IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 22, 2025

1002005

Dust Aerosol Optical Centroid Height (AOCH) Over
Bright Surface: First Retrieval From TROPOMI
Oxygen A and B Absorption Bands

Xi Chen", Jun Wang", Senior Member, IEEE, Xiaoguang Xu“, and Meng Zhou

Abstract—The vertical distribution of dust layers can influence
dust transport, radiative forcing, deposition, and ultimately,
surface particulate matter mass concentration. Although many
dust aerosol layer height (ALH) products from passive satellite
measurements have been developed, most of them are applicable
on dark surfaces. Here, building on the absorbing aerosol
optical centroid height (AOCH) retrieval from hyperspectral
0O, A and B absorption band measurements of the tropospheric
monitoring instrument (TROPOMI) for dark target, we further
develop dust AOCH retrieval over bright surfaces. Key updates
include: 1) the thresholds in cloud mask tests are refined with
consideration of the different spectral characteristics of bright
surface reflectance; and 2) the assumption of Lambertian surface
is modified to the Ross-Li bidirectional reflectance distribution
function (BRDF) model to consider the angular dependence of
surface reflectance. The validation against the cloud-aerosol lidar
with orthogonal polarization (CALIOP) for several dust plumes
over the Saharan Desert illustrates that TROPOMI AOCH
has ~1 km uncertainty and ~0.1-km mean bias, better than
~1 km underestimated dust-layer mean altitude (ALT) from the
infrared atmospheric sounder interferometer (IASI). With this
implementation of bright surfaces, our algorithm is ready for
global retrieval and will be applicable for similar hyperspectral
instruments in the future.

Index Terms—AOCH, bright surface, dust, tropospheric mon-
itoring instrument (TROPOMI).

I. INTRODUCTION

IRBORNE mineral dust usually originates from bare soil
and semi-arid regions where the surfaces are bright and
are lifted to different altitudes described by aerosol layer height
(ALH) by winds. The model and observation analysis for
several dust episodes in [1] and [2] demonstrates that the
ALTs of dust plumes from different origins are distinct and
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determine the subsequent transport pathways. Moreover, the
vertical distribution is one of the factors that significantly
influences the dust radiative effect [3], [4]. In addition, the
dust deposition process also depends on its ALH; for example,
in the Southern Ocean, when dust particles lie in the mid-
and upper-troposphere, wet deposition is the dominant removal
process, while boundary layer dust is primarily removed via
dry deposition [5]. The vertical distribution is also a key
parameter converting columnar aerosol loading [aerosol opti-
cal depth (AOD)] into surface fine particular matter (PM;s)
concentrations [6], indicating its significance for regional
surface air pollution studies influenced by dust storm transport.
Therefore, the measurements of dust vertical distribution are
necessary to improve our understanding of dust impact on
global climate and surface air quality.

Remote sensing is an efficient technique to detect the
vertical distribution of dust particles, such as ground-based
or spaceborne lidars, whose application is limited by the poor
spatial coverage. Passive satellite measurements in ultraviolet
(UV), visible (VIS), or near-infrared (NIR) channels have
been used to retrieve columnar aerosol properties such as
AOD and/or single scattering properties [7], [8], whereas until
the recent decade, ALH detection using passive techniques
became available. Even with only single parameter, the higher
spatial resolution and coverage of passive measurements make
ALH valuable in applications. Multiple passive techniques to
detect dust ALH include the stereo-matching method using
multiangle observations, such as from the multiangle imaging
spectroradiometer (MISR), despite being limited in sensitivity
to more diffuse dust plumes [9], and measurements in O,
absorption bands in VIS-NIR, which are sensitive to the ALH
of absorbing aerosols like dust. Aerosol effective height in Asia
has been retrieved from the Geostationary Environment Mon-
itoring Spectrometer (GEMS) O,—-0, channel (477 nm) [10].
The top height [11] or middle height [12] of a homogeneous-
extinction dust layer was derived over the Atlantic Ocean
(hereafter named O, A algorithm) by fitting hyperspectral O,
A band (760 nm) measurements from the scanning imag-
ing absorption spectrometer for atmospheric chartography
(SCIAMACHY) or the tropospheric monitoring instrument
(TROPOMI). Recently, the latest machine learning techniques
have been applied in the O, A algorithm to make optimization
more efficient [13], [14]. Combining O, B band (688 nm)
and A band, Xu et al. [15] successfully retrieved dust aerosol
optical centroid height (AOCH) over ocean from the ratio of
Earth Polychromatic Imaging Camera (EPIC) measurements in
O, absorption bands and nearby window channels (known as
differential optical absorption spectroscopic, or DOAS ratio)
by assuming a quasi-Gaussian extinction profile (O, AB
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Fig. 1. (a) True color image and (b) cloud classification for a Saharan Desert dust case using the spectral slope tests, reflectance tests, and spatial homogeneity
test, whose thresholds are defined in (d) and (c) illustrates TROPOMI R,; for four types of pixels highlighted in (a).

algorithm). However, most explorations above were limited
to the ocean surface and the dark land. Retrieving ALH over
bright surfaces, such as deserts, is more challenging due to
the difficulty in isolating the dust scattering signal from the
overwhelming surface contribution in VIS-NIR measurements
[16], [17]. However, the use of blue band and O, B band,
where surface reflectance is lower than at longer wavelengths,
helps overcome this challenge in this study. Furthermore, there
were also efforts made in thermal infrared (TIR) channels
that are sensitive to large-size particles, making it feasible
to retrieve dust ALH from the infrared atmospheric sound-
ing interferometer (IASI) and atmospheric infrared sounder
(AIRS) sensor [18], [19]. Unfortunately, these retrievals are
less reliable over bright surfaces, due to the large uncertainty
in land surface temperature and emissivity [20].

This study aims to extend our O, AB algorithm for dust
ALH retrieval over bright surfaces. Leveraging our O, AB
algorithm developed for EPIC [15], [17], AOCH retrieval
exploration from TROPOMI has demonstrated the improve-
ment by adding O, B in retrievals over dark land compared
with those using only O, A band, due to the lower surface
reflectance in the O, B band for most land surface types [21].
Here, we present a new development for the TROPOMI O,
AB algorithm applied to the bright desert surface, leveraging
the strengths of the Deep Blue technique [22]. Section II
introduces the data used in this study. The new development
applicable to bright surfaces is discussed in Section III.
Section IV showcases the retrieval results and validation with
lidar for dust cases over the Saharan Desert.

II. DATA

A. TROPOMI LIB and L2 Data

Same as in [21], hyperspectral TROPOMI TOA radiance
(I(1)) and solar irradiance (Ey(1d)) measurements of good
quality defined by quality flags are convolved using the
spectral response function (F (1)) of EPIC in six narrow bands:
388, 443, 680, 688, 764, and 780 nm, respectively, to get
narrowband reflectance [see (1)]. Since shortwave infrared is
not involved in EPIC, F(A1) centered at 2320 nm is assumed
as a Gaussian function of 2-nm full width at half maximum
(FWHM)

7 [y2 F () 1(A)dA

R = T (D
cos (6p) [ a,fiz F)Ey()da

where A;; and 4;, indicate the wavelength range of F(A)
for each narrowband A;, and 6, represents solar zenith angle.
Similar to the MODIS Deep Blue algorithm, here AOD is
retrieved from blue band R443, where the surface reflectance
is much lower than longer wavelengths, and bright surfaces
like deserts and bare soil become dark [17]. The DOAS ratios,
Ress/Reso and R764/R780, are primarily used for AOCH retrieval.
To correct the mismatch in the geolocation of different spec-
trometers for TROPOMI, R,, at all bands are resampled to
a standard 0.05° grid using an area-weighted method [23].
The TROPOMI L2 UV aerosol index (UVAI) product is also
used since AOCH retrieval is only available for pixels with
UVALI > 1.0.

B. MODIS MAIAC BRDF Product

Unlike the Lambertian albedo assumption used in our
previous work, the surface reflectance over bright sur-
faces is updated by a multiyear climatology of the
semi-empirical Ross—Li bidirectional reflectance distribution
function (BRDF) model derived from a 1-km MODIS
MAIAC BRDF product (MCD19). In the BRDF model (2),
the wavelength and geometry-dependent surface reflectance
Rs(6p,6,,0,1) is the sum of three kernels representing
isotropic, volumetric (K1), and geometric (Kge,) components,
respectively,

R (80, 6y, 0, ) = fiso (D) + frol (D) Kyor (60, 6y, )
+ fgeo (/D ngo (009 gva ‘P) . (2)

So the angular dependence of Ry is represented by Ky
and K, only, isolated from spectral kernel weights, fis, fyol,
and fyeo, Which are provided by MCDI19 at each pixel. As
a result, the climatology of these kernel weights is derived
from five-year products at the first seven MODIS bands and
resampled to 0.05° standard grids, using the same method as
TROPOMI.

C. Validation Data

For AOD validation, the version 3 level 1.5 AOD products
at AERONET sites are collocated with TROPOMI retrievals
spatially by averaging TROPOMI AOD falling into a 0.5° cir-
cle centered at each AERONET site. Temporally, AERONET
AOD measured in a one-hour time window centered at the
TROPOMI overpass time is averaged.
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TABLE 1

LINEAR REGRESSION COEFFICIENTS CONVERTING SURFACE
REFLECTANCE FROM MODIS ToO TROPOMI BANDS

MODIS TROPOMI Linear regression coefficients
bands bands ) <—NDVI<0.1 0.1<=NDVI<04 04<=NDVI<0.6 NDVI>=0.6
469nm 443 nm 0.95,-2.8¢-3 0.94, -4.9¢-3 0.89, 5.0e-4 0.96, -3.5¢-4
645nm 680 nm 1.02, 1.6e-3 1.10, -3.7¢-3 1.10, -6.6¢-3 0.81,2.3¢-3
645nm 688 nm 1.03, 2.0¢e-3 111, -1.4e-3 1.18, -8.8¢-3 0.86, 5.3¢-3
859nm 764 nm 0.99, -5.7e-4 0.96, -1.5¢-2 0.90,-23e-3 097, -14e-2
859nm 780 nm 0.99, -6.9¢-4 0.97, -1.3e-2 093,-34e-3  0.99,-1.3¢-2
2130nm  2320nm 092, -1.8e-2 0.90, 1.9¢-4 0.96,-14e-2  0.84,-8.2¢-4

To quantitatively validate TROPOMI AOCH retrieval (here-
after, AOCHr), an extinction weighted AOCH (hereafter,
AOCH¢) defined as [21, eq. (6)] is derived from cloud-
aerosol lidar with orthogonal polarization (CALIOP) L2 5-km
aerosol extinction profiles similar to previous studies [12],
[15], [17], [21]. Note that only those CALIOP footprints with
total column AQOD larger than 0.3 and without any cloud
layers detected are considered. Rather than 532 nm, the aerosol
extinction at 1064 nm is used in this study, given the less laser
energy loss due to weaker aerosol extinction. Furthermore,
the definition differences between AOCHc and AOCHr can
cause their different values even for the same aerosol profile.
Therefore, enforcing apple-to-apple comparison, AOCHr is
converted into AOCH¢ following [24]. For each CALIOP
footprint, the mean AOCH retrieval of the closest 3 x 3
TROPOMI pixels is collocated.

D. IASI Dust Product

Our TROPOMI AOCH retrievals are also cross-validated
by IASI dust-layer mean altitude (ALT) retrieved by the
Centre National d’Etudes Spatiales (CNES) Laboratoire de
Météorologie Dynamique (LMD) algorithm here [19]. This
algorithm retrieves dust AOD, ALT, and the surface temper-
ature simultaneously from multiple window channels in IR,
where dust particles are assumed to be distributed within a
homogeneous layer, and ALT is defined as a height where
half of the dust AOD is below (or above). IASI data from
three satellites, MetOp A, B, and C, are combined as a fusion
product sampled at standard 0.05° grids (same as TROPOMI)
to enrich their spatial coverage given their similar morning
orbit (~9:30). In the quantitative comparison, IAST ALT is also
converted into equivalent AOCHrt(or AOCH¢) considering
their definition difference. Given ~12-km IASI footprint, when
collocating the fused IASI data with CALIOP, the closest 8
x 8 resampled TASI grids (~3 IASI footprints) are averaged.
Particularly, as reported above surface, AOCHr is adjusted to
be above sea level when compared with the other two.

III. ALGORITHM DESCRIPTION

The algorithm workflow of this work remains similar to
that developed for dark target [21], with refinement on cloud
screening and surface representation using the BRDF model.
The bright surface is identified by the normalized difference
vegetation index (NDVI) from MODIS MAIAC climatology.

A. Cloud Mask Tests

Different from the past study in which clouds are screened
with a spatial coherence technique, the method used in this
study to distinguish between clouds and bright surface relies

1002005

(a) g
| TROPOMI

UVAl354 3553 1

A

30°N

20°N

10Nw
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on the distinct spectral characteristics of cloud droplets and
desert surface reflectance in VIS-NIR. For instance, over bright
land, the spectral slope of 780-2320 nm, k7302320 defined from
TOA reflectance as in [21, eq. (2)], at clear sky or dust pixels
is flatter than those covered by clouds [Fig. 1(c)]. Hence,
similar TOA reflectance tests, spectral slope tests, and spatial
homogeneity tests used in [21] are also applied to the bright
surface cloud mask with empirical thresholds summarized in
Fig. 1(d). Note that as a continued table of [21, Table I]
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Fig. 4. Validation of (a) TROPOMI AOD against AERONET AOD and (b) AOCHrt (green) or IASI (pink) ALT against AOCHc for all dust plume cases.

(c) Probability histogram of AOCH differences.

for NDVI > 0.2, Fig. 1(d) is applied for the bright land of
NDVI <= 0.2.

B. Surface Reflectance

With the climatology of BRDF parameters developed, the
instantaneous surface reflectance (R;) for TROPOMI geometry
can be derived using the solar and viewing geometries avail-
able for each TROPOMI pixel, but in seven MODIS bands.
These instantaneous R, are fit to the TROPOMI narrowbands
from the closest MODIS channels by the linear regression
method based on the spectral reflectance of various surface
types from the ASTER dataset [17], [21]. Here, we extend
the fitting to brighter lands of NDVI <= 0.2. Ultimately,
the different linear regression coefficients are applied for
different surface types determined by several NDVI bins, as
summarized in Table I.

IV. RETRIEVAL RESULTS AND VALIDATION
A. Dust Case Study

One dust plume on 6 June 2020 over the Saha-
ran Desert is identified by the large TROPOMI UVAI
(354-388 nm) values (1-4) (Fig. 2). The dust plume can be
identified from both TROPOMI and IASI with high AOD
[Fig. 2(c) and (d)], although their absolute values differ,
considering the wavelength dependence of dust AOD. The
high AOD loading of IASI and TROPOMI does not match
perfectly, given their ~4 h overpass difference. Note that no
further quantitative comparison of AOD between TROPOMI
and IASI is conducted, considering this time lag and little
information about dust microphysical properties determining
dust AOD wavelength dependence. TROPOMI AOCH is only
available for AOD > 0.2 and UVAI > 1.0 to ensure sufficient
information content for retrieval, similar to dark surfaces [21].
From TROPOMI AOCH, the western part of the dust plume
(red circle) is located at 2-3 km, while the height of the
eastern part shows ~1 km higher, indicating the lifting of
sand particles in the east [Fig. 2(e)]. IASI ALT also shows
a similar spatial pattern, while its absolute value is ~1 km
lower [Fig. 2(f)]. This spatial pattern reveals the distinction of
ALH for different parts of dust plumes even in the source
region, where most dust plumes originate from local soil
surface or short-range transport, demonstrating the necessity
of a dust ALH product with large spatial coverage for bright

surfaces. The lofted eastern part of this plume is captured by
CALIOP of 3-4 km AOCH¢ (Fig. 3), agreeing with AOCHy
but ~1 km higher than ALT. The 0.52 correlation coefficient
(R) between AOCH¢ and AOCHy indicates their consistent
variation, slightly stronger than 0.45 R between AOCH¢ and
ALT, while the root mean square error (RMSE) of 1.45 km
and mean bias of —1.2 km for IASI are larger than those for
TROPOMI (RMSE of 0.72 km and mean bias of —0.3 km).
One possible reason for the underestimation of IASI ALT
is that IR channels show stronger sensitivity to coarse par-
ticles than VIS-NIR [25], which are more difficult to be
lofted into higher altitude than finer dust particles, hence
distribute more at lower altitudes. Consequently, IASI ALT
is more representative of altitudes where coarse particles are
located, unlike TROPOMI and CALIOP, which detect dust
AOCH through VIS-NIR. Furthermore, given that IASI has
a footprint twice as large as TROPOMI and CALIOP, ALT
is smoother along CALIOP track with smaller error bars
(standard deviation within 8 x 8 grids), while CALIOP shows
more variation (larger error bars) between adjacent pixels.
This contributes to the lower correlation between AOCHc and
ALT. The potential cloud contamination due to the coarser
resolution of IASI ALT may also explain the disagreement.
The larger temporal difference between CALIOP and IASI
(afternoon versus morning orbits) compared with TROPOMI
could be another reason for the weaker agreement. It is also
worth noting that CALIOP has a shortcoming in thick dust-
layer detection, which is common in deserts. During the travel
of the laser’s light from space to the ground, if the dust
extinction is too strong, the light cannot attenuate through
the whole dust layer. Hence, aerosol extinction data could
be missed below layers with strong dust extinction, such as
18°N-23°N in Fig. 3. Although these blank layers are filled by
a background aerosol extinction profile of ~0.07 AOD and the
CALIOP measurements at 1064 nm are used, the modification
of AOCH¢ due to the loss of dust layer in the bottom still
cannot be compensated. As a result, AOCH¢ can illustrate as
large as 3 km differences between adjacent footprints, whereas
AOCHT and ALT are smoother. This also partly explains the
moderate correlation between AOCH¢ and AOCHrt (or ALT).

B. Validation Statistics

Applying the O, AB algorithm developed here for another
five dust cases over the Saharan Desert in June 2020,



CHEN et al.: DUST AEROSOL OPTICAL CENTROID HEIGHT (AOCH) OVER BRIGHT SURFACE

TROPOMI AOD and AOCH retrievals are validated. Even
though the collocated TROPOMI and AERONET AOD obser-
vations are not so many (N = 12), an R of 0.71 reveals their
consistency [Fig. 4(a)]. The fitting line also indicates that the
uncertainty of surface reflectance is still a crucial factor that
causes the 0.225 RMSE of TROPOMI AOD. We also find that
the variation of AOCHr is correlated with AOCH¢ of 0.56 R,
with ~1-km RMSE and ~0.1-km mean bias. In contrast, IASI
presents an RMSE of 1.40 and —1.08-km mean bias, revealing
its underestimation. Its variation shows less correlation with
CALIOP of 0.43 R. The probability density histograms of
the pixel-level differences between TROPOMI, CALIOP, and
IASI demonstrate that AOCHt is close to AOCHc with
0.09-km AAOCH on average, while IASI ALT presents a
larger mean bias of —1.08 km [Fig. 4(c)]. Around 75% of
TROPOMI retrievals have <1.15 km bias compared with
CALIOP, smaller than the counterpart of IASI (1.66 km).
Moreover, AAOCH among the three products all display near-
normal distribution, in which the standard deviations of both
AOCHt — AOCH¢ and ALT — AOCH¢ are close to 1.0 km,
while a larger value of 1.41 km is found for AOCHt —
ALT. In summary, TROPOMI AOCH is close to CALIOP and
~1.1 km higher than TASI.

V. CONCLUSION

Leveraging our published TROPOMI O, AB AOCH algo-
rithm over the dark surface, this study extended its application
to bright desert surfaces through further developments, which
include the following.

1) Refine cloud mask tests given different characteristics of
the bright surface reflectance spectrum.

2) Implement the Ross-Li BRDF model to consider the
angular dependence of surface reflectance whose parameters
are from MODIS MAIAC BRDF climatology.

Validation for several dust plumes over the Saharan Desert
reveals that TROPOMI AOD retrievals are well correlated
with AERONET and AOCH are comparable to the CALIOP
extinction weighted AOCH with ~0.1-km mean bias, while
IASI ALT is ~1 km underestimated with lower correlation
(0.43 versus 0.56), partly due to the sensitivity of IR channels
to the coarse particles at lower ALTs. Overall, TROPOMI
AOD and AOCH retrievals over bright surfaces have less
accuracy than those retrievals over dark land [21]. The higher
surface reflectance and potentially larger uncertainty result
in larger error and lower correlation of TROPOMI AOCH
retrievals. Nevertheless, this ~1-km RMSE of AOCH still
reveals the product’s reliability in dust source regions.
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