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Abstract

Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use
and intensive farming, posing a major challenge for climate mitigation. This study in-
troduces a novel reinforcement learning (RL) framework to optimize farm management
strategies that balance crop productivity with environmental impact, particularly N2O
emissions. By modeling agricultural decision-making as a partially observable Markov
decision process (POMDP), the framework accounts for uncertainties in environmental
conditions and observational data. The approach integrates deep Q-learning with recurrent
neural networks (RNNs) to train adaptive agents within a simulated farming environment.
A Probabilistic Deep Learning (PDL) model was developed to estimate N2O emissions,
achieving a high Prediction Interval Coverage Probability (PICP) of 0.937 within a 95%
confidence interval on the available dataset. While the PDL model’s generalizability is
currently constrained by the limited observational data, the RL framework itself is de-
signed for broad applicability, capable of extending to diverse agricultural practices and
environmental conditions. Results demonstrate that RL agents reduce N2O emissions
without compromising yields, even under climatic variability. The framework’s flexibility
allows for future integration of expanded datasets or alternative emission models, ensuring
scalability as more field data becomes available. This work highlights the potential of
artificial intelligence to advance climate-smart agriculture by simultaneously addressing
productivity and sustainability goals in dynamic real-world settings.

Keywords: agricultural management; reinforcement learning; partially observable
environments; soil N2O emission; climate variability; uncertainty

1. Introduction
The escalating challenge of climate change, profoundly impacting global ecosystems,

requires immediate and innovative solutions. Greenhouse Gases (GHGs) play a crucial
role in climate change by trapping heat in the atmosphere. Nitrous Oxide (N2O), a primary
GHG, is produced by both natural and human-induced processes, particularly through
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nitrogen-based fertilizer use and other farming practices. Simultaneously, climate vari-
ability poses a formidable threat to agricultural productivity, jeopardizing food security
worldwide. According to the Food and Agriculture Organization (FAO) data, approxi-
mately 828 million people still experienced hunger in 2022. Agriculture, a vital component
of the global economy, faces a dual challenge—navigating the impacts of GHGs on climate
change and addressing the threats posed by climate variability. This intricate interplay
underscores the need for a paradigm shift in agricultural management.

Across the globe, the upward trend in N2O emissions, both historically and in projec-
tions, is primarily attributed to the expanding use of fertilizers and the growth in livestock
production. Approximately 60% of the contemporary increase in N2O comes from culti-
vated soils receiving Nitrogen (N) fertilizers [1]. Notably, from 1990 to 2020, there has been
a 34.9% increase in N2O emissions from agricultural soils [2]. Various factors can influence
N2O emissions, including crop types, tillage methods, crop residue management strategies,
soil moisture levels, soil temperature conditions, and aspects of fertilizer usage. These
aspects encompass the quantity, type, application timing, and method of placement [3].
In addition to anthropogenic factors, climate variability also plays a pivotal role in agri-
cultural management, considering fluctuations in temperature, rainfall, wind patterns,
and other weather elements across different time and space scales [4].

In past research on agricultural management, scholars typically gathered and exam-
ined historical data to uncover crop growth patterns. These findings were then used to
guide future agricultural policies and practices [5]. With the continuous advancement of
computer hardware and simulation software, there has been a notable shift in research
methodologies. Specialized software tools, such as Decision Support System for Agrotech-
nology Transfer (DSSAT) [6], Agricultural Production Systems Simulator (APSIM) [7],
and AquaCrop [8], have been developed and widely adopted in the agricultural research
community. These simulation tools encompass various aspects of crop development, yield,
water, and nutrient needs, enabling the optimization of management practices to adapt to
evolving weather and environmental conditions.

However, in the above-mentioned classical crop simulators such as DSSAT, only nitrate
leaching is typically observable as an indicator of nitrogen loss, whereas direct simulation
of N2O emissions is not supported. While both nitrate leaching and N2O emissions are
related to nitrogen cycling in soils, they represent distinct environmental processes and
impacts. Nitrate leaching measures the loss of nitrate to groundwater, contributing to
water quality concerns, but does not capture the gaseous losses of nitrogen, especially as
N2O, a potent greenhouse gas with major climate implications. Sole reliance on nitrate
leaching as an environmental criterion is therefore insufficient for assessing the full climate
impact of agricultural management, since farming practices only to reduce nitrate leaching
may not effectively mitigate N2O emissions, and in some cases may even exacerbate them
due to trade-offs in soil nitrogen dynamics. Consequently, both nitrate leaching and N2O
emissions need to be considered when optimizing the agricultural management.

With the rising interest in Artificial Intelligence (AI) for smart or precision agricul-
ture [9], researchers are increasingly integrating AI techniques, including Reinforcement
Learning (RL), with the established software mentioned above to simulate and formulate
improved agricultural management strategies. As a subset of Machine Learning (ML),
RL empowers computer programs, functioning as agents, to navigate unfamiliar and dy-
namic systems for specific tasks [10,11]. Romain et al. [12] transformed DSSAT into a
realistic simulation environment suitable for RL, known as Gym-DSSAT, which has gained
popularity in agricultural research. Wu et al. [13] demonstrated that RL-trained policies
could outperform traditional empirical methods, achieving higher or similar crop yields
while using fewer fertilizers, a significant advancement in sustainable agricultural practices.
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Complementing this, Sun et al. [14] explored RL-driven irrigation control, optimizing
water usage while maintaining crop health and showcasing the potential of Gym-DSSAT in
effective resource management. Furthermore, Wang et al. [15] verified the robustness of
learning-based fertilization management under challenging conditions. Even in extreme
weather scenarios, the RL agent demonstrated the ability to learn optimal policies, resulting
in highly satisfactory outcomes. This underscores the reliability and adaptability of RL in
varying environmental conditions.

Most existing studies [12–14] have predominantly assumed a completely observable
agricultural environment, formulating the related RL problems as Markov Decision Pro-
cesses (MDPs). In MDP frameworks, it is assumed that each state of the environment
contains all the necessary information for the agent to identify the optimal action for achiev-
ing the objective function. However, a significant issue arises when mirroring real-world
scenarios, where agents lack complete knowledge to accurately determine the state of the
environment due to the often uncertain or partial nature of their observations [16]. Notably,
certain state variables in Gym-DSSAT, such as the index of plant water stress, daily nitrogen
denitrification, and daily nitrogen plant population uptake, may pose challenges in terms
of measurements and accessibility. Wang et al. [15] delved into this issue and discovered
that it can be effectively addressed through the application of Partially Observable Markov
Decision Processes (POMDPs). Subsequently, they adopted Recurrent Neural Networks
(RNNs) to handle the history of observations for decision-making in fertilization manage-
ment. Their findings indicated that modeling the agricultural environment as a POMDP
resulted in superior policies compared to the existing assumption of an MDP.

According to the above-mentioned literature review, significant knowledge gaps exist
in the current scientific research. Firstly, the crop simulator is limited to evaluating environ-
mental impacts through nitrate leaching alone, overlooking the modeling of N2O emissions
from soils. This gap significantly impedes considering greenhouse gas emissions when
optimizing agricultural management strategies. Second, a notable lack of comprehensive
studies exists on climate variability and its uncertainties within agricultural management.
Current research has predominantly simulated static weather conditions, failing to account
for the model’s capacity to adapt to climate changes and extreme weather scenarios. This
leads to a scientific question: “How can we achieve optimal fertilization and irrigation
management strategies to maximize crop yields and minimize N2O emissions, considering
uncertain climate variability?”.

According to the literature reviewed above, significant knowledge gaps persist in
current scientific research regarding crop simulation models and agricultural management
strategies. Firstly, existing crop simulators predominantly assess environmental impacts
solely through nitrate leaching, neglecting the crucial role of N2O emissions from agri-
cultural soils. Given that N2O is a potent greenhouse gas exhibiting nonlinear responses
to fertilizer applications and varying soil conditions, omitting its emissions significantly
impedes accurate assessments of agriculture’s climate impact. Consequently, current opti-
mization frameworks risk recommending management practices misaligned with broader
sustainability and climate mitigation objectives.

Secondly, there is a notable deficiency in comprehensive studies addressing climate
variability and associated uncertainties within agricultural management. Most existing
research assumes static or minimally varying climatic conditions, thus inadequately repre-
senting the potential for climate fluctuations and extreme weather events exacerbated by
climate change. Such limitations compromise the resilience and robustness of simulation-
based optimization and RL-driven agricultural policies. Policies optimized under static
conditions may thus fail significantly in real-world scenarios marked by environmental
uncertainty, adversely affecting both food security and environmental protection. These
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identified gaps highlight an essential scientific question: How can optimal fertilization
and irrigation management strategies be developed to maximize crop yields and mini-
mize N2O emissions, explicitly accounting for uncertainties and variability associated with
climate change?

In this study, we present the inaugural effort to make a significant contribution to
bridge the gap in understanding the mutual effects between agricultural management
strategies, specifically fertilization and irrigation plans, and challenges posed by climate
change. By incorporating predicted soil N2O emissions into the reward function, the devel-
oped RL method can successfully guide agents in learning farming practices to mitigate
GHG emissions, with a particular focus on N2O emissions. This approach, coupled with
other considerations, provides valuable insights into fostering more sustainable agricul-
tural practices.

Another significant contribution is the enhanced uncertainty quantification of the
performance of the learned optimal management policies, representing a progression from
our prior study [15]. By integrating a probability ML model for N2O emission prediction
and a stochastic weather generator into the crop simulator, our agents exhibit the capability
to learn adaptive optimal policies for fertilization and irrigation, particularly responding
to climate variability, including rising temperature and reducing rainfall. This adaptation
extends to address severe climate events like droughts.

This paper is organized as follows: Section 2 introduces the formulations of POMDP
and discusses Deep Q-learning, a model-free RL technique. In Section 3, we establish
the ML models for N2O emissions and outline the simulation model settings. Section 4
explores the integration of N2O emissions into the management of nitrogen fertilization
and irrigation while also examining the implications of weather variability, such as elevated
temperatures and reduced precipitation. The paper concludes with Section 5, where we
briefly summarize our findings, engage in discussion, and propose alternative solutions for
future research.

2. Methodologies
In this study, we conceptualize the agricultural environment as a POMDP and employ

a model-free RL method for the agent to acquire optimal policies. This section begins
by establishing the mathematical framework of POMDP. Following that, we introduce
Q-learning and its variations, emphasizing their relevance in addressing POMDP-related
challenges. A comprehensive description of the crop simulator settings used as the RL
environment, including Gym-DSSAT configuration, action space discretization, and reward
function weightings, is provided in Section 3.2. The RL hyperparameters employed during
training, such as the random seed value, discount factor, and other key settings, are detailed
in the table at the beginning of Section 4.

2.1. POMDP

A POMDP is usually represented by a tuple P = (S, A, T, s0, R, O, Ω), including a
finite set of states S = {s1, . . . , sn}, a finite set of actions A = {a1, . . . , am}, the initial state
s0 ∈ S, and a finite set of observations O = {o1, . . . , oq}. Particularly, A(s) is a set of
available actions at state s for the agent to take. When the agent takes an action a ∈ A(s),
a transition occurs from the current state s to the next state s′ with a probability T(s, a, s′).
Such transition probability is denoted by a function T : S × A × S → [0, 1] and satisfy
∑s′∈S T(s, a, s′) = 1.

After each transition, the agent may receive feedback based on the reward function
R : S × A × S → R, where R denotes the codomain (the set of real numbers). In addition to
R(s, a, s′), the reward function has various formulations like R(s′) and R(s, a). Since the



AgriEngineering 2025, 7, 252 5 of 27

environment is partially observable, a set of possible observations the agent can perceive is
defined as O(s′). There exists an observation probability function Ω : S × A × O → [0, 1]
to quantify the perception uncertainty after the agent takes action a and reaches the next
state s′. This function must satisfy ∑o∈O Ω(s′, a, o) = 1.

The primary goal of the agent in an RL problem is to learn an optimal policy that can
maximize the expected return, also known as the utility. Beginning from the current state s
and adhering to a policy ξ, the expected return is the accumulated rewards the agent can
collect. It is defined below as the sum of discounted rewards over a sequence of interactions
with the environment.

Uξ(s) = Eξ

[
∞

∑
t=0

γtR(st, at, st+1)
∣∣∣st=0 = s

]
(1)

where st represents the state of the environment at time t, and at is the action to be taken,
potentially leading to the transition of the agent to the state st+1 at the next time, t + 1.
The discount factor, γ ∈ [0, 1], is commonly employed to weigh the importance of future
rewards in the agent’s decision-making process. The utility in Equation (1) assesses the
expected total reward an agent can accrue in the long run and is also referred to as the state
value, denoted as V(s).

It should be noted that model-based RL for POMDP problems requires estimating
the transition function and observation probability distribution, which can be challenging
and data-intensive. However, we employ model-free RL methods like Q-learning with
Recurrent Neural Networks (RNNs) introduced in the next subsection to avoid such
computational and data barriers while still capturing partial observability and temporal
dependencies. Such approaches have been successfully applied to robotics motion planning,
where agents must act under sensor limitations and environmental uncertainty [17,18].

2.2. Q-Learning

Q-learning [19] is a widely used model-free RL method, and it utilizes Q values
(action values or state-action values) to evaluate and select actions during the learning
process. Similar to state values, the Q value, denoted as Qξ(s, a), represents the total reward
an agent is expected to accumulate after taking action a at the state s while following a
policy ξ. Q values and state values are related through V(s) = maxaQ(s, a). In contrast
to policy-based RL methods [20], value-based methods like Q-learning directly seek the
optimal value functions. These functions are subsequently used to select actions through
the greedy technique. The ε-greedy is usually adopted during the learning process to
balance exploration and exploitation.

Given that the agricultural management problems under study involve an infinite state
space, traditional tabular Q-learning is not suitable. Therefore, we adopt deep Q-learning,
also known as deep Q networks or DQN [21], where Q values are approximated by Deep
Neural Networks (DNNs). DQN employs two DNNs with identical network architectures.
However, only one DNN, referred to as the evaluation Q-network, is trained and updated
with collected experiences at every step. The other DNN, known as the target Q-network,
periodically copies the weights of the evaluation Q-network.

In POMDPs, decision-making relies on the history of observations instead of the
current one. To address this challenge, we incorporated an RNN like Gated Recurrent
Unit (GRU) [22] into the Q network architecture, as shown in Figure 1. In our prior
work [15], we empirically showed that GRU-based Q-networks achieve better performance
than conventional DQNs in handling temporal dependencies under POMDP settings,
especially in agricultural environments. This architecture is designed to process sequences
of observations. These sequential inputs are fed into a GRU layer, which maintains a
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hidden state to capture temporal dependencies and trends in the data. The GRU enables
the network to remember relevant past information while filtering out noise, allowing it
to model time-dependent changes in the environment. The GRU’s output is then passed
through fully connected layers to estimate Q-values as Q(ot, at) where ot represents the
history of observations up to time t for each action, supporting RL-based decisions that
account for both current and historical context.

Figure 1. GRU-based Q-network architecture.

It is worth noting that other sequence-modeling architectures can also be substituted
for the GRU in a DQN under POMDPs. For example, Long Short-Term Memory (LSTM) [23]
networks provide a deeper gating structure that can capture longer temporal dependencies,
while Transformer-based [24] self-attention layers offer the ability to model global context
without recurrence and have recently shown promise in RL settings. Incorporating these
alternatives could further enhance representation capacity and sample efficiency, but evalu-
ating them is left to future work; in this study we focus on the GRU variant for its favorable
trade-off between performance and computational cost and to maintain consistency with
our earlier experiments.

As a result, the two Q-networks in our DQN are denoted as QE(ot, at; θE) and
QT(ot, at; θT) where θE and θT are network weights for the evaluation and target Q-
networks, respectively. In each step of the learning process, the agent selects an action at at
the current state st based on the Q values predicted from the evaluation Q-network, with the
observation history ot as the input. The ε-greedy technique is employed for action selection.

Following the execution of the action and the transition to the next state st+1, the agent
receives a reward rt = R(st, at, st+1), observes an observation ot+1, and generates a new
observation sequence ot+1 = (ot−l+2, ot−l+3, . . . , ot+1) with a length of l. Simultaneously,
the experience, represented as (ot, at, rt, ot+1)), is stored in the experience replay mem-
ory [25]. Each experience contributes to one data sample, updating the Q value associated
with the observation sequence and the action taken through the Bellman equation [26].

Qnew(ot, at) = QE(ot, at; θE) + α

[
rt + γ max

at+1
QT(ot+1, at+1; θT)− QE(ot, at; θE)

]
(2)

where α is the learning rate.
At each time step, a batch of data samples is randomly selected to train and update the

evaluation Q-network. Meanwhile, the target Q-network maintains constant weights until
it copies from the evaluation Q-network, i.e., θT = θE, after a certain number of time steps.
It is important to note that standard DQN algorithms are known to sometimes overestimate
Q-values, which can affect learning stability. In this work, we used the original DQN
formulation and did not incorporate explicit overestimation mitigation strategies such as
Double DQN, which could be considered in future research.
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3. Model Setup
The simulation model generated in this study aligns with the Long-Term Ecological

Research (LTER) site at the W.K. Kellogg Biological Station (KBS-LTER; 42◦24′ N, 85◦24′ W,
288 m elevation), as established in 1989 [27]. The testing field follows a no-till corn-soybean-
winter wheat rotation and contains 1.6% solid organic carbon. The climate at this site is
classified as humid continental, characterized by a mean annual precipitation of 1151 mm
and an average temperature of 7.6 ◦C. For more information on agronomic management
details, please refer to the KBS-LTER data tables available in [28].

3.1. N2O Emission Forecasting

Given that the Gym-DSSAT platform lacks N2O emission forecasting capabilities, this
study endeavors to fill the gap by developing ML models, deterministic or probabilistic.
These models aim to predict N2O emissions based on a combination of weather conditions
and agricultural management practices. The dataset we used is from Saha’s study [29],
spanning the years 2012 to 2017 (excluding 2015 due to instrument failure). The dataset
contains numerous features. However, to align with the state variables available in Gym-
DSSAT, we select four specific features, as outlined in Table 1. The model’s output is
expressed in grams of nitrogen emitted per hectare each day (g N2O-N/ha/d). The dataset
comprises a total of 919 samples. For training and testing purposes, 80% of these samples
are allocated to training and 20% to testing. To ensure robust validation, we employ a
5-fold cross-validation method.

Table 1. Features for N2O emission forecasting models.

Variable Description

pp2 the total precipitation in the 2 days leading up to gas sampling (mm)

pp7 the total precipitation in the 7 days leading up to gas sampling (mm)

airT the mean daily air temperature (◦C)

daysAF the number of days that have elapsed following the application of top-
dressed nitrogen fertilizer

The first ML model employed for N2O prediction is a deterministic ML model with
an artificial neural network (ANN). The neural network architecture comprises four layers,
each consisting of 512 neurons with Rectified Linear Unit (ReLU) activation functions.
Training involves a batch size of 128, a learning rate set at 0.0001, and a total of 6000 epochs.
This architecture was selected to balance model complexity and computational efficiency
while keeping the focus on the effect of input feature selection.The performance of the
model on the testing set is visually presented in Figure 2, showcasing a comparison between
predictive and true values.

Despite an extensive training regimen, the final coefficient of determination (R2) for
our ANN model, using only five features, stands at 0.65, indicating moderate predictive
accuracy, as shown in Figure 2. It is noteworthy that various neural network architectures
and activation functions were tested, and the configuration presented here yielded the best
performance, balancing model complexity and computational efficiency. Although our
achieved R2 did not reach anticipated highs, it closely aligns with the outcomes observed
in Saha’s study, where a Standard Random Forest model using 10 features also reported an
R2 of approximately 0.65 [29]. However, their Coupled Random Forest model, utilizing all
12 available features, achieved a higher performance with an R2 of 0.78.
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Figure 2. The predictive N2O daily flux (g/ha) compared to true values by using a deterministic
ML model.

The deterministic ML model described earlier provides a singular optimal prediction
for N2O emissions. Utilizing the sum of squared residuals as the loss function, a common
practice in least square regressions, this model aims to minimize the difference between
predicted and observed values. However, recognizing the inherent data uncertainty arising
from measurements in the testing field, we take a different approach for training a PDL
model–utilizing the maximum likelihood (MaxLike) method [30]. Unlike its deterministic
counterpart, this model does not offer a single-point prediction but rather predicts a
probability distribution, encompassing all potential N2O emissions.

MaxLike estimation is commonly employed to identify a suitable probability distribu-
tion with parameters that best explain data samples. Consequently, training a PDL model
becomes a probability density estimation problem. This involves searching for optimal
model parameters, denoted as θ, with the objective of maximizing the joint probability of a
given dataset (X, y) where X = (x1, . . . , xn) and y = (y1, . . . , yn). The joint probability is
often expressed as a likelihood function, denoted as

L(y|X; θ) = P(y1, . . . , yn|x1, . . . , xn; θ) =
n

∏
i=1

P(yi|xi; θ) (3)

where the data samples are assumed to be independent and identically distributed, so the
likelihood function can be reformulated as the multiplication of conditional probabilities.

As multiplying numerous small probabilities together can be numerically unstable
in practice, using the sum of log conditional probabilities is common. Consequently,
the Negative Log-Likelihood (NLL) function is typically employed as the cost function,
as shown below. This function is minimized during the training of a PDL model.

min(NLL) = min

(
−

n

∑
i=1

log P(yi|xi; θ)

)
(4)



AgriEngineering 2025, 7, 252 9 of 27

On the other hand, given that the N2O emission cannot be negative, we chose the
log-normal distribution over the normal distribution, expressed as ln(X) ∼ N (µ, σ2).
The probability density function is defined as

P(yi|xi; µxi , σxi ) =
1

yiσxi

√
π

exp

(
− (ln(yi)− µxi )

2

2σ2
xi

)
(5)

where µxi is the location parameter, and σxi is the scale parameter.
For the PDL model, the parameters were adjusted to prevent overfitting and improve

convergence due to the probabilistic nature of the output and the smaller effective data
size when modeling distributions rather than point estimates. Therefore, we employ
another ANN, featuring a four-hidden-layer architecture with 16, 32, 64, and 16 neurons,
respectively. Diverging from the deterministic model, the output layer of this model
consists of two neurons: one for µx and the other for σx, representing the parameters of the
Log-normal distribution in Equation (5). The training process spans 5000 epochs, with a
batch size of 16. For configuration and training, we leverage the Tensorflow-probability
package [31]. The deterministic ANN model utilized a larger batch size and more epochs to
achieve stable training and effectively exploit computational resources for point prediction
tasks. Conversely, the PDL model required a smaller batch size and fewer epochs, reflecting
the greater complexity associated with modeling probability distributions, the necessity
of avoiding overfitting, and differences in convergence behavior. Parameter selection
was performed empirically through extensive experimentation to optimize validation
performance for each model.

Figure 3 visually illustrates the model’s performance using the testing data. Each
prediction, sampled from the predictive probability distribution, is compared to the cor-
responding true value or observation. The figure also includes a 95% prediction interval
(PI), providing a comprehensive assessment of the model’s performance by considering
not only its central tendency but also its variability.

Figure 3. The predictive N2O daily flux (g/ha) compared to true values by using a PDL model.
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To assess the PDL model, we calculate the Prediction Interval Coverage Probability
(PICP) as below.

PICP =
1
N

N

∑
i=1

1(Li ≤ yi ≤ Ui) (6)

where Li and Ui denote the lower and upper bounds, respectively, of the prediction interval
for the i-th data sample, yi represents the observed (or actual) values, and N is the total
number of data samples. 1(·) is the indicator function, which is 1 if the condition inside
the parentheses is true and 0 otherwise. PICP quantifies the percentage of observed data
points that are contained within the predicted intervals. The PICP values can vary between
0 and 1, with a value of 1 signifying that all observed values are encompassed within their
respective prediction intervals and a value of 0 means that no observed values fall within
their respective prediction intervals.

The PICP score for our model is 0.937 for the test set, indicating that it generally
captures the data well within the 95% prediction intervals. This PDL model excels in
quantifying the uncertainty of soil N2O emissions, particularly under climate variability
conditions. Compared to traditional deterministic ML models, the PDL framework not
only manages uncertainty more effectively but also achieves superior results using limited
datasets. It also enhances model performance, particularly valuable in environmental
contexts where data may be sparse or incomplete.

It is worth noting that the relatively wide prediction intervals observed in Figure 3,
especially at peak emissions, likely reflect both the limited availability of data and the
inherently high uncertainty associated with field measurements. On the other hand, relying
solely on PICP is insufficient, as high coverage can result from overly broad intervals that
are practically uninformative. Therefore, future studies will incorporate Mean Prediction
Interval Width (MPIW) as an additional metric [32]. MPIW penalizes excessively wide
intervals and quantifies the trade-off between interval coverage and sharpness, enhancing
model informativeness and reliability.

It is important to note that the collected data [29] includes an extra input feature: the
amount of N fertilization. However, the dataset only provides a single recorded value
for this input feature, specifically 170 kg/ha. To estimate N2O emission across varying N
input amounts, we employ regression analysis derived from Hoben’s exponential model,
which has been empirically validated in prior studies for on-farm corn systems [33]. This
combined approach allows us to approximate the nonlinear response of N2O emissions to
varying N inputs despite the dataset’s limitations. The resulting approximation is expressed
as y(x) = y(170) · e0.0073·(x−170) where x represents the actual N input, and y(170) denotes
the average daily N2O flux predicted from the ML models under the assumption of an N
input of 170 kg/ha. Additionally, the sum of rainfall and irrigation is considered to calculate
the precipitation-related input features (refer to Table 1) for predicting N2O emission.

3.2. Crop Simulator

This study employs Gym-DSSAT as a crop simulator, facilitating the approximation of
interactions between the agent and the agricultural environment. Through RL methods,
the agent learns optimal agricultural management, also called optimal policies. The Gym-
DSSAT encompasses 28 internal variables. Previous studies [13,14] commonly used all these
variables as state variables, assuming completely observable agriculture environments.
Consequently, the learned policies in those studies mapped current observations directly
to the management plan. In other words, the agent made decisions regarding fertilization
and irrigation based on current observations of state variables.

However, it is important to note that there is no conclusive evidence demonstrating
that these 28 internal variables can fully determine the state of the agricultural environ-
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ment. Furthermore, not all of them are easily observable or accessible. Unlike the studies
mentioned above, our work explicitly acknowledges the practical challenges in measuring
certain variables. As established in our prior research, we model the agricultural environ-
ment as partially observable [15]. Our intelligent agents make decisions based on a history
of observations from ten carefully selected state variables (listed in Table 2), chosen for their
reliability in real-world agricultural settings. The selection of observation variables was
guided by their practical observability in real-world agricultural settings; we prioritized
variables that can be easily measured or estimated routinely in the field, or accessed online.
These variables, including weather conditions, soil moisture, and basic crop traits, are
prioritized due to their accessibility via common monitoring tools and internet-based data
sources. Our prior studies show that modeling the agricultural environment as a POMDP
with 10 selected observation variables yields policies that perform similarly to (or better
than) those derived from POMDPs or MDPs using all 28 variables [15]. This approach
ensures a realistic representation of the agent’s decision-making environment, aligning
with real-world constraints.

Table 2. State variables of the agricultural environment used in this study.

Variable Description

cumsumfert cumulative nitrogen fertilizer applications (kg/ha)

dap days after planting

istage DSSAT maize growing stage

pltpop plant population density (plant/m2)

rain rainfall for the current day (mm/d)

sw volumetric soil water content in soil layers (cm3 [water]/cm3 [soil])

tmax maximum temperature for the current day (◦C)

tmin minimum temperature for the current day (◦C)

vstage vegetative growth stage (number of leaves)

xlai plant population leaf area index

In contrast to conventional approaches, we recognize the practical challenges asso-
ciated with measuring certain variables. As highlighted in our previous study [15], we
consider the agricultural environment to be partially observable. In our model, intelligent
agents base decisions on the historical observations of a carefully selected set of ten state
variables, outlined in Table 2. Our selection was based on practical considerations discussed
in our previous work [15], where we systematically evaluated which state variables could
be reliably observed or measured in real-world agricultural settings. The chosen variables
represent those most directly accessible through the internet and common monitoring tools,
such as weather, soil moisture, and basic crop characteristics. This nuanced perspective
aims to offer a more realistic representation of the agent’s decision-making environment,
ensuring alignment with the complexities found in real-world scenarios.

In this study, both the state and observation spaces are infinite. Gym-DSSAT, the uti-
lized crop simulator, outputs 28 state variables representing a daily state in the agricultural
environment. Ten of those state variables are selectively chosen as observations, assuming
the agricultural environment is partially observable. Our selection was based on practical
considerations discussed in our previous work [15], where we systematically evaluated
which state variables could be reliably observed or measured in real-world agricultural set-
tings. The chosen variables represent those most directly accessible through the internet and
common monitoring tools, such as weather, soil moisture, and basic crop characteristics.
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The action space encompasses different combinations of N and water quantities that
can be applied in a single day. Mathematically, the action space is discretized as (Np, Iq)

where Np = 20p (kg/ha) represents the N input, and Iq = 10q (L/m2) represents the water
input. Both p and q vary within the range of 0 to 4. Consequently, there are a total of 25 avail-
able actions for the agent to choose from each day. This discretization of nitrogen and water
inputs was selected to reflect typical application rates encountered in field management,
balancing the need for realistic simulation with computational resource considerations.
While finer discretization or a continuous action space could potentially allow more precise
management strategies, it would also significantly increase the computational demands
during training of RL agents.

On a given day dt, after the execution of a selected action involving the application of
N input Nt and water input It, Gym-DSSAT conducts computation for nitrate leaching Lt

(kg/ha) and crop yield Y (kg/ha) if harvested. Additionally, our ML models estimate N2O
emissions Ot (kg/ha). Following these calculations, the agent is rewarded according to the
formula specified in Equation (7).

Rt =

{
w1Y − w2Nt − w3 It − w4Lt − w5Ot at harvest

−w2Nt − w3 It − w4Lt − w5Ot otherwise
(7)

where w1 = 0.2, w2 = 2, w3 = 2, w4 = 30, and w5 = 100 represent the weight coefficients. It
is important to highlight that w1 through w3 align with those utilized in previous research
studies [34]. We explored alternative values for the weight assigned to nitrate leaching and
N2O emissions in the reward function and assessed the resulting outcomes. The compar-
ative analysis for the year 2012 indicated that a weight combination of 30 and 100 yields
superior results, ensuring optimal output levels while maximizing the reward.

Our research focuses on the growth and yield of corn for the year 2012, requiring
the extraction of climate and soil conditions specific to that timeframe. The relevant me-
teorological data was obtained from the KBS-LTER website [28], offering detailed daily
records of maximum and minimum temperatures, precipitation, and solar radiation. To ad-
dress the variability in climatic conditions, we utilized the stochastic Weather Generator
(WGEN) [35], a random weather generator integrated into DSSAT. This tool enables the
generation of weather scenarios for each episode under investigation.

The WGEN categorizes its output variables into two distinct groups. The first group
exclusively encompasses precipitation, while the second group comprises maximum tem-
perature, minimum temperature, and solar radiation. This categorization is based on the
understanding that the occurrence of rain on a given day significantly influences that day’s
temperature and solar radiation. As a result, precipitation is generated as an independent
variable each day, separate from the other variables in the second group. Then, calculations
for maximum and minimum temperatures and solar radiation are executed depending on
whether the day is characterized as wet or dry.

More specifically, the WGEN incorporates a precipitation element based on a Markov
chain-gamma distribution model. It employs a first-order Markov chain model to predict
the likelihood of rain, considering whether the previous day was wet or dry. In the case
of a predicted wet day, a two-parameter gamma distribution is utilized to calculate the
precipitation amount. Subsequently, the residuals for the other three variables–maximum
temperature, minimum temperature, and solar radiation–are generated through a multi-
variate normal generation process. This process maintains the serial and cross-correlation
coefficients of the variables. The final values for these three variables are determined by
adding the calculated residuals to the seasonal means and standard deviations, following
the methodology outlined in [36].
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It is important to note that while WGEN effectively generates synthetic daily weather
sequences based on historical patterns, it has inherent limitations in capturing the full
climate spectrum, particularly extreme weather events, when trained on normal climate
data, as in our study. Consequently, policies optimized using WGEN-generated scenarios
may demonstrate limited generalizability to future climates characterized by increased
frequency or severity of extreme events. We emphasize that these limitations regarding
extreme events have been specifically addressed in our related study [37].

The soil properties used in this study are selected from the soil file provided by DSSAT,
which contains data specifically collected at the KBS. This ensures that the simulation envi-
ronment accurately reflects the real-world soil characteristics at the study site. During a crop
simulation in the Gym-DSSAT environment, the planting and harvest dates, alongside the
initial and terminal states of the simulated RL problems, are dynamically determined. Initially,
the simulator identifies the optimal planting date by analyzing prevailing weather conditions.
Then, throughout each episode, it monitors the growth stages of maize using a variable called
‘istage’ to gauge crop maturity. When ‘istage’ reaches a threshold value indicating that the
crops are mature and ready for harvest, the simulation concludes, and a new episode begins.
This dynamic approach ensures that the planting and harvesting dates adapt to fluctuating
weather conditions, resulting in more accurate and realistic agricultural modeling.

3.3. Reinforcement Learning Based Agricultural Fertilization and Irrigation

In this research, the crop simulator and the developed N2O emission predictive model
form a virtual agriculture environment, incorporating weather data. This setup allows an
RL agent to interact with the environment, as depicted in Figure 4, under the assumption
of partial observability. Specifically, the RL framework presented offers a clear overview of
how the agent interacts sequentially with the agricultural environment under given weather
conditions. The agent observes state variables (e.g., air temperature, crop growth stage)
and selects actions, such as whether and how much to irrigate or fertilize. Upon execution,
the crop simulator generates rewards as feedback, enabling the agent to quantitatively
evaluate its actions and gradually improve decision-making.

Figure 4. The interaction between an RL agent and the agricultural environment.

We utilize an RNN-based DQN, enabling the agent to learn optimal policies. The
sequence of observations from the past five days, including weather data, is updated daily
during the learning process. No additional frame stacking or explicit state augmentation
is used in this study. This sequence serves as the input to the Q networks, which output
Q values (or action values) to guide the agent’s decisions on fertilizer and water usage.
Notably, at the beginning of each episode, random actions are selected for the first five days
to initiate the observation sequence.

Following the agent’s decision on action, the simulator and N2O emission predictive
model provide the reward and state variables for the next day, based on the current state and
available weather data. Historical weather data from the W.K. Kellogg Biological Station is
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used for scenarios with fixed weather conditions. Conversely, weather data is randomly gen-
erated using the WGEN, a stochastic weather generator, when assessing weather uncertainty.
Simultaneously, the developed machine learning model predicts N2O emissions, contributing
to the reward calculation. The current and next sequences of observations, alongside the re-
ward, are compiled as an experience and stored in a memory pool. This pool is then leveraged
to frequently update the Q networks by generating training batches.

4. Simulation Results and Discussions
In this study, we employ an RNN-based DQN, as detailed in Section 2.2, to facilitate

the agent in learning optimal policies. The Q-networks, integrated into this approach,
take a sequence of observations as input and generate Q values, guiding the agent in its
action selection. The RNN layer within the Q-networks (refer to Figure 1) consists of a
single hidden layer with 64 units. Its output is subsequently fed into a fully connected
network. Our study utilizes a sequence comprising observations from five consecutive
days to make decisions.

Throughout the learning process, we apply the ε-greedy selection technique to strike
a balance between exploration and exploitation. The discount factor, crucial for future
reward, is set at 0.99. To design and update the neural networks, we employ PyTorch v2.5.0
and Adam optimizer [38], using an initial learning rate of 1 × 10−5 and a batch size of 640.
The choice of parameters is based on considerations of model performance and efficiency.
Simulations are conducted on two distinct machines. The first machine is equipped with an
Intel Core i7-12700K processor, an NVIDIA GeForce RTX 3070 Ti graphics card, and 64 GB
RAM. The second machine features an AMD 5800h processor, an NVIDIA GeForce RTX
3070 graphics card, and 32 GB of RAM. The selection of these configurations is informed
by their computational capabilities and relevance to the scope of our study, as summarized
in Table 3.

Table 3. RL Hyperparameters used in this study.

Hyperparameters Values

Random seed values 123

Discount factor 0.99

Initial learning rate 1 × 10−5

Batch size 640

Exploration (ϵ) 0.9991n−1 (n is the number of episodes)

Target network update frequency 2500 steps

The average training time in this study is around 22 h. It is worth noting that, as RL
with neural networks can exhibit non-trivial variability due to hardware differences, we
took care to ensure that both machines have comparable computational power and similar
GPU architectures. In our experiments, we did not observe significant performance differ-
ences attributable to hardware variation. Nevertheless, we acknowledge that hardware can
be a potential source of variability, and we report our configurations here for transparency
and reproducibility.

We conduct multiple simulations to explore the implications of N2O emission and
climate variability on agricultural management and outcomes, particularly corn yield. First,
we select the year 2012 as our baseline, utilizing authentic weather data and soil properties.
By incorporating N2O emission into our reward function, we simulate the effects of N2O
emission in the context of agricultural practices. Following this, we introduce variations
in temperature and rainfall to assess the influence of climate variability. To enhance
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the model’s resilience against unpredictable weather conditions, we choose to generate
randomized weather scenarios based on actual data using the WGEN, as described in
Section 3.2. These scenarios are then utilized to train our models, significantly enhancing
their accuracy in coping with uncertain environmental conditions.

4.1. Considering N2O Emission

In this research, we aim to investigate the impact of N2O emissions on management
practices and agricultural outcomes. Through simulations, we analyze three distinct sce-
narios to elucidate the relationship between nitrate leaching, soil N2O emissions, and agri-
cultural productivity.

The first scenario focuses exclusively on the effects of nitrate leaching while deliber-
ately omitting soil N2O emissions. This helps us isolate the direct consequences of nitrate
leaching on soil and water quality without the confounding effects of N2O emissions.
The second scenario centers specifically on soil N2O emissions, excluding the impacts of
nitrate leaching. This approach allows agents to learn effective fertilization and irrigation
strategies to control and reduce N2O emissions. The third scenario combines both nitrate
leaching and N2O emissions. By analyzing these factors concurrently, we can explore their
interplay and cumulative impact on agricultural outcomes. This holistic approach enables
us to develop more comprehensive and effective management strategies.

Upon comparing the actual data received from KBS [28], we gather all available
information, encompassing diverse fertilization and irrigation practices across various
testing fields from 2011 to 2014. The N inputs exhibit significant variation, ranging from
0 kg/ha to a maximum of 291 kg/ha, with an average input of 138 kg/ha. Yield outcomes
also display variability, with the highest recorded yield at 14,023 kg/ha, the lowest at
3084 kg/ha, and an average yield of 9740 kg/ha. Additionally, the measured N2O daily
fluxes reach up to 0.6 (kg/ha/d) with a median value of 0.002. Unfortunately, detailed
irrigation data are not available.

We utilize the deterministic ML model to predict daily N2O emissions for all scenarios
above. Figure 5 illustrates the RL training process from episodes 2000 to 6000 for the third
case, indicating the convergence to learn the optimal policy. In our simulations, following
the acquisition of the optimal policy via RL in each case, we apply it to perform one
realization in the year 2012. The comparative results across the three cases are presented in
Table 4.

Compared to the average reported corn yield in Michigan in 2012 (approximately
8290 kg/ha) [39], the yields derived from our RL-based management policy demonstrate a
substantial improvement, highlighting the practical advantages of our approach. Addition-
ally, our previous studies indicated that RL-based optimal policies outperform the expert
policy recommended by DSSAT [15,37].

Figure 5. Training process from episodes 2000 to 6000 for the third scenario.
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Table 4. Agricultural outcomes for three different cases (Case 1: Nitrate leaching only, Case 2: N2O
emission only, and Case 3: Nitrate leaching and N2O emission.)

Case 1 Case 2 Case 3

Reward 1338 1267 1272

Yield (kg/ha) 11,190 10,549 11,305

N input (kg/ha) 140 140 180

Water input (L/m2) 310 270 300

Nitrate leaching (kg/ha) 0.0009 0.21 0.175

N2O emission (kg/ha) 0.314 0.223 0.251

Data from The Mosaic Company [40] indicates that a corn crop yielding 200 bushels
per acre (equivalent to 12,553 kilograms/hectare) can absorb up to 297 kg of N per hectare.
When N inputs align with the crop’s requirements, there is no noticeable increase in N2O
emissions. As N inputs exceed the crop’s needs, N2O emissions begin to rise dramati-
cally [3]. The total N2O emission data during the growing season from our 2012 dataset
was 0.586 kg/ha. It is important to note that there remain several days unaccounted for
within the growing season, leading us to believe that the actual emissions are likely higher
than this reported value. In all three examined cases, nitrogen inputs remained below the
indicated threshold, resulting in lower N2O emissions than those previously reported. N2O
emission is less than the record data. Furthermore, by considering N2O emission in the
reward function, the resultant policies have the potential to mitigate N2O emissions in
Case 2 and reduce both nitrate leaching and N2O emission in Case 3, all while maintaining
production levels.

Although total fertilizer and water usage quantities remained similar across cases,
application strategies varied significantly. This difference arises as the RL agent strategically
weighs the benefits, such as corn yield, against costs, including resource consumption and
penalties for nitrate leaching and N2O emissions, aiming to maximize overall rewards.

Figures 6 and 7 provide detailed insights into fertilization and irrigation strategies
based on optimal policies from the three scenarios. Notably, fertilizer and water applications
were predominantly concentrated in August and September, critical growth months for
corn. Analysis of weather data from 2012 indicates approximately 25% less precipitation
during these months compared to preceding years, accompanied by higher-than-average
temperatures [41], emphasizing an urgent need for effective irrigation.

In Case 1, this strategy involves high water inputs that support relatively high yields,
collectively contributing to an increased total reward. However, the greater water appli-
cation, combined with fertilizer use, creates conditions conducive to elevated microbial
activity and denitrification in wetter soils, thereby significantly enhancing N2O emissions.
Consequently, despite the high yield and reward, this approach leads to substantially
increased N2O emissions. In Case 2, the agent strategically manages water and fertilizer
applications to minimize N2O emissions. This optimization involves carefully adjusting
the timing and frequency of these inputs to avoid creating favorable conditions for emis-
sions. However, this emission-mitigation strategy leads to reduced nitrogen availability,
subsequently lowering the crop yield compared to Case 1. In Case 3, fertilizer inputs are
increased relative to Cases 1 and 2 but are carefully timed and synchronized with crop
demand and soil conditions. This approach effectively balances yield improvement with
environmental concerns, achieving higher yields while maintaining moderate levels of
both N2O emissions and nitrate leaching.
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Figure 6. Fertilization strategies across three cases.

Figure 7. Irrigation strategies across three cases.

Those align with findings by Weitz et al. [42], which emphasize that soil moisture
significantly influences N2O emissions, noting the highest post-fertilization emissions occur
in moist soils, with drier soils only experiencing increased emissions following rainfall.
The observed dynamics between N2O emissions and nitrate leaching reflect their different
underlying mechanisms: while N2O emissions are strongly influenced by soil moisture,
fertilizer timing, and availability of labile nitrogen, nitrate leaching is mainly driven by
excess nitrogen and water movement through the soil profile. Thus, jointly considering
both environmental impacts encourages the agent to find a balanced management strategy
that does not simply minimize one at the expense of the other. Instead, the RL agent learns
to apply inputs at times that maximize crop uptake and minimize losses to the environment,
enhancing input-use efficiency.
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4.2. Temperature Rising

Significant shifts in global climate patterns have been marked by a rise in air tem-
perature [43], primarily attributed to GHG emissions resulting from human activities.
According to historical data from NASA, there has been a consistent increase in average
temperatures since 1880. This trend of global warming has become more pronounced in
recent years, with temperatures rising by 0.94 degrees Celsius in the past 60 years [44].

In this study, we use the year 2012 as the baseline and augment monthly maximum
and minimum temperatures by up to 3 degrees Celsius using WGEN to generate random
weather. In contrast to our previous investigation [15], where the temperature pattern was
preserved, the randomly generated weather in this study does not replicate the identical
patterns observed in 2012, introducing weather uncertainty through temperature variations.
Notably, while rainfall is also randomly generated via WGEN, correspondingly, the monthly
total precipitation remains the same as observed in 2012. Furthermore, we integrate the
PDL model developed in Section 3.1 to assess N2O emissions, considering data uncertainty
from measurements in the testing fields.

We examine temperature increases of 0.5, 1, 1.5, 2, 2.5, and 3 degrees Celsius. Addi-
tionally, we include a scenario with no temperature increase but random weather. Two
types of policies are implemented: the “fixed policy,” derived from actual weather data of
2012, which considers both nitrate leaching and N2O emission as discussed in Case 3 in the
previous subsection, and the “optimal policies,” specifically learned at each temperature in-
crease. Following policy learning, 300 realizations are conducted to assess the uncertainties
associated with agriculture outputs and management. This approach also allows for an
exploration of policy adaptability to climate variability.

To enhance the training efficiency of the agent in learning optimal policies, we leverage
a transfer learning technique–fine-tuning. The evaluation Q network associated with the
fixed policy serves as a pre-trained model, acting as the starting point for training opti-
mal policies or updating the evaluation Q network at each specific temperature increase.
The adoption of fine-tuning yields a significant reduction in training time compared to con-
ventional methods that start with a random policy. Figure 8 represents the training process
when the average temperature increases by 3 degrees Celsius amid weather uncertainty.

Figure 8. Training process when the average temperature increases by 3 degrees Celsius.

Figure 9 depicts agricultural outcomes, including corn yields and total rewards, along
with 95% PIs for the fixed and optimal policies. The data shows a consistent decline in
average rewards and yields with increasing temperature, underscoring the adverse effects
of rising temperatures on agricultural production. Nevertheless, both fixed and optimal
policies exhibit adaptive efforts to sustain the production level, with optimal policies
demonstrating less uncertainties. Moreover, optimal policies consistently outperform
the fixed policy, notably demonstrating higher average total rewards. This suggests the
superior effectiveness of optimal policies in adapting to temperature variations.
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Figure 9. Rewards and corn yields with 95% PI from different policies when monthly temperature
increases. The figure also includes the range of actual corn yield data.

In Figure 10, it is evident that different agricultural policies lead to varying manage-
ment practices, affecting N fertilization and irrigation strategies. Comparatively, the fixed
policy results in generally higher N and water inputs than optimal policies. On average,
the fixed policy entails 149% higher N usage and 341% higher water usage than optimal
policies. Consequently, optimal policies achieve significantly higher rewards, although the
resulting yields are slightly higher than the fixed policy. These large differences are be-
cause the optimal policies are learned under scenarios of climate variability, including
temperature and precipitation changes, while the fixed policy is based on normal weather
conditions. The RL agent, trained with climate variability and stochastic weather using
WGEN, learns to apply resources more selectively, optimizing input timing and quantity
in response to more challenging and uncertain conditions. In contrast, the fixed policy
is tuned to a single, average climate scenario, which can result in less efficient resource
allocation when applied under variable weather.

Figure 10. N and water inputs with 95% PI from different policies when monthly temperature increases.

Interestingly, optimal policies exhibit a substantial reduction in nitrate leaching com-
pared to the fixed policy, but they result in higher N2O emissions, as illustrated in Figure 11.
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This unexpected outcome contradicts our initial expectations and can be partially explained
by the reward function defined in Equation (7). In the pursuit of maximizing the total
reward, the agent seeks a delicate balance between gains, such as corn yield, and penalties,
encompassing fertilizer and water usage, nitrate leaching, and N2O emission.

Figure 11. Nitrate leaching and N2O emission with 95% PI from different policies when Monthly
temperature increases.

The optimization of fertilization and irrigation management strategies using the DQN
method focuses on maximizing the total reward, which serves as the objective function. This
reward function, defined in Equation (7), is crafted to strike a balance between enhancing
crop yields and reducing operational costs and environmental impacts, including water
usage, fertilizer application, nitrate leaching, and N2O emissions. A blending approach is
employed, involving a linear combination of multiple objectives with assigned weights.

It is evident that both optimal and fixed policies demonstrate commendable perfor-
mance in controlling N2O emissions, although optimal policies result in slightly higher
average N2O emissions (approximately 0.1 kg/ha) than the fixed policy. Notably, optimal
policies are tailored to specific climate variations and outperform the fixed policy in maxi-
mizing the total reward. However, they do so without prioritizing emission minimization;
instead, they focus more on optimizing nitrogen and water usage and minimizing nitrate
leaching. This approach yields a higher reward according to the defined objective function
despite potentially allowing for slightly increased N2O emissions. Further discussions and
potential alternative approaches are considered in the conclusions section.

4.3. Precipitation Reducing

We also investigate the impact of reduced rainfall on fertilization and irrigation man-
agement, as well as agricultural outcomes. After analyzing historical rainfall data dating
back to 1950, we identified no consistent trend in annual rainfall. In our study, we base our
simulations on the actual weather conditions from 2012 but make adjustments by decreasing
the monthly average rainfall by 20%, 40%, 60%, and 80%, respectively, throughout the year
while keeping the monthly maximum and minimum temperatures consistent, mirroring
those of 2012. It is important to note that scenarios involving increased precipitation levels
that may result in flood-related crop damage are not considered, as such situations fall
beyond the forecasting capabilities of DSSAT. Figure 12 depicts the training process when
average precipitation decreases by 80% under similar conditions of weather uncertainty.
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Figure 12. Training process when average precipitation decreases by 80%.

Aligned with our findings in the study of temperature variability, Figure 13 illustrates
that optimal policies also exhibit superior performance compared to the fixed policy in
scenarios of reduced precipitation. Optimal policies result in larger harvests and rewards,
particularly under more severe conditions, such as an 80% reduction in precipitation,
representing drought events. In these instances, optimal policies achieve an average yield
increase of 120% and demonstrate enhanced efficiency.

Figure 13. Reward and yield with 95% PI from different policies when monthly precipitation reduces.

Figure 14 provides insights into the factors contributing to this outcome by comparing
N and water usage between the fixed and optimal policies. The fixed policy exhibits
limited responsiveness to precipitation reduction, maintaining constant N and water usage.
Although N inputs remain relatively stable, optimal policies display sensitivity to reduced
rainfall by adjusting water input accordingly. In the case of a severe drought event with
an 80% short of rainfall, the average water input increases by 300% to sustain the same
corn yield. In response to precipitation reduction, optimal policies demonstrate greater
adaptability to climate variability.



AgriEngineering 2025, 7, 252 22 of 27

Figure 14. N and water input with 95% PI from different policies when monthly precipitation reduces.

Figure 15 presents a comparison of nitrate leaching and N2O emissions resulting from
different management policies under scenarios of reduced monthly precipitation. Under
fixed policy management, both nitrate leaching and N2O emissions remain relatively stable,
displaying limited sensitivity to decreasing rainfall. Conversely, optimal policies exhibit
notable adaptability to precipitation reduction. The nitrate leaching under optimal policies
remains consistently low, effectively minimized even when rainfall significantly decreases.
However, similar to the scenario of rising temperatures, optimal policies are associated
with a slight increase in N2O emissions compared to the fixed policy. Notably, when
precipitation is reduced by up to 60%, optimal policies produce N2O emissions comparable
to those under fixed management, and outperform the fixed policy when precipitation is
reduced by up to 80%. Although emissions rise moderately in most scenarios, this increase
is relatively small compared to the advantages gained in crop yield and resource efficiency,
indicating a balanced management strategy that prioritizes maintaining high productivity
without excessively compromising environmental sustainability.

Figure 15. Nitrate leaching and N2O emission with 95% PI from different policies when monthly
precipitation reduces.
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It should be noted that the RL agent’s decisions are strictly driven by the reward
function, which does not explicitly include variables for soil or crop health. Therefore,
unless such factors are incorporated into the reward structure or observation set, the agent
does not directly consider them in its management strategies.

4.4. Toward Real-World Deployment

The practical implications of our RL-based agricultural management strategies are
significant for policymakers and farmers adapting to increasing climate variability and
environmental constraints. While our RL framework demonstrates clear advantages in
simulation, particularly in optimizing trade-offs between yield, resource efficiency, and en-
vironmental impact, real-world implementation requires addressing additional challenges.
Beyond weather-related uncertainties, practical deployment must account for soil hetero-
geneity, economic constraints, and technological barriers. To bridge this gap, user-friendly
decision support systems integrating RL-generated recommendations will be essential.
Coupled with local sensor networks and real-time weather data, such systems could pro-
vide adaptive guidance, enabling farmers to dynamically adjust fertilization and irrigation
in response to changing conditions. Moreover, although the proposed RL framework
integrating RNN and POMDP can be computationally intensive, training the RL agent
and fitting the probabilistic N2O emission models may be performed offline, using high-
performance computing resources in a research or institutional setting. Once optimal or
robust management policies are learned, deploying them in the field requires minimal
computational power, except for occasional policy updates based on incoming sensor data.

Furthermore, our study has direct relevance to the United Nations Sustainable De-
velopment Goals (SDG), particularly SDG 2 (Zero Hunger) [45] and SDG 13 (Climate
Action) [46]. By explicitly optimizing for crop yield while minimizing fertilizer use and
greenhouse gas emissions, our work supports the goal of ensuring food security and pro-
moting sustainable agriculture. The explicit inclusion of N2O emissions in the reward
function addresses the urgent need for climate mitigation in agriculture, advancing efforts
toward SDG 13. More broadly, integrating AI into agricultural management enables the
development of resilient, adaptive strategies that can help farming communities cope with
climate-related risks while safeguarding both productivity and the environment.

5. Conclusions, Limitations, and Future Works
Addressing global hunger and lessening environmental consequences requires a care-

ful balance between maximizing crop yield and limiting GHG emissions from agricultural
activities. This study marks the first attempt to integrate considerations of N2O emissions
into the optimization of agricultural management, with a particular focus on adapting to
climate variability. Using a model-free RL method, specifically DQN with RNN-based
Q networks, our research aims to train intelligent agents that learn optimal management
strategies or policies to efficiently handle N fertilization and irrigation, ultimately reducing
N2O emissions, minimizing nitrate leaching, and maximizing crop yields.

In this study, we account for two significant sources of uncertainty. First, a PDL model
is developed to estimate N2O emissions throughout the crop growth phase. This model,
which adopts the MaxLike approach to address data uncertainty, enhances the capabilities
of the deterministic model. The incorporation of this probabilistic element contributes
to a more comprehensive and insightful prediction framework. Secondly, to introduce
variability in weather conditions, a stochastic weather generator, WGEN, is integrated into
the crop simulator (Gym-DSSAT). WGEN generates random weather scenarios based on
actual weather data, further enriching the study’s exploration of the agent’s resilience to
climate change.
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The results indicate that, by penalizing N2O emissions in the reward function,
the agent can successfully balance crop yield, N and water usage, nitrate leaching, and N2O
emissions, providing optimal policies. Our research extends the application of the de-
veloped framework to assess the impact of climate variability on agricultural results and
practices. Specifically, we focus on scenarios involving elevated temperatures and limited
rainfall. The findings reveal that the previously established policy is resilient to variations
in temperature and mild changes in precipitation, but it faces challenges under severe
conditions, such as extremely substantial reductions in rainfall or droughts. In contrast,
the optimal policies learned based on specific weather conditions are more adaptive, partic-
ularly in light of extreme climatic events.

The simulations in this study use exclusively daily N2O emission data from 2012–2017
(excluding 2015) collected at the KBS-LTER site. Feature selection for the predictive mod-
els estimating N2O emissions was based on observable state variables in the simulator
(i.e., gym-DSSAT), which may have omitted important predictors, potentially limiting
model performance and generalization. Notably, the testing field received a single high-N
fertilization event (170 kg N/ha), contrasting with the agent’s learned strategy of multiple,
smaller applications. To improve future simulations, we plan to compile a more extensive
historical dataset of daily GHG emissions (if available) under diverse N input scenarios,
tailored to relevant agricultural regions. The incorporation of this broader dataset, encom-
passing soil-derived GHGs like N2O, NOx, and others, will enhance the representativeness,
accuracy, and applicability of our results.

In this research, we tackle N2O emission by introducing an additional term in the
reward function. The results depict that the agent may prioritize maximizing crop yield at
the potential expense of minimizing the N2O emission in order to achieve the highest total
reward. As we look ahead, we plan to explore Multi-Objective Reinforcement Learning
(MORL) as a potential solution that can potentially enable the simultaneous optimization
of multiple conflicting objectives [47], such as maximizing crop yield while minimizing
N2O emissions. By employing MORL, we will create a more nuanced reward structure that
better reflects the complexity of agricultural decision-making, ensuring that environmental
considerations are weighed alongside economic ones.

The RL framework developed in this study is designed for broad generalization
across agricultural environments, without being constrained by specific locations, soil
types, or weather patterns. By leveraging the configurable Gym-DSSAT simulator and
incorporating a stochastic weather generator, the RL agent is exposed to a diverse range
of soil properties, crop types, and randomized climate scenarios during training. This
approach promotes robust and adaptable policies that perform well under novel conditions,
avoiding overfitting to a single dataset. Furthermore, the framework explicitly accounts
for real-world uncertainties, such as weather variability and N2O emission prediction
errors, by integrating probabilistic deep learning models. These models provide reliable
uncertainty quantification, further enhancing the framework’s generalization capability to
unseen environments.

Beyond the RL-based approach used in this work, alternative methods such as ex-
pected utility maximization [48] and robust optimization [49] could also be explored for
agricultural decision-making under climate variability. These methods offer different ways
to handle risk and uncertainty, and may be valuable for designing resilient management
strategies. Expected-utility models assume known probabilities and build risk attitudes
into the utility function, making them easy to solve but unable to adapt on the fly [48].
Robust optimization drops probabilities, guarding against the worst case within a set
uncertainty region—safe but often overly conservative [50]. RL instead learns through
interaction, handling nonlinear dynamics without rigid distributional assumptions, yet it
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needs lots of data and careful reward design [26]. While not applied in this study, future
research could compare these approaches with RL to further strengthen robust agricultural
policy development.

Another alternative under consideration involves leveraging formal logic language to
express the N2O budget as a specification. This specification can then be transformed into a
finite state automaton and seamlessly integrated into the RL framework [18]. By adopting
this approach, the N2O budget can be enforced through model-checking techniques. These
potential approaches aim to enhance the agent’s decision-making capabilities regarding
crop yield and N2O emission in a more nuanced and optimized manner.

Furthermore, our future endeavors include gathering comprehensive cost data for the
relevant year, encompassing expenses such as fertilizer, water, machinery, labor, and other
operational costs. Additionally, we plan to integrate economic elements such as agricul-
tural subsidies offered by the government and possible inflation in the upcoming years.
Incorporating these financial factors into our model will enable it to more accurately reflect
farmers’ net income. This enhancement will significantly elevate the contribution and
impact of our model, offering a more holistic understanding of the economic implications
of the optimized agricultural strategies proposed.
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