function determines its magnitude by: 

κf = κa +ϕf (κw − κa). (19) 

The weighting factor ϕf in Eqs. (13) and (19) is computed by: 

ϕf =
1

1 +

(
xw
xws

)− q, (20) 

q = q0

(
T

303

)2

, (21) 

where T is the temperature in Kelvin. ga, xws (m3/m3) and q0 are soil- 
specific properties that are empirically determined. This study used 
the suggested values of Palouse B type soil, which are 0.074, 0.230 (m3/ 
m3), and 5.83, respectively (Campbell et al., 1994). ϕf ranges between 
0 (dry soil) and 1 (saturated soil). Due to a faster change of ϕf value than 
relative humidity h, h can be regarded as constant unity.

The advection parameters in the right side of Eq. (9) were expressed 
as: cp was set to be 1010 J/(kg • K) and was insensitive to variation of 
temperature and soil moisture, ρa (in kg/m3) was computed from air 
molar density ρm which was defined in Eq. (15). The effective advection 
velocity of soil air beneath the land surface, uv

→, was assumed to be 
outward from fire to represent a near-stagnant condition. The numerical 
model parameters outlined in this section were incorporated into Eq. (9)
to retrieve the temperature functions. Given the heat transfer process 
and a resulting temperature variation pattern near the wildfire, Eq. (4)
(Eq. (5) equivalently) should be further modified to: 

L4 =

(
1

Spix

)∫∫

τ4[e4B(λ4,T(x, y) ) ]dxdy, (22) 

where the integral domain in Eq. (22) is the entire fire pixel. The algo-
rithm was run repeatedly with input fire peaked temperature and fire 
fronts’ location pairs to generate radiances at 4 μm (11 μm equiva-
lently). The input fire parameter pair with the least radiance deviation 
from the observation was output as the retrieval result. After obtaining 
the peaked fire temperature and the associated temperature function 
from the fire center to the pixel edge, this algorithm further assumes the 
area that has a retrieved effective temperature higher than the back-
ground as the fire area.

4. Model sensitivity to the fire parameters

4.1. Factors that affect the retrieved temperature function

The governing advection-diffusion equation resolves the functions 
that represent the retrieved temperature variations. Those functions are 
continuous and differentiable everywhere except for the location of 
peaked temperature. Fire size, or the fraction of fire area in each pixel, is 

Fig. 1. Schematics of (a) homogeneous temperature model, (b) bi-spectral model, and (c) heat transfer model for retrieving the effective temperature variation 
functions in a fire pixel. The height of the surface plot indicates the magnitude of the retrieved temperature.
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mainly constrained by the shape of temperature functions and the 
relationship between the retrieved temperature function and the 
threshold of fire temperature. This section discusses these significant 
factors. Fig. 2a demonstrates the sensitivity of retrieved temperature 
functions to varied fire peaked temperature (from 600 K to 1400 K). The 
fire pixel has a cool background temperature of 304.5 K and a fixed 
effective advection velocity of 10 m per day. Fire sizes are measured by 
the areas with a retrieved temperature higher than the background 
temperature. This figure indicates that fire size grows as the fire peaking 
temperature increases when other environmental parameters are fixed. 
Fire temperature and size are mutually dependent.

Curves in Fig. 2a are plotted based on an assumption of near-stagnant 
advection velocity. However, the magnitude of advection velocity is 
highly varied in different ambient conditions, and it sensitively affects 
the temperature descending slopes like the peaked temperature. Fig. 2b 
demonstrates that temperature drops faster from the fire center (with a 
fixed temperature of 1200 K) to pixel edges (with a cool background 
temperature of 304.5 K) as the effective advection velocity increases 
(the function curves from the outermost to the innermost in Fig. 2b 
represent scenarios of 1, 2, 5, 10, and 100 m/day, respectively). When 
the peaked fire temperature is fixed, the ascending advection velocity of 
soil air results in a shift of fire fronts towards the fire center, and the 
retrieved fire area is thereby shrinking compared to a more stagnant 
condition.

4.2. Sensitivity of the radiances at 4 and 11 μm bands to the variations in 
fire parameters

Traditional bi-spectral methods independently retrieve fire temper-
ature and the fraction of fire area in a single pixel. The radiances 
uniquely determine the temperature-area pair at 4 and 11 μm bands 
with known surface reflectance and atmospheric transmittance. As 
stated in the previous section, the two independent factors of the heat- 
transfer retrieval algorithm that determine the temperature variation 
functions are peaked fire temperature and effective advection velocity. 
From this perspective, the temperature-velocity pair can also be inter-
preted as a temperature-area pair.

In Fig. 3, we show the sensitivity of the brightness temperatures at 4 
(BT4) and 11 μm (BT11) bands to the variations of peaked fire temper-
ature Tf and effective advection speed uv. This specific example corre-
sponds to the lookup table for a fire pixel detected by GOES-16 satellite 
at 21:07 (UTC) on August 3, 2019. The kinetic background temperature 
is assumed to be identical to the BT4 of the surface background, which is 
305.617 K. The observation has a satellite zenith angle of 69.5o and a 

solar zenith angle of 32.9o. Dashed lines represent the observed radiant 
temperature pairs at 4 and 11 μm given a fixed effective advection ve-
locity (in meters per day), while the solid lines represent the tempera-
ture pairs given a constant peaked fire temperature (in Kelvin). Tf 
increases from kinetic background temperature to 900 K. Each solid line 
is spaced at intervals of 100 K starting from 400 K in this figure, while 
the upper and lower limits of the effective advection velocities are 100 
and 1 m per day, respectively. Note here that all dashed lines originate 
from the same bottom-leftmost point, representing that the peaking 
temperature equals the kinetic background temperature.

This figure shows that increases in Tf and decreases in uv can cause 
higher brightness temperatures in both bands. The inset of Fig. 3 high-
lights the BT4 and BT11 responses to the variations of Tf and uv in a more 
flowing or moving condition (high uv conditions). The varied lengths of 
dashed lines indicate that the same Tf increases always lead to a weaker 
brightness temperature change in those less stagnant environments. In 
other words, higher radiance measurement accuracy is required to 
retrieve fire peaking temperature in a less stagnant environment. Simi-
larly, from the lengths of solid lines, we learn that at a higher Tf level, 
brightness temperature pairs change into a broader range as uv changes. 
Besides, the slopes of dashed and solid lines (δBT4/δBT11) are inter-
preted as the relative change in BT4 to BT11 due to the variations of Tf 
and uv, respectively. Each dashed line starts with an ascending 
δBT4/δBT11 value as Tf increases from the background temperature 
point. As Tf continuously increases, especially for those more stagnant 
conditions, the slope value gradually stops to increase and then de-
creases. This pattern implies that in the lower uv region, the same δBT4 
corresponding to the linearly elevated Tf is first matched to a descending 
δBT11 until a local minimum, and then δBT11 amplifies again.

5. Applications of the heat-transfer retrieval algorithm

The present study applied the fire-area retrieval algorithm to the data 
detected by GOES-16/17 satellites during the FIREX-AQ field campaign 
(Warneke et al., 2023). In this section, the retrieval outputs are evalu-
ated against the observations from other platforms. Continuous and 
comprehensive observations of wildfires and small-scale agricultural 
fires were conducted in multiple locations in the United States during 
the summer of 2019 through ground-based measurements, aircraft 
surveys, and satellite remote sensing. Williams Flats fire was the largest 
sampled fire during the FIREX-AQ campaign. Lightning strikes ignited it 
on August 2 and was entirely contained by August 25, with a total 
burned area of over 44,000 acres. FIREX-AQ observations collected over 
the William Flats demonstrated that fire energetics correlated to the 

Fig. 2. Sensitivity of the retrieved subpixel temperature function to different (a) peaked fire temperature and (b) effective advection velocity. In (a), the function 
curves from the innermost to the outermost represent the retrieved temperature variations with a peaked fire temperatures of 600, 800, 1000, 1200, and 1400 K and a 
constant effective advection velocity of 10 m/day, respectively. In (b), the function representations from the innermost to the outermost show the retrievals with 
different effective advection velocities of 100, 10, 5, 2, and 1 m/day and a fixed peaked fire temperature at 1200 K, respectively.
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relative trend in conserved smoke tracers (Wiggins et al., 2020, 2021). 
Besides, satellite and aircraft measurements have observed the occur-
rences of pyro-cumulonimbus cloud (pyroCb), which can modify local 
weather patterns and precipitations and potentially cause perturbations 
in stratospheric composition over the fire-affected region several days 
after the fire started (Peterson et al., 2022). Accurate inversion of the fire 
area and fire energetics is of great significance for estimating fire 
emissions and wildfire energy release, as well as further studying the 
driving forces of phenomena such as pyroCb. To study Williams Flats fire 
in this section, we utilized remote sensing data from both geostationary 
and polar-orbiting satellites to show the diurnal variations of fire in-
tensity and the progression of fire perimeters. Then, a new set of FRP and 
associated fire parameters were obtained by applying the proposed 
retrieval method to high-temporal-resolution GOES observations and 
compared with those from collocated VIIRS active fire products Besides, 
the new GOES-based FRP data are evaluated against the observations 
from high-spatial-resolution (~ 30 m) MASTER aboard NASA DC-8 
aircraft. MASTER provides more reliable references for fire-emitted ra-
diances and other derivative parameters from a closer distance during 
the campaign. Finally, since the proposed algorithm outputs a complete 
temperature function for each fire pixel, it is possible to partition the 
flaming and smoldering regions by applying a “temperature threshold” 
on the variation function. This additional information will shed light on 
accurately assessing the emission rates of pollutants under different 
combustion conditions.

5.1. Progression of Williams flats fire

Williams Flats fire was first spotted on August 2, 2019. Its intensity 
exhibits a strong diurnal variation pattern, which is quantified by FRP. 
The cycle starts to develop near local noon and reaches its maximum in 
the afternoon. Most observed fire diurnal cycles diminish after sunset, 
although some strong and large-scale fires can still emit detectable en-
ergy in the late night (Wiggins et al., 2020). High-temporal resolution 
FRP data can be used to retrieve fire emissions and other important fire 
parameters. They are obtained from observations from geostationary 
Earth orbit (GEO) satellites.

The FRP diurnal cycles of Williams Flats Fire are depicted in Fig. 4a 

as time-series of FRP. Fire diurnal cycles on each day can be approxi-
mated by a mixture of monomodal and multimodal patterns. The modal 
peaks generally appear in the local afternoons. In Fig. 4b, we further 
demonstrate how the fire spreads geographically using polar-orbiting 
satellites observations that provide finer spatial resolution data. The 
data of fire hot spots used here were detected by VIIRS aboard the S-NPP 
satellite. The different colour dots in this figure represent all the fire 
pixels the radiometer observed on the corresponding dates. This figure 
shows that the Williams Flats Fire spreads northwards and eastwards 
due to a combination of factors, including terrain, surface vegetation 
covers, and dominant wind directions.

5.2. Comparisons of GOES FRP with collocated VIIRS FRP

Due to polar-orbiting satellites passing over the same area only twice 
a day, the observed fire area between two consecutive days shows 
noticeable discontinuities in Fig. 4b, especially during the beginning 
stage of the fire. The VIIRS 375-m active fire product has a spatial res-
olution of 375 m, with an effective footprint ranging from the nominal 
375 m resolution (383 × 360 m) at the sub-satellite point to 795 × 784 m 
at a maximum scan angle of 56.28◦. In this study, the VIIRS fire pixels we 
selected fall within an area range of 0.15 to 0.63 km2. During the active 
burning period of the Williams Flats fire that we studied, a total of 2106 
individual VIIRS fire pixel observations were obtained. The I4 band was 
saturated in 240 detected pixels among all the observations, though it 
had negligible impacts on the performance of M13 band, and thereby 
our acquisition of FRP data. The studied fire is located at the nadir point 
of the S-NPP at approximately 1:30 pm and 1:30 am (local time). In this 
study, we used the fire pixel data observed at those off-nadir angles as 
well. The uncertainty in FRP retrieval caused by viewing angles will be 
investigated in the future work. Besides, the variation of the atmospheric 
column water content at different times of the day can affect the 
transmittance of the infrared radiation. The VIIRS fire pixels used in this 
study were detected between 12:30 pm – 3:00 pm (daytime) and 1:00 
am – 4:30 am (nighttime). The observational data of the vertical profile 
of water vapor can be further incorporated into the radiative transfer 
simulation to obtain more reliable retrievals of fire parameters.

Although VIIRS provides high spatial resolution fire detection, the 

Fig. 3. Sensitivity of the brightness temperature at 4 and 11 μm bands to variations in peaked fire temperature Tf (in Kelvin) and effective advection velocity uv (in 
meters per day).
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rapidly changing nature of wildfires makes geostationary satellite data 
particularly valuable for studying real-time wildfire intensity. Here, we 
mainly applied the retrieval algorithms on the GOES datasets during the 
active period of the Wiliams Flats fire (Aug 2 to Aug 9, 2019) and first 
compared the subpixel retrievals with the collocated VIIRS observations. 
The pixel areas of GOES-16 and GOES-17 in the Williams Flats fire re-
gion are approximately 20 km2 and 9 km2, respectively. 77 and 135 
collocated fire pixels are captured by ABI aboard GOES-16 and 17 during 
the studied active fire period of the Williams Flats fire, respectively. The 
retrieved pixel-based FRP and fire area are then computed for further 
comparison.

Pixel-based FRP of heat-transfer algorithm FRPHF is obtained ac-
cording to the Stefan-Boltzmann relationship by, 

FRPHF =

∫

σ
(

T(s)4
− T4

b

)
ds, (23) 

where T(s) is the retrieved temperature over the fire region s. This FRP 
value is firstly compared with the FRP obtained by the single-band MIR 
approach through the WFABBA algorithm. Fig. 5a and b show the cor-
relations between two types of FRP from GOES-17 and 16 satellites, 
respectively. More fire pixels were captured by GOES-17 than 16 mainly 
because of its smaller viewing zenith angle and, thereby, smaller pixel 
size over the fire region. It was found that the FRPs computed by heat- 
transfer algorithm fit better with the ones obtained by the MIR 

method in those GOES-17 fire pixels (R2 = 0.649) than GOES-16 coun-
terparts. The scaling factor between the two types of FRP in GOES-17 
cases is very close to the 1:1 reference line. The p-value (0.103) here 
indicates that the correlation is not statistically significant at the typical 
0.05 level. Several factors could lead to this result. For example, the 
collocated fire pixels between the two selected active products for the 
Williams Flats fire event are not enough to exhibit a significant linear 
correlation, and fires may show inconsistent burning activities during 
the daily time window when the two sensors have overlapped 
measurements.

In Fig. 5a and b, the colour of each data point represents the back-
ground temperature at 4 μm. The heat-transfer method generally out-
puts lower FRP values for those observations with a cooler background 
temperature. By plotting the background temperatures of all detected 
fire pixels versus the local time in Fig. 5c and d, we observed that these 
temperatures exhibit a strong diurnal variation pattern during the active 
period of the fire. Observations with a cooler background temperature in 
Fig. 5a and b are associated with a nighttime or early morning sampling 
time.

Two consecutive GOES measurements with an interval of ten mi-
nutes are synchronized with the VIIRS observation if their time interval 
covers the acquisition time of the associated VIIRS observation. As we 
stated in section 2.4, we conducted collocation analysis of VIIRS and 
GOES FRP at both pixel and cluster level. For the pixel-based 

Fig. 4. The 2019 Williams Flats fire activities observed by satellite platforms during the FIREX-AQ campaign. (a) The diurnal cycles of the FRP retrieved from the 
observations by ABI aboard GOES-16 (black dots) and 17 (red dots) satellites. (b) The progression of the fire area observed by VIIRS aboard the S-NPP satellite. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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comparison, the correlation relationship between GOES-17 and collo-
cated VIIRS pixel-based FRP is shown in Fig. 6a and b. Cases with a zero 
VIIRS FRP value are first filtered. Most of the aggregated VIIRS FRP is 
about or less than half of the collocated GOES FRP in magnitude. 
Combining the results of the R-squared and p-value, we found that the 
moderate correlation between GOES FRP obtained through the heat- 
transfer method and VIIRS FRP is statistically significant among the 
collocated pixel-based FRP cases of the Williams Flats fire we studied. In 
contrast, although the MIR method yields a stronger linear correlation, 
this relationship is not statistically significant. On the other hand, we’ve 
conducted correlations analysis of cluster-based FRP in Fig. 6c and d. 
Due to the clustering of fire pixels, the number of collocated FRP cases 
used for comparison is smaller than that of pixel-based FRP. Similar to 
the correlation observed with pixel-based FRP, the GOES FRP derived 
from the heat-transfer method shows a slightly weaker linear relation-
ship with VIIRS FRP compared to the MIR method, but this relationship 
is more statistically significant.

5.3. Comparisons of GOES FRP with collocated MASTER FRP

Suborbital observations of the Williams Flats fire are another 
important data source that can be compared with the FRP retrievals 
from remote sensing platforms. MASTER aboard DC-8 aircraft provided 
FRP data on August 3, 6, 7, and 8 (local solar time). On these four days, 

the aircraft circled multiple times over the fire regions, offering rela-
tively complete geographical coverage of the active fire area. Besides, 
due to the closer distance between the imager and the fire, the atmo-
spheric attenuation and the received radiance uncertainty caused by the 
viewing zenith angle are significantly reduced. All those factors make 
MASTER-retrieved FRP a more reliable validation set than those from 
polar-orbiting satellite platforms. Fig. S1 illustrates the vertical profile of 
the backscattering coefficients at 532 nm measured by High Spectral 
Resolution Lidar (HSRL) aboard DC-8 aircraft during the Williams Flats 
fire. The black lines in each figure indicate the flight altitudes of DC-8. 
The starting and ending time of each DC-8 flight (UTC) and the de-
pendency of MASTER pixel size on flight altitude are shown in Table S1. 
The MASTER data used for further analysis has a pixel resolution 
ranging from 15 to 30 m.

The derivation of FRP from MASTER observations is based on a 
similar single-band MIR approach as stated in the previous sections. Like 
the process of correlating VIIRS FRP to two types of GOES FRP, we first 
identify the collocated pixel-based FRP from the products of MASTER 
and GOES by combining the use of the ray casting algorithm and tem-
poral averaging of multiple synchronized GOES pixel-based FRPs. The 
scatter points in Fig. 7 represent all the detected fire spots by MASTER of 
four time periods (01:13–01:17 am, 01:20–01:21 am, 02:04–02:06 am, 
and 02:19–02:26 am, Aug 9 (UTC)). Since the MASTER observations 
coincided with an active pyroCb event, the dense convective clouds 

Fig. 5. Correlations between the FRPs obtained from the heat-transfer algorithm and the single-band MIR method (in the released WFABBA products) from (a) GOES- 
17 and (b) 16 observations, respectively. The grey dashed lines represent the line of equality, indicating where the FRP values calculated by the two methods are 
identical. (c) and (d) show the diurnal cycle of the background brightness temperature of all fire pixels detected by GOES-17 and 16, respectively.
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caused some fire signals to be missed by the ABI imager aboard GOES 
satellites. The identified combustion types are labeled as different 
colors. This figure shows that most active fire areas were under smol-
dering combustion conditions, and almost all isolated fire regions were 
comprised of a mixture of flaming and smoldering areas. Saturated fire 
pixels account for only a very small portion. The areas classified as 
flaming combustion are mainly located at the periphery of the fire re-
gion, which is in accordance with the pattern of fire front propagation. 
The polygons of collocated GOES-16 and 17 fire pixel footprints are 
drawn in blue and magenta, respectively. The fire pixels in Fig. 7 were 
captured by GOES at 01:21 am.

Like the correlation analysis for VIIRS FRP, we computed the linear 
regression statistical metrics between FRPs computed by the heat- 
transfer method and those retrieved by the MIR method. As shown in 
Fig. 8a and b, GOES-17 cases show a stronger linear correlation (R2 =

0.726) between two types of GOES FRP than the GOES-16 observations 
(R2 = 0.639). The slope of the fitted line for GOES-17 cases is also closer 
to one, implying that the two types of FRP are comparable in magni-
tudes. The p value of the linear correlation of GOES-16 FRP obtained by 
MIR and heat-transfer method is 0.277, which implies their correlation 
is not statistically significant. Fig. 8b also shows that as the pixel-based 
FRP values increase, the linear relationship between the GOES-16 FRP 

calculated by the two methods becomes stronger. According to the 
collocation analyzes of GOES-VIIRS retrievals in Fig. 5 and those of 
GOES-MASTER retrievals in Fig. 8, We found that GOES-17, due to its 
finer spatial resolution over the Williams Flats fire area than GOES-16, 
results in smaller deviations between the FRP calculated using the 
heat-transfer method and the traditional MIR method. The FRP of fire 
pixels with higher background temperatures that were retrieved using 
the MIR method tends to be slightly higher than the FRP calculated using 
the heat transfer method, while the opposite is true for pixels with lower 
background temperatures. Since the GOES FDC also provides fire area 
and temperature retrievals using the Dozier method, we can therefore 
calculate pixel-based FRP based on Eq. (1). As shown in Fig. S2, the FRPs 
computed by Dozier’s bi-spectral method show a quite strong linear 
correlation with those computed by MIR method. In contrast, the FRP 
computed by the proposed heat-transfer method shows a weaker cor-
relation and a slope deviates from unity. Overall, the main reason for a 
less statistically significant correlation of using the heat-transfer method 
is that all three FRP calculation methods covered in this study funda-
mentally rely on the necessity to use a fourth-order power law approx-
imation to Planck’s radiation function. This approximation works well 
in the temperature range between 600 K and 1600 K (Wooster et al., 
2003). What sets it apart from the other two methods is that the 

Fig. 6. Correlations between the VIIRS FRP and the collocated pixel-based GOES-17 FRPs obtained from (a) the heat-transfer algorithm and (b) the MIR method. (c) 
and (d) are correlation between the cluster-based VIIRS FRP and collocated GOES-17 FRPs obtained from the two retrievals methods.
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heat-transfer method retrieves a temperature variation function that 
transitions continuously from the retrieved peaked fire temperature to 
the non-fire background temperature to calculate FRP. When integrating 
the temperature curve over lower temperature regions, this can intro-
duce numerical deviations compared to the bi-spectral method or the 
MIR method, which do not account for temperature variations in those 
lower temperature ranges.

About 2 % of the MASTER fire pixels were labeled as saturated pixels. 
We removed them from the following correlation analysis because it is 
difficult to estimate FRP based on inaccurate brightness temperature. By 
further correlating the GOES-17 FRP to the collocated MASTER FRP in 
Fig. 9c and comparing it with Fig. 6a and c, we demonstrate that GOES 
FRP obtained through the heat-transfer method show a stronger linear 
correlation to the associated MASTER FRP than the collocated VIIRS 
FRP. Besides, comparisons between Fig. 9c and d show indicate a better 
correlation of GOES FRP retrieved by heat-transfer algorithm with the 

MASTER FRP retrievals than those obtained by MIR method.

5.4. Retrievals of the fire area, FRP flux, and forms of combustion

This study considers all subpixel areas with temperatures above the 
pixel’s background temperature as retrieved fire areas. Fig. 10a shows 
the computed FRP against the fire area obtained through the heat- 
transfer algorithm. The values of FRP per pixel are mainly concen-
trated between 105 kW and 106 kW, with a corresponding retrieved fire 
area between 0.3 km2 and 3 km2. A power-law relationship positively 
correlates FRP and fire area per pixel (FRP = 40.7531 • Area0.673). 
Unlike the FRP flux obtained by dividing the single-band MIR FRP by the 
entire pixel area in Fig. 4a, here we can use the FRP, calculated by 
excluding the background radiation contribution, along with the cor-
responding fire area, to determine the actual FRP flux of the fire.

Given that the exponent of the area in the power-law relationship is 

Fig. 7. All fire spots detected by MASTER between 01:13 am and 02:19 am (UTC) on Aug 9, 2019. The fire spots labeled as “Smoldering”, “Flaming”, and “Saturated” 
based on their retrieved FRP values are shown in maroon, red, and yellow, respectively. Quadrilaterals in this figure outline GOES-16 (blue) and 17 (magenta) 
synchronized pixel footprints at 01:21 am. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Similar to Fig. 5a and b, this figure displays the two types of GOES FRPs retrieved for pixels with collocated MASTER observations.
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less than one, FRP flux is inversely correlated with the retrieved fire area 
(FRP flux∝Area− 0.327). In Fig. 2, we showed that the increased retrieved 
area in the heat transfer algorithm is due to either the rise of the 
maximum fire temperature or the decrease of effective advection rate, 
constrained by the overall pixel radiances. Fire area increases resulting 
from fire temperature rise tend to amplify the FRP flux, while the 
advection rate decreases pose an opposite effect. The negative correla-
tion between FRP flux and the fire area retrieved by GOES-17 observa-
tions implies that the area changes are dominated by advection rate.

The correlations between FRP and actual fire area in the coincident 
GOES fire pixels detected by the airborne MASTER instrument are 
shown in Fig. 10b. The spatial resolution of MASTER observations de-
pends on the average flight altitude. We only selected the measurement 
data from the stable flight phase for the subsequent analysis, corre-
sponding to a spatial resolution of 20 to 30 m. The fitted power-law 
relationship between FRPs and observed fire areas in Fig. 10b has an 
exponent that is a bit above one, indicating the FRP fluxes measured by 
MASTER have a weak positive correlation with fire area. Meanwhile, the 
MASTER-detected FRP and fire area have a more comprehensive range 
of values. It reflects that the realistic fire propagation and the shape of 
active fire fronts are more diverse than the assumptions of the heat- 
transfer model. Our future model can be improved by considering the 

spatial relationships between the objective fire pixel and the nearby 
precedent fire pixels.

Compared to the bi-spectral method, another notable feature of the 
proposed heat-transfer method is its ability to retrieve the continuous 
temperature variations within the fire pixel. Areas under different 
combustion conditions within a GOES pixel can be determined by 
assigning a “cutoff” value to the retrieved fire variation function. This 
temperature-based classification principle is similar to the one applied 
to the MASTER observations. A MASTER fire pixel is classified as under 
flaming or smoldering combustion when its 4-μm band brightness 
temperature is higher than three or two standard deviations above the 
background mean brightness temperature, respectively. Meanwhile, this 
hotter-than-background pixel should satisfy other conditions, such as 
the brightness temperature difference between 4 and 11 μm bands, to be 
recognized as a flaming or smoldering pixel. Fig. 11a illustrates the 
probability density distribution of the MASTER-classified proportion of 
smoldering area in the total fire area in each GOES fire pixel. The area of 
the corresponding bar quantifies the frequency of smoldering fractions 
in each bin. It shows that the smoldering fraction has a major frequency 
peak at about 0.5 and a minor peak at 0.85, indicating that smoldering 
fire areas have comparable or larger sizes than flaming in most studied 
pixels. Brown carbon (BrC), mainly originates from the low-temperature 

Fig. 9. Similar to Fig. 6a and b, but this figure correlates the two types of GOES-17 FRPs with the FRP retrievals from the MASTER observations.

Fig. 10. Relationship of FRP and fire area under all combustion conditions (a) retrieved by heat-transfer algorithm and (b) detected by the MASTER instrument. The 
blue lines show the results of the power-law regression with the specific regression formula. The colors of the scatter points represent the corresponding observation 
dates in the local time zone. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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combustion process, may play a dominant role in wildfire particulate 
emissions (Chakrabarty et al., 2023). The characterization of BrC from 
other particle species can be potentially conducted through the polari-
metric remote sensing technique (Zhang et al., 2021).

Figs. 11b to 11e show probability density functions of retrieved 
smoldering area fractions with a cutoff temperature (Tflame) of 1 %, 5 %, 
10 %, and 50 % higher than the GOES fire pixel’s background temper-
ature (Tbkg), respectively. We did not conduct a statistical analysis to 
determine the standard deviations of the background temperature of 
GOES fire pixels due to their much coarser spatial resolution and fewer 
background pixel samples. The areas with a temperature higher than the 
cutoff value are flaming areas, while the remaining fire areas are under 
smoldering combustion. As the rise of the selected cutoff temperature, 
smoldering combustion tends to increase its proportion in the total fire 
area. Besides, when the cutoff temperature is 1 % higher than the 
background temperature, the shape of the output density function is 
more consistent with the MASTER results.

6. Summary and conclusion

Fire radiative power (FRP) and subpixel fire properties, including 
fire temperature, fire area, and combustion phases in a fire pixel, are 
essential parameters to (1) estimate the emission rates of pollutants, (2) 
infer the plume injection height, and (3) understand the driving forces of 
pyrocumulonimbus. In this paper, we proposed a method based on the 
first principle of heat transfer to retrieve these vital fire parameters at a 
subpixel level. The traditional bi-spectral approach utilizes the mea-
surements of radiance at MIR and TIR bands. It assumes an identical 
temperature for all in-pixel fire areas to retrieve fire area fraction and 
temperature. This study uses the brightness temperatures of fire and 
non-fire background pixels at two IR bands from high-temporal- 
resolution GOES ABI as input to the proposed algorithm. It runs itera-
tively to find the optimal peaked fire temperature and effective advec-
tion velocity to produce consistent radiances with the observations. The 
two optimized parameters determine the shape of the continuously 
varying temperature functions from the fire center to the cool back-
ground in each fire pixel. FRP, active fire area, peaked fire temperature, 
and the proportions of smoldering and flaming were retrieved based on 
the temperature function.

FRP in this study was computed through the Stefan-Boltzmann 
relationship, which integrates the difference between the fourth power 
of the temperature function and the fourth power of the background 
temperature over the region of the fire pixel. The retrieved GOES-17 FRP 
using the heat-transfer algorithm shows a good linear correlation with 
those computed by the MIR approach. It implies the critical role of 
measuring 4 μm radiances in determining the FRP in the studied 
methods. Most of the selected fire pixels with a background temperature 
lower than 300 K output higher FRP values using this heat-transfer al-
gorithm than the MIR method. The background temperature exhibits 
strong diurnal variations, so these low-background-temperature data 
correspond to early morning or nighttime observations. Fine-spatial- 
resolution data can be further used to assess the retrieval performance 
of fire parameters. In this study, we applied both the ray-casting algo-
rithm and an unsupervised DBSCAN algorithm to find the collocated 
FRP at a pixel level and at a cluster level from the active fire products 
with different spatial resolutions, respectively. Although conducting 
cluster analysis reduces the sample size for FRP comparison, it can help 
reduce the mismatch in fire regions caused by differences in sensors’ 
detection capacities, thereby improving the correlation between collo-
cated FRP. Moderate linear correlations were found between the pixel- 
based GOES FRP and the aggregated FRP from two other observa-
tional platforms. The correlation of GOES FRP derived from the heat- 
transfer algorithm with MASTER FRP is found to be more robust than 
with VIIRS FRP.

The retrieved temperature function curve can also obtain fire area 
and the fraction of different combustion phases. In the proposed 
retrieval framework, smoldering and flaming areas are partitioned by 
assigned characteristic temperatures. The MASTER measurements 
indicate that in most studied fire pixels, the smoldering area has a 
similar or even larger area compared to the flaming combustion area. 
Therefore, the combustion products from a relatively low fire temper-
ature associated with smoldering conditions will account for a signifi-
cant proportion of the total fire emissions. The FRP obtained by the heat 
transfer algorithm exhibits a power-law relationship with the retrieved 
fire area, while FRP flux is inversely correlated with the fire area. 
Though a similar power-law relationship between FRP and detected fire 
area has been quantified by the MASTER measurements, the MASTER 
FRP flux, on the other hand, shows a different dependency on the 

Fig. 11. (a) Density functions of the proportion of smoldering area in the total active fire area obtained by MASTER observations. (b), (c), (d), and (e) are retrieved 
smoldering fractions with a flaming temperature threshold of 1 %, 5 %, 10 %, and 50 % higher than the pixel’s background temperature. The dashed line in each 
figure represents the fitting curve of the continuous probability density function.
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detected fire area. FRP flux, as a measure of the energy density released 
by wildfires per unit of time, is closely related to the real-time intensity 
of the fire, and it is also an important parameter for further studying 
plume dynamics. The deviation in the relationship between FRP flux and 
fire area derived by different methods indicates that FRP flux cannot be 
inferred from fire area alone, but should be linked to the diversity of 
vegetation types, terrain, and meteorological conditions at a finer res-
olution. Our proposed model shows the potential of resolving the 
subpixel-level features of a detected fire pixel, though it currently con-
verts the heat transfer process that occurs in three-dimensional space to 
a one-dimensional direction and makes the assumptions to simplify the 
radiation process between the ground and the atmosphere This model 
can be further improved by explicitly incorporating the terrain, vege-
tation, and meteorological factors into the heat-transfer equation solv-
ing process. For example, by further utilizing land cover data products 
such as the combined MODIS International Geosphere-Biosphere Pro-
gramme (IGBP) data, we can gain insights into the different types of 
vegetation (e.g., forest, grassland, savanna, etc.) and fuel availability 
within each pixel cell. Further incorporating the heat transfer properties 
of different land cover types into the model will help enhance its ability 
to retrieve the subpixel properties of wildfires. With increases in collo-
cated observation cases, especially in situ measurements of wildfires, 
our knowledge of understanding the properties of subpixel fires will be 
further improved. The assumption of the fire perimeter geometry in the 
current model is more applicable to large-scale wildfires than to smaller 
or confined fires. In our future work, by analyzing the time series of the 
developments of the GOES fire pixels, we could get a better inference of 
the fire spread patterns, which would, in turn, improve the estimates of 
the actual fire perimeter geometry in each pixel and enhance the accu-
racy of model predictions. Additionally, the uncertainties caused by 
observational angles and the variations in atmospheric transmittance 
due to atmospheric water vapor content, which have not been addressed 
in this paper, will be reduced with more auxiliary measurement data. 
The retrieval model introduced in this article provides insights into the 
inversion of subpixel wildfire properties and the determination of fire- 
related parameters using high temporal resolution satellite data in the 
future.
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