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A B S T R A C T

Visibility through the atmosphere, or Visual Range (VR), is a key indicator of ambient air quality, 
especially in areas with complex topography and vulnerability to climate change. The specific 
aims of this study were to (1) evaluate the ability of the Coupled Model Intercomparison Project 
Phase 6 (CMIP6) climate model outputs and satellite Aerosol Optical Depth (AOD) to predict VR 
across diverse topography; (2) select important meteorological parameters for VR; and (3) design 
an ensemble Machine Learning (ML) model with high accuracy using Bagged Extreme Gradient 
Boosting (BG-XG) for long-term VR trends under future climate scenarios. This study contributes 
to the significant gap in regional visibility prediction by combining climate model projections, 
remotely sensed AOD, and ML to project future VR through 2100 across Pakistan. The BG-XG 
model was trained using in situ meteorological data, AOD, and six CMIP6 models (Euro-Medi
terranean Centre on Climate Change Climate Model 2 High Resolution – version SR5 (CMCCCM2- 
SR5 (Italy))was the most consistently accurate model across all the topography). For the results 
computed at Lahore (LHR), the BG-XG model achieved the highest correlation coefficient of R =
0.98 and Root Mean Square Error (RMSE) = 0.24 km for the validation dataset. It is expected that 
the region will observe an average VR of 5.88 km with a standard deviation of 1.66 km by the end 
of 2100. The predictive strength of climate model parameters for VR was high (>90 %), with 
significant dependencies on sea-level pressure (SLP), relative humidity (RH), eastward wind 
(EW), and AOD. The region is expected to witness a significant decrease in average VR at a rate of 
− 281.3 m/year due to an increase in AOD at a rate of 0.14/year from 2003 to 2100. Among the 
regions, Karachi (KHI) is anticipated to experience the most substantial reduction in VR by 2100, 
followed by Sindh and the northwestern areas. This study provides the first long-term, region- 
specific VR forecasts for Pakistan by integrating ML with CMIP6 climate projections. These 
findings can guide climate adaptation strategies, particularly for regions at considerable risk of 
declining air quality due to reduced visibility.
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1. Introduction

Visibility, or Visual Range (VR), can function as a surrogate to assess the clarity, pollutant levels, and environmental quality (Zhang 
et al., 2020). Reduced VR impacts tourism, transportation, and public health—contributing to eye strain, mental health effects (e.g., 
seasonal affective disorder), and physical hazards such as accidents due to fog or glare (Van Pelt et al., 2020; Wu et al., 2021). VR is 
dependent on weather conditions, and this complex relationship requires further research (Aman et al., 2019; Xi, 2021). A wide range 
of ground-based and satellite-based devices is available for visibility measurements, each with its own set of benefits and limitations 
(Shahzad et al., 2018; Bai et al., 2023; Pang et al., 2024; Verbeek and Hincks, 2022). A typical application of ground-based sensors is 
localized real-time monitoring of visibility. A nephelometer measures the amount of light scattered by airborne particles to provide 
information about visibility conditions (Shahzad et al., 2018). Transmissometers are another standard ground-based instrument for 
measuring visibility over short to medium distances; they work by directly measuring the attenuation of a light beam over a defined 
distance (Javed et al., 2023). In addition, forward scatter meters and other similar sensors evaluate visibility by analyzing the light 
scattered by pollutants (Javed et al., 2023; Shahzad et al., 2018). Installing visibility sensors at ground weather stations, roadways, and 
airports provide significant support to the transportation sector, meteorology, and aviation (Javed et al., 2023). In recent times, only 
ground-based equipment, such as the Automated Surface Observing System (ASOS), has provided VR measurements, but with limited 
spatial coverage (Javed et al., 2023). Ground-based observations are unable to capture spatio-temporal variations across entire re
gions. Therefore, a transmissometer is unable to calculate VR at distances greater than 5000 m, and the nephelometer cannot measure 
scattering beyond 170◦ due to its structural design. Lastly, digital cameras cover only small areas and are unsuitable for regional 
studies (Javed et al., 2023; Shahzad et al., 2018).

Satellite remote sensing has addressed the issue of spatial coverage with high accuracy, but it still does not provide extensive 
temporal coverage to estimate VR or air pollution, despite recent advancements in this field. Satellite data have limitations such as 
infrequent overpasses, cloud cover interference, low spatial resolution, and delayed data processing, all of which affect real-time 
accuracy and coverage. Climate models simulate meteorological data over acceptable spatial and temporal domains, but with 
reduced accuracy in regions with diverse topography. The latest Model Intercomparison Project (CMIP6) scenarios incorporate 
Representative Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs), allowing for standardized socioeconomic 
assumptions (Anil et al., 2021; Pimonsree et al., 2023). Studies have used the SSP-RCP scenarios to investigate potential future ap
proaches to reducing air pollution and their associated impacts on health and climate (Kamworapan et al., 2021; Navarro-Racines 
et al., 2020; Thi et al., 2023).

Aerosol Optical Depth (AOD) is an essential atmospheric property that represents the amount of aerosols that inhibit the trans
mission of sunlight through absorption or scattering. AOD is a valuable proxy for the average concentrations of PM2.5 and PM10 in the 
atmosphere (Chen et al., 2020; Zhang et al., 2020). Higher AOD values usually indicate poorer air quality and visibility; thus, AOD is 
another crucial parameter for estimating atmospheric clarity and pollution levels (Shahid et al., 2025). AOD provides spatially 
extensive coverage and can detect aerosol loading almost anywhere, especially in regions where continuous ground-based monitoring 
is limited or unavailable (Chen et al., 2020; Zhang et al., 2020). For this study, AOD is utilized to estimate visibility conditions, as it 
represents the aerosol burden directly related to VR. Understanding AOD concerning future climate scenarios is relevant for forecasting 
visibility in climate-sensitive dust-prone regions such as Pakistan.

Rahman et al. (2024) use the relationship between AOD and various meteorological parameters to enhance the monitoring of air 
quality. Using satellite data (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) along with ground-based observations, 
the study identifies how Temperature (T), Wind Speed (WS), precipitation, and humidity impact AOD. Generally, AOD increases with 
high T and high WS, with a negative correlation observed between AOD and precipitation and other factors (increasing AOD due to 
dust mobilization and less rainfall, leading to the accumulation of aerosols). Such findings are imperative for developing warning 
systems against dust storms, supporting pollution control policies, and mitigating health risks related to air quality. The study 
emphasized such integration to improve air quality management strategies, particularly in regions like Saudi Arabia, where dust 
storms coupled with climate variability are common.

Machine Learning (ML) has shown significant potential in air pollution research, uncovering complex trends hidden from con
ventional statistical approaches (Ismanto et al., 2019; Maleki et al., 2022). ML algorithms can reliably assess and anticipate air 
pollution levels by evaluating large volumes of data collected from satellite imagery, meteorological stations, and air quality sensors 
(Chen et al., 2020).

This study addresses the limitation of long-term, spatially comprehensive visibility projections under a changing climate, partic
ularly in data-scarce and climate-vulnerable regions like Pakistan. Traditional monitoring of visibility relies on spatial information, and 
while AOD, as a satellite-derived climate variable, can be measured over larger geographic areas, these data do not enable long-term 
forecasts. CMIP6 climate models provide useful projections of meteorological drivers that affect AOD and visibility. However, they 
were designed to project climate change, and the information available on the relationships between visibility and AOD is often 
underutilized in direct forecasting within visibility research. The specific aims of this study were to (1) evaluate the ability of CMIP6 
climate model outputs and satellite AOD to predict VR across diverse topography; (2) select important meteorological parameters for 
VR; and (3) design an ensemble ML model with high accuracy using Bagged Extreme Gradient Boosting (BG-XG) for long-term VR 
trends under future climate scenarios through 2100. By bridging climate modeling, remote sensing, and ML, this work informs 
adaptation strategies for transportation safety and environmental sustainability in climate-vulnerable regions. This work provides the 
first visibility projections at a national scale under future climate scenarios and may support environmental planning, transportation 
safety, and air quality policy.
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2. Materials and methods

2.1. Study sites

Pakistan shares a southern border with the Arabian Sea, an eastern border with India, a western border with Iran and Afghanistan, 
and a northern border with China, which is defined by the 8600-m-tall Himalayan and Karakoram mountain ranges. Fig. 1 shows the 
locations of eight international airports, including Karachi (KHI), Nawab Shah (NWS), Sukkar (SKR), Multan (MLN), Lahore (LHR), 
Sialkot (SKT), Islamabad (ISB), and Peshawar (PSH), which were used for the collection of VR and meteorological data. Except for the 
sub-mountain region and the southern slopes of the Himalayas, most of Pakistan has an arid to semi-arid climate, with hot summers, 
cold winters, and highly variable rainfall (760 mm–2000 mm per year) (Ali, 2018). Regional concerns over air pollution and envi
ronmental degradation arise from deteriorating air quality in megacities, driven by rapid urbanization and economic development 
(Tabinda et al., 2020).

2.2. Data sources

For this research, VR measurements (2003–2020) were collected from Pakistan’s Automated Surface Observing System (ASOS) 
network managed by Pakistan Meteorological Department (PMD) and the Pakistan Civil Aviation Authority (CAA). Regions of interest 
from ASOS were primarily located at international airports, which used forward-scatter sensors or transmissometers to provide vis
ibility data continuously and in a standard way (in meters or kilometers). Table 1 presents climatic variables retrieved from in situ and 
modeled data.

Since VR is measured on a scale that can take any value within a given range (e.g., in meters or kilometers), it should be regarded as 
a continuous variable, and minor fluctuations can be quite meaningful (Burrows, 2020; Sulistya et al., 2019). Using Forward Scatter 
Visibility Sensors (FSVS), which offer consistent and objective measurements based on light scattering by aerosols at a 550 nm 
wavelength (Landolt et al., 2020), the ASOS network provides high-quality data through minute-by-minute automated recordings. By 
reducing noise and capturing long-term variability trends, aggregating these data into monthly averages from 2003 to 2020 further 
strengthens the datasets. This renders the dataset suitable for statistical and ML analysis as well as for highly-resolution modeling 
(Burrows, 2020; Sulistya et al., 2019). In this study, monthly averaged aerosol optical depth (AOD) data were extracted from both the 
MODIS Level 3 products (Aqua MYD08 and Terra MOD08) at a 10 km spatial resolution (linear distance based on geospatial standards) 
(Carmona et al., 2021). The data (specifically in South Asia) were filtered for retrievals that had a permitted error of ≤20 %, matching 
the anticipated performance of MODIS Collection 6.1 AOD (Carmona et al., 2021; Su et al., 2022). The products apply utilization 
improvements of the cloud masking, cloud standard deviation, surface reflectance corrections, and limitations of observable de
rivatives in Collection 6.1, and therefore reduce bias over high-topographic and urban sites (Burrows, 2020; Sulistya et al., 2019). The 
data build a representation of aerosol aggregates on daytime use by taking data from both the Terra (morning’s sample) and Aqua 
(afternoon sample) satellites, which should reduce diurnal sampling limitations on aerosol representativeness over time (Shahzad 

Fig. 1. Locations of eight international airports– Karachi (KHI), Nawab Shah (NWS), Sukkar (SKR), Multan (MLN), Lahore (LHR), Sialkot (SKT), 
Islamabad (ISB), and Peshawar (PSH) –used for the collection of VR and meteorological data. Colours on the map represent time-average AOD 
(MYD08 & MOD08) at 550 nm from 2003 to 2020 over Pakistan. White areas indicate missing data.
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et al., 2018).
Meteorological data (SLP, WS, NW, EW, RH, and T) were collected from historical simulations (2003–2014) and future climate pro

jections (2015–2100) under Shared Socioeconomic Pathway 5 (SSP5) and Representative Concentration Pathway 8.5 (RCP 8.5) forcing 
scenarios, which are generally accepted as valid long-term climate projections and are widely endorsed by climate researchers across 
the globe. We did not create additional future projections; instead, we relied on CMIP6 scenarios that are published datasets relying on 
a long-established modeling framework recognized by peers. We opted for this approach to ensure compatibility with global climate 
scenarios for comparison with studies, while avoiding doubling of computation time.

CMIP6 SSP5/RCP8.5 future scenarios include six climate models: Alfred Wegener Institute Climate Model 1.1 Medium Resolution 
(AWI-CM-1-1-MR (Germany)), Canadian Earth System Model 5 with Canadian Ocean Ecosystem model (CANESM5-CANOE (Canada)), 
Euro-Mediterranean Centre on Climate Change Climate Model 2 High Resolution – version SR5 (CMCCCM2-SR5 (Italy)), Euro- 
Mediterranean Centre on Climate Change Earth System Model 2 (CMCC-ESM2 (Italy)), European Consortium Earth System Model 3 
with dynamic Vegetation – Low Resolution (EC-EARTH3-VEG-LR (Europe)), and First Institute of Oceanography Earth System Model 
version 2.0 (FIO-ESM-2-0 (China)), all from the Coupled Model Intercomparison Project Phase 6 (CMIP6). The CMIP6 models selected 
in Table 2 are labeled "r1i1p1f1", which refers to a specific model, where "r1" represents the first realization (ensemble member), "i1" 
refers to the first initialization procedure, "p1" is the first set of parameterizations of the physics, and f1 refers to the first forcing. These 
models were examined at the 1000 hPa (hectopascal) level, a standard reference level more commonly used in the evaluation of 
tropospheric variables in climate change. The r1i1p1f1 variant label describes the model in such a way that outputs can be directly 
compared across many CMIP6 models, following the standardized experimental design framework given to the climate models by the 
Coupled Model Intercomparison Project (Tebaldi et al., 2021; Merrifield et al., 2023). The interest in the 1000 hPa was to specifically 
analyze climate processes near the surface that would be evaluated in the models. This will follow the CMIP6 approach to model 
intercomparisons and allow for a solid evaluation against observations and reanalysis.

The RCPs are hypothetical future scenarios for greenhouse gas concentrations used in climate models. Under RCP 8.5, the global 
population, GDP, and industrialization continue to rise (Meinshausen et al., 2020; Miller et al., 2021). The German Alfred Wegener 
Institute developed the AWI-CM-1-1-MR climate model, which comprises the atmosphere, ocean, and sea ice as unified systems 
(Ashfaq et al., 2022). The model’s horizontal resolution is 0.94◦ × 0.93◦ in both latitude and longitude, and it features extensive 
atmospheric and oceanic detail (Abbas et al., 2022). The model was developed to make long-term projections of the Earth’s climate 
system under various scenarios, i.e., RCP 8.5 high greenhouse gas emissions scenario (Semmler et al., 2020). CANESM5-CANOE 
climate model considers the atmosphere, ocean, sea ice, and land surface. It was created in Canada at the Canadian Centre for 
Climate Modelling and Analysis (CCCma). Horizontally, this model resolves to around 2.80◦ × 2.80◦ in both latitude and longitude, 
allowing the researchers to observe all the details of the atmosphere and water (Aylmer et al., 2022). The Italian research organization 
Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) modeled the CMCCCM2-SR5 climate model. The model’s horizontal 
resolution is about 1.25◦ latitude and 0.94◦ longitude (Mbigi et al., 2022; Wang et al., 2021). It includes components from the at
mosphere, ocean, and sea ice (Deepthi and Sivakumar, 2022; Nicolì et al., 2023). Italy’s CMCC also modeled the Earth System Model 
known as CMCC-ESM2. Multiple atmosphere and ocean tiers are depicted with a horizontal resolution of 1.92◦ latitude and 2.80◦

longitude (Abbas et al., 2022; Deepthi and Sivakumar, 2022; Lovato et al., 2022). Continuous use of fossil fuels is expected to have 
several negative consequences for Earth’s climate, including changes to severe events, ocean circulation patterns, and the cryosphere 
(Kim et al., 2023; Pimonsree et al., 2023). The ECMWF and other European organizations created the EC-EARTH3-VEG-LR Earth 
System Model in collaboration. The atmosphere and ocean have different tiers, and the horizontal resolution is about 1.10◦ by 1.10◦

(Abbas et al., 2022; Chen et al., 2021), to examine regional and global climate variability and change under several emission scenarios, 

Table 1 
Climatic variables retrieved from in situ and modeled data.

Sr # Data Unit Source Duration

1 Visual Range (VR) Km ASOS 2003–2020
2 Aerosol Optical Depth (AOD) – MODIS 2003–2020
3 Air Temperature (T) C◦ SSP5/RCP 8.5 2003–2100
4 Relative Humidity (RH) % SSP5/RCP 8.5 2003–2100
5 Wind Speed (WS) m s− 1 SSP5/RCP 8.5 2003–2100
6 Northward Wind (NW) m s− 1 SSP5/RCP 8.5 2003–2100
7 Eastward Wind (EW) m s− 1 SSP5/RCP 8.5 2003–2100

Table 2 
Selected CMIP6 models with variant label of "r1i1p1f1″ at 1000 hPa.

Sr # Climate Model Country Resolution (Lon. & Lat.)

1 AWI-CM-1-1-MR Germany 0.94◦ × 0.93◦

2 CanESM5-CanOE Canada 2.80◦ × 2.80◦

3 CMCC-CM2-SR5 Italy 0.94◦ × 1.25◦

4 CMCC-ESM2 Italy 2.80◦ × 1.92◦

5 EC-Earth3-Veg-LR Europe 1.10◦ × 1.10◦

6 FIO-ESM-2-0 China 1.30◦ × 0.90◦
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including RCP 8.5 (Halder et al., 2021; Liu and Lu, 2022). Parts of the carbon cycle, as well as the atmosphere, ocean, sea ice, land, and 
general environment, are included in the First Institute of Oceanography (FIO), Ministry of Natural Resources, China; FIO-ESM-2-0 
(Abbas et al., 2022; Kamworapan et al., 2021). The atmosphere and ocean have different tiers, and the horizontal resolution is 
about 0.90◦ latitude and 1.30◦ longitude (Abbas et al., 2022; Kamworapan et al., 2021).

2.3. Methodology

The methodology for this research is divided into 3 phases. In phase 1, data were collected and subjected to a quality control 
process, including outlier removal, missing data management, and satellite data downscaling. In phase 2, statistically significant 
variables were selected using the Boruta algorithm and the BG-XG model was developed for prediction and forecasting. In phase 3, 
future trends of AOD and visibility were projected using the BG-XG model. A schematic diagram of the VR modeling and prediction 
framework is presented in Fig. 2.

2.3.1. Data Pre-processing
Data for this study underwent a comprehensive quality control process, where outliers were detected and removed using the 

Interquartile Range (IQR) method, and missing data were managed through linear interpolation and mean imputation. Results were 
validated through cross-verification against ground-based independent observations. To ensure compatibility with the spatial reso
lution of climate models and MODIS satellite observations, the data were downscaled to a 1◦ spatial resolution using cubic interpo
lation, which redistributed the data onto a uniform grid and was subsequently aggregated into monthly averages, matching the 
temporal resolution of the climate simulation. Cubic interpolation was preferred over bilinear interpolation due to its smoother and 
more precise surface fitting, particularly for meteorological fields such as visibility, which exhibit gradual spatial variation. While 
bilinear interpolation considers only the four nearest points and can create sharp discontinuities or artefacts, cubic interpolation uses 
additional surrounding data points, producing a more realistic and continuous surface. This is especially relevant when interpolating 
high-resolution ASOS data onto coarser satellite and climate model grids to preserve spatial integrity and consistency of regional 
trends. Quantile mapping was then applied for bias correction to minimize discrepancies between ASOS data and MODIS observations. 
The downscaled and average data were combined with output from six climate models and MODIS observations across space and time, 
and cross-validated using statistical metrics such as Root Mean Square Error (RMSE) and correlation coefficients. Trend and analysis of 
validated data under different climate scenarios were conducted to estimate the future VR dynamics. This effort enhanced data us
ability and compatibility for subsequent forecasting of climate and VR responses.

2.3.2. Variable selection for VR estimation
The Boruta algorithm was used to uncover the relationship between climatic variables and VR, due to its effective performance in 

an earlier regional study (Javed et al., 2024). The primary goal of the Boruta algorithm is to rank the importance of each independent 

Fig. 2. A schematic diagram of the ML model working and methodology.
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variable (Subbiah et al., 2022). The method generates a set of "shadow features" based on the original features, which are jumbled or 
permuted versions of the original features (Zhou et al., 2023). The Boruta method compares each feature’s Z-score to the highest 
Z-score derived from its shadow features and uses the difference to determine the feature’s significance. If a feature’s Z-score is greater 
than the highest Z-score of its shadow features, it is considered a "confirmed" relevant feature (Zhou et al., 2023). In addition, the 
algorithm identifies "tentative" features with Z-scores lower than the highest Z-score of their shadow features. Once all features have 
been validated or rejected, the algorithm terminates (Zhou et al., 2023). After collecting data from multiple sources, the dataset was 
divided into two parts for training and validation (70:30), for each station as well as for the entire study area (Pakistan). The selection 
of climatic variables for model simulation was based on statistical significance at a 99 % significance level (P-value <0.01).

2.3.3. Correlation heatmaps
A correlation matrix illustrates mutual dependencies among different variables (Akoglu, 2018). Correlation matrix heatmaps were 

computed to understand the relationships among the variables at each station.

2.3.4. Bagging XGBoost (BG-XG)
Bootstrap aggregating, or bagging, is an ensemble learning method that combines data from several individual models to improve 

performance while reducing the likelihood of overfitting (Javed et al., 2024; Képeš et al., 2023; Kumar and Jain, 2020). Since the 
bagging process is an ensemble learning approach, we used this method to refine the Extreme Gradient Boosting (XGBoost or XGB) 
algorithm, increasing its generalization ability and reducing output variance. The core of bagging is a random subsample drawn from a 
larger data pool. A separate base model is trained using the subset data, and the final output is determined by averaging the models’ 
predictions. Bagging helps reduce variance and overfitting (Képeš et al., 2023; Kumar and Jain, 2020; Nguyen et al., 2021).

It is essential to select hyperparameters that limit the risk of overfitting and maximize R2 on the validation set when employing a 
bagging ensemble of XGB models (BG-XG) for VR estimation (Izanloo et al., 2022; Mastropietro and Moya, 2021). To evaluate the 
model’s efficacy, values of num_models ranging from 5 to 10 were assessed, and num_models = 7 was selected. To begin with, a small 
learning rate, such as 0.01, was used. The learning rate (eta) was assessed over a range from 0.01 to 0.30, with a final selected value of 
eta = 0.08. Values from 3 to 6 were evaluated to avoid overfitting, and the final value was set to max_depth = 4. Various subsample 
values ranging from 0.5 to 0.8 were evaluated before settling on 0.6. Values of sample_bytree ranging from 0.5 to 0.8 were experi
mented with before finalizing the value at 0.7. The initial number of boosting rounds (nrounds = 1000) was reduced to 500. The value 
of early_stopping_rounds was set to 20. To maximize R2, the "maximize" parameter was set to TRUE. Five-fold cross-validation was also 
used for hyperparameter tuning and early stopping.

2.3.5. Performance assessment
Statistical measures, such as the correlation coefficient (R), coefficient of determination (R2), mean absolute error (MAE), and 

RMSE as defined in equations (1)–(4), are used to evaluate estimated VR concentrations using the respective modeling methods 
(Nguyen et al., 2022). 

R=
Σ(xy) − (Σx)(Σy)/n

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σx2 − (Σx)2/n
)(

Σy2 − (Σy)2/n
)√ (1) 

R2 =1 −

⎧
⎪⎪⎨

⎪⎪⎩

∑n

i=1
(ci − mi)

2

∑n

i=1

(

ci − m,
i

)2

⎫
⎪⎪⎬

⎪⎪⎭

(2) 

MAE=
∑n

i=1

(ci − mi)

n
(3) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
(ci − mi)

2

n

i=1

√
√
√
√
√ (4) 

Here, "ci" signifies the estimated value from the model, "mi" represents the observed value, and "n" denotes the number of observed data 
pairs. For monthly VR model estimations, the aforementioned metrics were used to evaluate the performance of the BG-XG model at 
each station and across all of Pakistan.

2.3.6. Trend analysis
For assessing future VR forecasting at each station, it was necessary to obtain adequate data from each climatic model to 2100, 

excluding VR data. To get them, MODIS AOD and climatic variables were first modeled into VR using the BG-XG model, based on the 
availability period of the MODIS AOD data. After establishing the VR model, VR trend predictions were projected through the year 
2100, to provide an overview of the expected development of VR based on available data and climatic parameters (Javed et al., 2024). 
We applied the Mann–Kendall (MK) test (equations (5)–(8)) and Sen’s Slope (SS) estimator (equation (9)) to observe trends in AOD and 
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VR data (2003–2100) (Javed et al., 2023). The MK test is a non-parametric method for identifying statistically significant trends in 
time-series data without assuming any specific data distribution, whereas the SS estimator measures the magnitude of such a trend 
(Javed et al., 2023). 

S =
∑n

i=1

∑i− 1

j=1
sign

(
Xi − Xj

)
(5) 

where: 

Xi, Xj: indicates data values of visibility and AOD at time i and j
sign(Xj–Xi): For visibility, +1 indicates clearer conditions at time j compared to I. For AOD, +1 indicates increased aerosol loading 
at time j

sign(xj - xi): indicates the sign function defined as: 

sign
(
Xi − Xj

)
=

⎧
⎨

⎩

if
(
Xi − Xj

)
> 0 then + 1

if
(
Xi − Xj

)
< 0 then − 1

if
(
Xi − Xj

)
= 0 then 0

(6) 

Var(s)=
n(n − 1)(2n + 5)

18
(7) 

Z=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S − 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ , if S > 0

0, if S = 0
S + 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ , if S < 0

(8) 

where: 

Z > 0: Indicates increasing trend
Z < 0: Indicates decreasing trend

For VR, positive Z presents good visibility, while negative Z shows deteriorating conditions. For AOD, Positive Z denotes high AOD, 
and negative Z shows low AOD and good air quality. 

Qi =
xj − xk

j − k
, for all j > k (9) 

where: 

xj, xk: indicates data values at times j and k,
j > k indicates all combinations are used.

The Sen’s slope estimate is the median of all Qi values: 

Q=median(Qi)

where: 

Q: rate of change per unit time (km/year)
Positive Q: Indicates upward trend
Negative Q: Indicates a downward trend

For VR, Q (km/year) > 0 indicates improved visibility, while for AOD, Q > 0 denotes high aerosol loading.
The MK test examines the presence of a monotonic trend using test statistic S, which sums the signed pairwise differences between 

sequential measurements (equations (5) and (6)). To clarify, a positive S indicates that clarity is improving over time, whereas a 
negative S signifies an increase in haze. For AOD, a positive S denotes an increase in aerosol concentrations, and a negative S signifies 
cleaner conditions. The variance of S (equation (7)) accounts for tied observations, and the statistical significance of the trend can be 
assessed by taking the standardized Z-score (equation (8)). SS (equation (9)) does the additional work of quantifying the trend 
magnitude - the median rate of change (km/year for VR, unitless/year for AOD) from all paired slopes.
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3. Results and discussion

3.1. Variable selection

The Boruta algorithm was applied to the monthly dataset (VR, AOD, WS, NW, EW, RH, and T) to select statistically significant (p <
0.01) variables for ML modeling at each station and to identify the key features affecting monthly VR. The dataset of six features was 
subjected to the Boruta algorithm in the first stage of development, using data from previously listed climatic models along with 
MODIS AOD and VR. The selected parameters for each station were recorded to evaluate the performance of training and prediction VR 
models (Fig. S3). Out of the six features, nearly all were confirmed at all stations except for the WS, EW, and NW variables. These three 
were not selected simultaneously; instead, the chosen algorithm was only one out of three for each station. WS was selected for MLN, 
PSH, and SKT, while NW was selected for ISB, LHR, NWS, and Pakistan. Additionally, EW was chosen for KHI and SKR.

3.2. Correlation matrix heatmaps

This study also evaluated the strength of relationships between the variables listed in Table 2 and the monthly VR dataset. Fig. 3
illustrates correlation matrix heatmaps of significant variables with monthly VR data, where VR is the dependent variable at each 
station. None of the coefficients exceeded 0.74 (T) or − 0.73 (SLP) at the NWS station, indicating that these parameters play a complex 
role rather than exhibiting a simple, direct linear correlation with VR (Zhou et al., 2023). Moreover, the association between VR and 
the independent variables at all stations was less than 0.74. An inverse relationship (− 0.73) exists between VR and SLP, where 
increasing SLP results in reduced visibility.

Atmospheric dynamics and the behavior of aerosols under varying pressure conditions can partly explain this. When SLP is high, 

Fig. 3. Correlation matrix heatmaps of significant variables with monthly VR data, where VR is the dependent variable at each station.
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the atmosphere stabilizes and exhibits reduced vertical mixing (Caputi et al., 2019; Grassi et al., 2020). Atmospheric stability inhibits 
the dispersion of aerosols–such as dust, pollutants, and water vapor, allowing them to remain trapped near the surface (Rahman et al., 
2022). Thus, higher SLP typically corresponds to lower VR due to increased aerosol concentrations in the lower atmosphere. In 
contrast, lower SLP indicates dynamic weather systems with stronger winds and improved vertical mixing, which facilitate aerosol 
dispersal and enhance visibility (Maleki et al., 2022). In addition, at high altitudes– where naturally low ambient pressures prevail– air 
molecules are less dense, and weaker vertical mixing prolongs aerosol residence times. This is expected to reduce VR, as aerosols 
remain suspended in the atmosphere for prolonged periods. The inverse relationship between SLP and visibility indicates the key 
atmospheric control over air quality and visibility in regions with high aerosol concentrations, including both arid and semi-arid areas 
(Rahman et al., 2022). The strong positive correlation (0.74) between T and VR indicates that VR tends to improve as T increases and 
may decline as it decreases.

Warm air can hold more moisture, which may explain the correlation between T and VR. Reduced VR in the form of fog or haze may 
result from moisture condensation caused by cooler air (Lan et al., 2020; Li et al., 2022; Yang et al., 2023). Wind is associated with 
aerosol dispersion; however, the wind direction determines whether convection or accumulation occurs over a given area (Javed et al., 
2024; Sun et al., 2020). Hence, the relationship between wind and VR varied across stations. AOD had the strongest effect on VR, 
followed by northerly and easterly winds (Anwar et al., 2021). Other meteorological variables (WS, NW, EW, and RH) with AOD 
showed lower correlations with VR, suggesting that their linear associations with VR are weak.

3.3. VR estimation with the BG-XG model

For monthly VR estimation in Pakistan, a dataset of 1309 observations was used, including four independent variables: T, RH, NW, 
and AOD. 70 % of the data was used to train the BG-XG model, and the results were then compared with the validation data (30 %). The 
BG-XG model for Pakistan achieved 88 % accuracy on the validation dataset. The level of accuracy indicates that the model avoided 
overfitting and generalized well to new data, as its performance on the tested dataset is only marginally lower than on the training 
data. The RMSE for the Pakistan monthly VR validation set was estimated at 0.98 km based on the model output.

3.3.1. Variable importance
Variation in VR depends on the selected parameters. Fig. 4 shows variable importance ranking based on the selected climate model 

for each station and Pakistan. The importance of each selected parameter at each station was ranked to gauge the sensitivity of VR to 

Fig. 4. Variable importance ranking based on the selected climate model for each station and Pakistan.
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individual variables, where rank 1 indicates the most important and rank 5 the least significant variable for estimating VR at a given 
location.

The BG-XG model ranked SLP 1st for LHR, ISB, MLN, NWS, PSH, and SKR, whereas EW and RH were selected only once for KHI and 
SKT, respectively. The model ranked AOD in 2nd position after SLP at each station, including the national model for Pakistan–except at 
SKR and SKT, where EW and SLP were ranked 2nd position, respectively, followed by T and Relative Humidity (RH). VR can be reduced 
by low-pressure system-related weather disturbances, such as storms, heavy rain, and fog, due to cloud cover, precipitation, and at
mospheric instability (Zhang et al., 2019). These conditions alter the availability of aerosols at a location, depending on the source 
region, which affects light scattering and changes VR. RH may rise or fall depending on the prevailing atmospheric pressure. The 
formation of fog due to high humidity can significantly reduce VR. Clear skies and improved VR may result from lower humidity levels 
(Liu and Lu, 2022). Low-pressure systems trapped in valleys can lead to persistently low VR due to fog and pollution (Zhao et al., 2019).

3.3.2. Variable’s partial dependency
To better explain the importance of parameters and the behavior of the BG-XG model for monthly VR prediction, partial de

pendency plots (PDPs) were generated (Fig. S4). All stations show steep slopes from top to bottom, indicating a strong effect of the 
given variable on VR (Nguyen et al., 2022). The non-linear patterns in the PDPs indicate complex interdependencies or interactions 
between the features and the target variable (VR) (Ben Jabeur et al., 2023; Hu et al., 2022).

The PDP analysis highlights contrasting regional influences towards visibility. For ISB, factors such as altitude and proximity to the 
Margalla Hills could play a role in affecting VR because, if the weather is settled (high SLP), aerosols and other pollutants will 
accumulate, resulting in reduced visibility. In the coastal station of KHI, degradation in VR was aligned with high humidity/sea breezes 

Fig. 5. BG-XG validation set of monthly VR scatter plots for all stations and Pakistan.
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during pollution episodes. Conversely, LHR is more urbanized, and it is surprising to see a decline in VR, which is primarily dependent 
on vehicular emissions, industrial pollution, and winter smog. For MLN and SKR located in an arid region, they mainly exhibit declines 
in visibility due to dust storms, high T and low rainfall during summer. Similar spatial patterns of visibility are observed in NWS due to 
topography and wind patterns. In PSH, low visibility is due to dust storms or agricultural burning, and as a smaller station, SKT shows 
seasonal variations in visibility due to local farming and industrial activities. The national model for Pakistan demonstrates expected 
visibility trends: first, visibility is lower in arid regions and urban centers due to the presence of dust and pollution generated from 
anthropogenic activities.

3.4. Accuracy assessment

RMSE, MAE, and R metrics were employed to calculate the accuracy of the BG-XG model for the monthly dataset. BG-XG validation 
is presented in Fig. 5, showing VR scatter plots for all the stations, including Pakistan, with values of R, RMSE, number of observations 
(N), mean, and standard deviation (SD) for both observed and simulated VR.

At Lahore (LHR), the BG-XG model achieved the highest correlation coefficient, R = 0.98, with an RMSE of 0.24 km for the 
validation dataset. The model estimated a mean VR of 4.63 km, compared to the observed VR (4.60), with a SD of 1.17 for the 
simulated VR. In contrast, the lowest correlation coefficient was recorded at Karachi (KHI), where the model achieved R = 0.80 and an 
RMSE of 0.68 km for the validation set. The model estimated a mean VR of 6.13 km, compared to the observed VR (6.14), with a SD of 
0.54 for the simulated VR. The scatter plots show that the correlation achieved by the model was more substantial than that reported 
by Shahani et al. (2021) and Shehadeh et al. (2021), who examined the relationship between VR and the meteorological variables in 
metropolitan regions, as well as Won et al. (2020), who assessed the exponential relationship between VR and PM2.5 (R = 0.87).

Among all locations, the best correlation was observed for LHR with the EC-Earth3-Veg-LR (Europe) model, reflecting excellent 
agreement between simulated and observed VR values. The mean VR values of both observed and simulated data are in near-perfect 
agreement, reflecting minimum bias. The general fit of values on the 1:1 line indicates that the model performs very well in repro
ducing both spatial and temporal variability in visibility for this site. Following Lahore, high correlations were also observed for 
Pakistan, Multan (MLN), and Peshawar (PSH), with R values of 0.88, 0.86, and 0.86, respectively. These models not only identify 
trends accurately but also show strong agreement in mean VR and variability (standard deviation), indicating their reliability for 
inland urban and semi-urban areas. The poorest model performance was observed for Karachi (KHI) using the CMCC-ESM2 model, 
where the correlation dropped to 0.80, meaning that the model also performs well in simulating VR trends in this coastal setting. The 
plot demonstrates considerable variation in model performance by location, with interior locations such as Lahore showing strong 
agreement and coastal urban centers such as Karachi proving more challenging to simulate accurately, highlighting the importance of 
regional model validation and calibration.

In addition, the correlation was more substantial than that reported by Javed et al. (2024), who recently estimated daily VR in 
Pakistan (R = 0.97). These earlier studies often estimate VR on sunny days or under low RH (<80 %) conditions. This study found that 
the VR estimated using the BG-XR algorithm, along with meteorological and pollution data, accounted for more than 95 % of the 
observed VR at each station in the training set, and 70–90 % in the validation set.

3.5. VR trend dynamics (2003–2100)

Past, present, and future trend dynamics (2003–2100) of AOD and VR are presented in this section. Future simulations for VR and 
AOD were not available from any climate models. Therefore, AOD was first forecasted up to the year 2100 using the BG-XG model, 
which was then used to forecast VR through 2100. AOD and VR forecasting using the BG-XG model based on climate simulations from 
2003 to 2100 are presented in Figs. 6 and 7, respectively. Overall, VR trends indicate that from 2003 to 2100, VR in Pakistan will 
decrease at an average rate of − 281.3 m/year under the influence of an increase in AOD at an average rate of 0.1393/year.

The lowest VR is projected for KHI by 2100 with a decreasing rate of − 396.8 m/year due to an increase in AOD at an average rate of 
0.1242/year. SKR and NWS are expected to show improved VR than KHI with an average VR decrease rate of − 136.0 m/year and 

Fig. 6. AOD forecasting using the BG-XG model based on climate simulations from 2003 to 2100.
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− 96.6 m/year, respectively. AOD in SKR and NWS is projected to increase at average rates of 0.0374/year and 0.1698/year, 
respectively. In Punjab, SKT is projected to experience the smallest decline in VR, decreasing at an average rate of − 5.6 m/year 
alongside an increasing AOD trend at an average rate of 0.1527/year. Among the eight stations, only PSH is projected to show a slight 
increase in VR. According to Javed et al. (2023), plain areas such as SKT, KHI, NWS and MLN have experienced the highest number of 
poor VR days (>90 %). These lowland areas in central, southern, eastern Punjab, as well as northern, central, and eastern Sindh, 
exhibited decreasing VR trends. In contrast, VR in the south and southwestern coastal areas of Sindh, the western highlands, and parts 
of KPK province indicated positive trends (Javed et al., 2023).

We also applied the MK test on meteorological parameters to assess the cascading effects of ongoing climate change in the region on 
VR. MK and SS analysis of monthly time series data for eight stations is presented in Table 3, showing variations in meteorological 
trends dynamics (2003–2100). The MK values for T, RH, and SLP are positive, indicating increasing trends per year, while the value for 
WS is statistically insignificant, indicating no discernible trend. Specifically, the MK test shows trends of 0.1292 ◦C/year for T, 0.0762 
%/year for RH, 0.0223 hPa/year for SLP, and − 0.0011 mps/year for WS. The values from the SS estimator indicate that T is increasing 
by 0.0005 ◦C/year, RH by 0.0006 %/year, SLP by 0.0001 hpa/year, and WS is decreasing by 0.0002 mps/year. The analysis reveals 
that over the period from 2003 to 2100, Pakistan will experience slight increasing trends in T, RH, SLP, and AOD, indicating both direct 
and indirect impacts of future climate change. To examine the spatial variability of VR, AOD and other meteorological parameters as 
well as future dynamics, detailed results are provided in supplementary material as Figs. S5–S6.

It is expected that AOD and meteorological parameters will significantly impact visibility in the future under prevailing climate 
change scenarios. Average spatial MK Trends are presented in Fig. 8, showing the variability of VR, AOD, and other meteorological 
parameters from 2003 to 2100. Increasing T and RH are likely to result in more frequent and dense fog, as warm air can hold more 
moisture, which may condense into fine water droplets, reducing visibility (Anwar et al., 2021; Subhanullah et al., 2022). Conversely, 
a slight decrease in WS would further exacerbate poor visibility conditions by allowing pollutants and particulate matter to remain in 
the atmosphere for more extended periods, reducing both air quality and visibility. Additionally, changes in SLP could affect atmo
spheric stability, potentially leading to more stagnant air conditions that degrade visibility. These combined trends suggest that, over 
time, Pakistan could experience more frequent poor visibility events, impacting transportation, public health, and overall quality of 

Fig. 7. VR forecasting using the BG-XG model, based on climate simulations and AOD data from 2003 to 2100.

Table 3 
MK and SS analysis of monthly time series data for eight stations, showing variations in meteorological trends dynamics (2003–2100). Italicized 
values represent statistically insignificant decreasing trends (no trend). T = Air Temperature; RH = Relative Humidity; WS = Wind Speed; SLP = Sea 
Level Pressure; AOD = Aerosol Optical Depth; VR = Visual Range.

Station Test T RH WS SLP AOD VR

ISB MK 0.1250 0.1002 − 0.0026 0.0283 0.0995 − 0.0611
SS 0.0045 0.0052 − 0.0002 0.0009 0.0001 − 0.0002

KHI MK 0.3386 0.0631 0.0040 0.0081 0.1242 − 0.3968
SS 0.0040 0.0037 0.0001 0.0001 0.0000 − 0.0002

LHR MK 0.1335 0.0959 0.0001 0.0286 0.0601 − 0.0816
SS 0.0042 0.0060 0.0002 0.0009 0.0000 − 0.0002

MLN MK 0.1340 0.1169 − 0.0046 0.0235 0.0009 − 0.0222
SS 0.0044 0.0063 − 0.0001 0.0007 0.0001 − 0.0000

NWS MK 0.2544 0.0686 0.0058 0.0109 0.1698 − 0.0966
SS 0.0041 0.0049 0.0001 0.0002 0.0000 − 0.0003

PSH MK 0.1328 0.0934 − 0.0032 0.0545 0.0596 0.0685
SS 0.0055 0.0045 − 0.0001 0.0016 0.0000 0.0002

SKT MK 0.1365 0.0889 − 0.0068 0.0480 0.1527 − 0.0056
SS 0.0042 0.0053 − 0.0001 0.0015 0.0000 − 0.0000

SKR MK 0.1915 0.0923 0.0031 0.0149 0.0374 − 0.1360
SS 0.0044 0.0041 0.0001 0.0004 0.0000 − 0.0002

Pakistan MK 0.1292 0.0762 − 0.0011 0.0223 0.1393 − 0.2813
SS 0.0005 0.0006 − 0.0002 0.0002 0.0001 − 0.0001
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life–particularly in urban areas where pollution is already a significant concern, with KHI being the most affected (Fig. 8).
The projected decrease in VR across much of Pakistan also signals a long-term deterioration in atmospheric clarity, especially over 

urban and low-lying regions. This decreasing trend is consistent with observed increases in AOD, T, and RH—variables that indi
vidually and collectively reduce visibility by increasing aerosol loading, causing fog formation, and leading to stagnant air masses. 
Urban agglomerates such as KHI, MLN, and LHR—already infamous for their pollution levels—are especially vulnerable, with model 
simulations projecting extensive VR losses due to the combined effects of anthropogenic emissions and climate-induced atmospheric 
changes. Conversely, stable or improving VR trends in urban centers such as PSH and regions of KPK suggest a complex interplay of 
topographical, meteorological, and emission-related processes. These regional contrasts underscore the need for location-specific 
mitigation measures and localized policy interventions. Furthermore, the ongoing trend of low VR may be inflicting heavy socio
economic burdens on key sectors such as aviation, transportation, and public health. Given that Pakistan already experiences frequent 
flight delays and road accidents due to poor visibility, further reductions in VR will add to socioeconomic burdens. Finally, the 
persistent and spatially consistent reduction in VR underscores the increasing influence of climate change and air pollution in regu
lating atmospheric transparency and reinforces the need to integrate VR forecasting into more comprehensive environmental planning 
strategies.

Fig. 8. Average spatial MK Trends showing the variability of VR, AOD and other meteorological parameters from 2003 to 2100: (a) VR; (b) AOD; (c) 
RH; (d) SLP; (e) T; (f) WS.
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To provide a broader context, the performance of CMIP6 models was compared with different datasets and modeling frameworks 
used globally. Satellite products such as MODIS AOD and Sentinel-5P have provided hydrologically valid, near-real-time datasets with 
high spatial and temporal resolution over the past 3–20 years (Wang et al., 2021; Reshi et al., 2024). These datasets allow for snapshot 
assessments of aerosol loading, aiding air quality monitoring and short-term aerosol distribution analysis across arbitrary periods. 
However, satellite-derived observations have limitations due to multiple factors, such as cloud cover, missing data, and limited 
temporal span. CMIP6 models and datasets are helpful because they provide long-term, physically consistent climate simulations 
aligned with various socioeconomic scenarios spanning centuries into the future (Schroeter et al., 2024; Nazrul et al., 2025).

The selection of CMIP6 models in this research was based on a need to evaluate the long-term climate projections and their 
relevance to future extreme events. In contrast to satellite-based datasets such as MODIS AOD and Sentinel-5P, CMIP6 are physically 
based, climate system simulations described well into the 21st century, making them a better selection for evaluating potential shifts 
under varying climate scenarios, which is a primary objective of the present research. Additionally, CMIP6 models include some 
improvements, including new aerosol schemes in some models and improved spatial resolution compared to CMIP5, further justifying 
their inclusion for the analysis (Wang et al., 2021; Reshi et al., 2024; Schroeter et al., 2024; Nazrul et al., 2025).

This study presents several methodological and contextual strengths. First, it employs a unique methodology by integrating diverse 
datasets–observed meteorological data, satellite-derived AOD, and CMIP6 climate projections– into a single ML framework that can 
deliver long-term visibility forecasts. Secondly, it applies the bagged XG-Boost (BG-XG) modeling approach to enhance the robustness 
of predictions across Pakistan’s diverse landscape, while still maintaining high accuracy at both national and local levels. The further 
strength lies in the use of the Boruta algorithm, which enables a rigorous feature selection process, making the model more inter
pretable. Finally, the study is the first to provide long-term, spatially explicit visibility projections for Pakistan, filling a significant 
regional gap in the literature while providing relevant climate application scenarios for adaptation planning in transport, health and 
environment sectors.

4. Conclusions

Using CMIP6 simulations, satellite-derived AOD, and in situ meteorological variables, this study proposes a novel BG-XG ensemble 
ML model to predict long-term visibility trends for Pakistan. An integrated BG-XG model was developed to address the key challenge of 
predicting future climate scenarios and regional visibility in an environmentally sensitive region with limited observational data. The 
validated model achieved accuracy rates of 95 % and 90 %on training and validation datasets, respectively. The proposed highly 
adaptable BG-XG model is designed for forecasting VR at local scales and is regionally applicable across diverse and complex to
pographies. Using the Boruta feature selection method, the variables AOD, SLP, RH, WS, and wind components (NW and EW) were 
identified as significant predictors of visibility, demonstrating the complex and interactive roles of aerosols and their ambient 
meteorological conditions.

Statistically, we found a significant national decline in average visibility at a rate of − 281.3 m/year through 2100. The most 
significant decreases in visibility are projected near Karachi, Sindh and in the most northwestern regions of Pakistan. In contrast, some 
areas, such as Peshawar and certain coastal and high-altitude localities, may exhibit greater resilience and be less sensitive to climate 
shifts, indicating significant regional differences in climate sensitivity to visibility. These results suggest that visibility and air quality 
management in terms of adaptation to change must account for distinct development vulnerabilities of each locality.

The integration of long-term climate scenarios with AOD represents a scalable and actionable decision-support tool for policy
makers with a focus on transportation, public health, and environmental planning. The use of visibility projections could also provide 
value in achieving climate finance by providing performance measures of emission-reduction efforts. Although the model’s strength 
lies in its inclusion of emissions and climate projections, its limitations, including the spatial resolution of input datasets and the 
reliance on a single CMIP6 GCM (CMCC-CM2-SR5), may limit generalizability. Future work should be expanded to include an 
ensemble of GCM outputs, separately examine other predictors, such as emission inventories or land-use change, and even explore 
hybrid ML approaches to enhance model performance and policy relevance.
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