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Abstract: In satellite remote sensing, mixed pixels commonly arise in medium- and low-
resolution imagery, where surface reflectance is a combination of various land cover types.
The widely adopted linear mixing model enables the decomposition of mixed pixels into
constituent endmembers, effectively bridging spectral resolution gaps by retrieving the
spectral properties of individual land cover types. This study introduces a method to
enhance multispectral surface reflectance data by reconstructing additional spectral in-
formation, particularly in the visible spectral range, using the TROPOMI BRDF product
generated by the Generalized Retrieval of Atmosphere and Surface Properties (GRASP)
algorithm. Employing non-negative matrix factorization (NMF), the approach extracts
spectral basis vectors from reference spectral libraries and reconstructs key spectral features
using a limited number of wavelength bands. The comprehensive test results show that
this method is particularly effective in supplementing surface reflectance information for
specific wavelengths where gas absorption is strong or atmospheric correction errors are
significant, demonstrating its applicability not only within the 400–800 nm range but also
across the broader spectral range of 400–2400 nm. While not a substitute for hyperspectral
observations, this approach provides a cost-effective means to address spectral resolution
gaps in multispectral datasets, facilitating improved surface characterization and environ-
mental monitoring. Future research will focus on refining spectral libraries, improving
reconstruction accuracy, and expanding the spectral range to enhance the applicability and
robustness of the method for diverse remote sensing applications.

Keywords: surface reflectance reconstruction; non-negative matrix factorization; bidirectional
reflectance distribution function; isotropic coefficient; GRASP; TROPOMI; linear mixing

1. Introduction
Satellite remote sensing is essential for monitoring Earth’s surface, providing critical

data for applications such as land cover classification [1], agricultural assessment [2], and
environmental monitoring [3]. Multispectral sensors like MODIS (Moderate Resolution
Imaging Spectroradiometer) [4], Landsat [5], PARASOL (Polarization and Anisotropy
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of Reflectances for Atmospheric Science coupled with Observations from a Lidar) [6],
and ABI (Advanced Baseline Imager) [7] offer extensive spatial and temporal coverage.
However, their limited spectral resolution restricts the ability to capture fine spectral details
necessary for precise material identification and analysis. Hyperspectral data, with their
continuous narrow spectral bands, address these limitations but are associated with a high
cost due to the complexity of hyperspectral sensors and the computational requirements
for data processing. As a complementary strategy, spectral reconstruction aims to enhance
multispectral data by estimating hyperspectral-like surface reflectance, focusing on specific
spectral regions where traditional data are insufficient, such as wavelength bands with
strong gas absorption or relatively high atmospheric correction errors [8–11].

This study investigates the potential of multispectral surface reflectance reconstruction
as a supplementary approach, emphasizing its capability to fill gaps in spectral reflectance
information rather than replace hyperspectral observations. By leveraging advanced al-
gorithms, including non-negative matrix factorization (NMF), spectral resolution can be
enhanced, enabling more effective utilization of existing multispectral archives and sup-
porting applications that require detailed surface characterization. This method provides an
opportunity to address critical limitations in multispectral data, particularly in atmospheric
correction and reflectance estimation for challenging bands, while recognizing the distinct
advantages of hyperspectral missions.

Deep learning approaches, such as hyperspectral convolutional neural networks
(HSCNN) and hybrid convolutional neural network (CNN)–transformer models, have
demonstrated significant potential in improving spectral reconstruction by leveraging large
datasets and advanced neural architectures [12–14]. For instance, a high-resolution network
(HRNET) achieved superior performance in reconstructing hyperspectral images from
RGB inputs for agricultural applications, providing cost-effective and efficient solutions for
quality assessment [12]. Similarly, CTBNet, a CNN–transformer combined block model,
improved reconstruction in thermal infrared imaging by simultaneously capturing spatial
and spectral features, showcasing robustness across diverse conditions [15]. Furthermore,
adaptive and optimization-based methods, such as adaptive Wiener estimation [16] and
modified particle swarm optimization [17], have been proposed to refine spectral reconstruc-
tion accuracy. These methods adaptively select training samples or optimize illuminants
to achieve higher fidelity in reconstructed spectra. Traditional approaches like L1-norm
penalization have also been enhanced to ensure generalizability across unseen textures and
materials, addressing key limitations of earlier methods [18]. However, challenges such
as spectral accuracy, error propagation, and generalization to diverse conditions remain
central to ongoing research [19].

In satellite remote sensing, medium- and low-resolution cloud-free pixels often repre-
sent mixed pixels due to the sensor’s spatial resolution, particularly over heterogeneous
surfaces [20]. A single pixel in these measurements typically covers a relatively large
area, leading to a combined surface reflectance signal from multiple land cover types
present within that pixel. These land cover types may include vegetations, bare soil, rocks,
rangeland, water bodies, ice/snow, and man-made structures, depending on the specific
landscape composition and pixel size. Over heterogeneous surfaces, this mixing effect
becomes more pronounced, as the observed reflectance at the sensor level represents a
weighted sum of the reflectance contribution from these different surfaces rather than pure
measurements of a single land cover type [20–24]. These mixed pixels are formed through
either linear or nonlinear mixing of spectral signatures from different materials. Among
these, the linear mixing model is widely adopted and recognized due to its simplicity and
effectiveness in many real-world applications. This model assumes that the reflectance
observed for a pixel is a weighted linear combination of the reflectance of its non-negative
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constituent endmembers, where the weights represent the fractional abundance of each
endmember within the pixel [25,26]. Given the linear mixing assumption, the spectral
unmixing process can be employed to decompose the surface reflectance of mixed pixels,
extracting endmember vectors that represent the spectral characteristics of individual land
cover types [20,27].

The linear mixing model has proven particularly effective when the mixing scale
is macroscopic, as it assumes that the incident light interacts with only one material
within a pixel and that the observed spectrum results from the spatial integration of the
individual endmembers [28]. Although nonlinear mixing models may better represent
scenarios with complex light–material interactions (e.g., intimate mixing or multilayered
scenes) [29,30], the linear model remains the foundation for numerous hyperspectral
unmixing methods [21,31,32]. By using this approach, it is possible to retrieve the spectral
properties of land cover types within mixed pixels, bridging spectral resolution gaps in
satellite imagery.

NMF, as a matrix decomposition technique [33,34], is particularly suited for spectral
data analysis due to its non-negative constraint, which ensures physically meaningful
reflectance values. Unlike traditional principal component analysis (PCA) [35–39], which
relies on orthogonal linear transformations and can produce components with negative
values, NMF enforces non-negativity constraints. This property is particularly important
in applications like spectral analysis [40], image decomposition [30], and text mining [41],
where the data inherently lacks negative values. The non-negativity constraint allows
NMF to generate parts-based representations, making it more interpretable, as it approx-
imates data using additive combinations of basis vectors (or basis components) like the
endmember vectors we mentioned above. While PCA tends to distribute information
across all components to maximize variance, NMF often finds sparse representations,
where each data point is approximated by a small subset of components [42]. This sparsity
enhances interpretability and feature selection, making NMF particularly effective for
identifying underlying structures in high-dimensional data such as the spectral unmixing
for hyperspectral imaging [21,31,32,43].

Additionally, NMF’s flexibility allows it to be adapted with constraints and regu-
larizations to further enhance its performance in domain-specific applications. Various
algorithms have been developed to solve NMF problems with different constraints, includ-
ing but not limited to the multiplicative update rule [33,44], projected gradient methods
for NMF (PGM-NMF) [45], alternating non-negative least squares (ANLS) [46,47], block
principal pivoting/active set method (BPAS-NMF) [48,49], hierarchical alternating least
squares (HALS) [50], sparse NMF [51,52], Bayesian NMF [53], Kernel NMF [54,55], Semi-
supervised NMF [56], robust Collaborative NMF (Co-NMF) [57], and group robust NMF for
linear mixing model (G-rNMF) [29]. These algorithms are widely applied across different
domains, each tailored to specific needs [58,59].

In this study, we utilize the 10 km GRASP TROPOMI bidirectional reflectance dis-
tribution function (BRDF) product and USGS/ASTER spectral libraries to reconstruct
hyperspectral-like BRDF data in the visible spectrum. By applying NMF, we derive basis
vectors from spectral libraries and reconstruct wavelength-dependent isotropic coefficients
using limited spectral bands. The objective is not to substitute hyperspectral sensors but to
provide a cost-effective means to enhance spectral reflectance information in critical regions,
improving the accuracy of atmospheric composition retrievals, atmospheric correction, and
surface characterization.
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2. Data
2.1. GRASP TROPOMI BRDF Product

The GRASP TROPOMI v1.0 BRDF product, publicly accessible via GRASP-OPEN with
https://www.grasp-open.com/products/tropomi-data-release/ (accessed on 12 March 2025),
is derived using the generalized retrieval of atmosphere and surface properties (GRASP)
algorithm [6,60–62], leveraging hyperspectral data from the tropospheric monitoring instru-
ment (TROPOMI) instrument aboard the Sentinel-5 Precursor (S5P) satellite [63–66]. This
product provides detailed spectral BRDF information of the earth’s surface, including both
the directional hemispherical reflectance (black sky albedo) and isotropic bihemispherical
reflectance (white sky albedo). Derived from TROPOMI’s extensive spectral range and high-
resolution measurements, the product covers ten wavelengths, ranging from ultraviolet (UV)
to shortwave infrared (SWIR), capturing essential surface reflectance properties.

Table 1 presents the TROPOMI level 1B (L1B) data along with supplementary datasets
used in GRASP processing. The GRASP TROPOMI retrieval was performed simultaneously
across all selected spectral bands, with TROPOMI radiances resampled using an equidistant
cylindrical projection and the World Geodetic System 1984 (WGS84) co-ordinate system.
This approach ensures a consistent spatial pixel resolution of 0.09◦, closely matching the
resolution in the SWIR range. The wind speed values were derived from the collocated S5P
level 2 nitrogen dioxide (NO2) product, with the eastward and northward horizontal com-
ponents at a 10 m height originally sourced from the European Centre for Medium-Range
Weather Forecasts (ECMWF) data. Additionally, cloud filtering in GRASP TROPOMI pro-
cessing utilizes the S5P NPP-VIIRS (National Polar-Orbiting Partnership, Visible Infrared
Imaging Radiometer Suite) cloud dataset, which has an approximate spatial resolution of
500 m [63,64].

Table 1. TROPOMI observations along with supplementary data utilized for GRASP processing [63].

Parameter Value

Wavelength (nm) 340, 367, 380, 416, 440, 494, 670, 740, 772, 2313
L1B spatial sampling (km) 5.5 × 3.5 (340–772 nm), 5.5 × 7.0 only for 2313 nm
Spectral resolution (nm) 1.0
Spatial resolution (◦) 0.09
Auxiliary information ECMWF’s wind speed information
Cloud masking S5P NPP-VIIRS cloud mask

The BRDF product, delivered at an approximate spatial resolution of 10 km, facilitates
the analysis of surface properties across diverse land cover types. In addition to the BRDF
parameters, it includes auxiliary data such as the normalized difference vegetation index
(NDVI), providing a comprehensive characterization of surface reflectance. Users can
access the data via NetCDF-4 (network common data form) files, which also include quality
indices to filter high-quality retrievals, ensuring accurate application across a wide range
of remote sensing studies.

The Ross-Li kernel-driven BRDF model for land surface reflectance in GRASP
TROPOMI v1.0 product is expressed as

ρs(θ0, θv, ϕ, λ) = kiso(λ)
[
1 + kgeom fgeom(θ0, θv, ϕ) + kvol fvol(θ0, θv, ϕ)

]
, (1)

where fgeom and fvol represent the geometric-optical kernel and volumetric surface scatter-
ing kernel, respectively, as functions of the sun zenith angle (θ0), viewing zenith angle (θv),
and relative azimuth angle (ϕ). Here, kiso(λ) is the wavelength-dependent isotropic coeffi-
cient, while kgeom and kvol are the wavelength-independent normalized coefficients [67].

https://www.grasp-open.com/products/tropomi-data-release/
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Based on Equation (1), the NDVI is typically derived from the ratio of reflectance
values in the near-infrared (NIR) and red spectral bands [68]:

NDVI =
ρNIR

s − ρred
s

ρNIR
s + ρred

s
=

kNIR
iso − kred

iso

kNIR
iso + kred

iso
, (2)

where ρNIR
s and ρred

s denote the surface reflectance for their respective TROPOMI bands
while kNIR

iso and kred
iso represent the corresponding BRDF’s isotropic coefficients. Similarly,

the enhanced vegetation index (EVI) can be further computed as:

EVI = G
ρNIR

s − ρred
s

ρNIR
s + C1ρred

s − C2ρblue
s + L

= G
kNIR

iso − kred
iso

kNIR
iso + C1kred

iso − C2kblue
iso + L′ , (3)

where:
L
′
= L/

[
1 + kgeom fgeom(θ0, θv, ϕ) + kvol fvol(θ0, θv, ϕ)

]
. (4)

Here, ρblue
s and kblue

iso correspond to the surface reflectance and isotropic coefficient at the
blue spectral band, respectively. The parameter L represents the canopy background
adjustment factor, which accounts for the nonlinear and differential transmission of NIR
and red radiation through the vegetation canopy. The coefficients C1 and C2 serve as
the aerosol resistance terms, utilizing the blue spectral band to mitigate aerosol-induced
distortions in the red band. The EVI algorithm usually employs the following parameter
values: L = 1, C1 = 6, C2 = 7.5, and a gain factor G = 2.5 [69,70].

2.2. USGS/ASTER Spectral Libraries

The United States Geological Survey (USGS) Spectral Library contains thousands of
spectra obtained through laboratory, field, and airborne measurements using various optical
geometries. Laboratory measurements employ methods such as the biconical reflectance
factor (BCRF) or bihemispherical reflectance (BHR) for materials like minerals, vegetation,
and man-made items. Field measurements utilize hemispherical-conical reflectance factors
(HCRF) to capture spectra of rocks, soils, and vegetation using airborne instruments [9,71].
The spectral ranges vary and depend on the spectrometer used, with some spectra omitting
regions affected by atmospheric water absorption.

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
Spectral Library, developed by National Aeronautics and Space Administration (NASA)’s
Jet Propulsion Laboratory (JPL), comprises over 2000 spectra of soils, rocks, vegetation,
minerals, water, snow, ice, and man-made materials, spanning a wide spectral range
from 0.4 to 14 µm [72,73]. Spectral measurements for meteorites and certain minerals
are conducted using BCRF geometry, while directional hemispherical reflectance (DHR)
is employed for other samples. These spectral libraries provide a robust reference for
analyzing and interpreting hyperspectral data across a variety of scientific domains.

3. Methods
3.1. Flowchart of Research Strategy

Figure 1 shows the general flowchart for surface reflectance reconstruction in this
study; the main steps include:

(1) Using the USGS/ASTER spectral libraries as reference data for spectral analysis, we
smooth and interpolate the surface reflectance dataset in the 400–800 nm range to encom-
pass the visible (VIS) spectrum and part of the NIR, with a resolution of 1 nm per step.
This interpolation process reduces noise, fills in missing values, and ensures a continuous
dataset, enabling the capture of more detailed and accurate spectral information.
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(2) Basis vectors (endmember vectors) are extracted using non-negative matrix factor-
ization (NMF) method, which is crucial for reducing dimensionality and finding
meaningful patterns in the spectral dataset.

(3) We select the wavelength-dependent isotropic parameters of land surface BRDF at
six VIS and NIR wavelength bands from the GRASP TROPOMI v1.0 product for
surface reflectance reconstruction. These wavelength bands are defined as:

λVIS = {λ4, λ5, λ6, λ7, λ8, λ9}, (5)

corresponding to 416, 440, 494, 670, 747, and 772 nm, respectively, from the GRASP
TROPOMI BRDF product.

(4) To quantitatively evaluate the effect of surface reflectance reconstruction, the selected
isotropic coefficient dataset is dynamically divided into two subsets during each
iteration of a loop. One subset,

∼
λVIS = λVIS − {λi}, (i = 4, · · · , 9), (6)

is used to calculate the mixing coefficient vector h for reconstructing the isotropic
parameters at λi. The other subset, containing λi, serves as a benchmark to validate
the reconstructed results by comparing absolute and relative errors.

(5) By iterating through these six VIS and NIR wavelength bands in the loop, the accuracy
of surface reflectance construction method can be systematically evaluated.
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The BRDF isotropic parameters for wavelengths below 400 nm and above 800 nm can
also be reconstructed using a similar surface reflectance reconstruction approach. However,
this study primarily focuses on the wavelength range of 400–800 nm. Future research will
aim to extend the spectral scope to include both UV and SWIR bands.

3.2. Extracted Basis Vectors

For a non-negative matrix V ∈ Rn×m, representing hyperspectral or multispectral
surface reflectance, NMF seek to decompose V into two non-negative matrices W ∈ Rn×k

and H ∈ Rk×m, satisfying the factorization:

V ≈ WH, (7)

where n is the number of wavelength bands, m is the number of spectra, and k is desired
rank with k ≪ min(n, m).

By minimizing the difference between V and WH, the conventional optimization for
factorizing W and H is expressed as [33]

min f (W, H) = ∥V − WH∥2
F

s.t.W ≥ 0, H ≥ 0
, (8)

where ∥ ∥2
F means the Frobenius norm and “s.t.” stands to “subject to”, indicating the

non-negativity constraints on all elements of W and H. Due to its nonsubtractive nature,
NMF often provides a more intuitive and interpretable decomposition compared to PCA,
especially in applications requiring non-negative basis vectors (column vectors of W).

Notably, NMF does not guarantee a unique solution for matrices W and H in Equation (8).
If a full-rank square matrix X (e.g., an orthogonal matrix) exists, V can be equivalently
expressed as:

V ≈ WXX−1H, (9)

with WX ≥ 0 and X−1H ≥ 0. As a result, various algorithms have been developed to solve
NMF stably, often incorporating additional constraints for specific applications, such as
spectral unmixing. Section 1 has summarized several representative algorithms with their
non-negativity constraints, including the BPAS-NMF method applied in this study [49].

Figure 2 illustrates the extracted basis vectors as a function of wavelength and scat-
terplot of reconstrued results with two different desired ranks (k = 4, 5) using the inter-
polated surface reflectance data from 400 nm to 800 nm with 1-nm step derived from the
USGS/ASTER spectral libraries. For k = 4, the mean absolute error (MAE) and mean
relative error (MRE) of hyperspectral reflectance reconstruction are approximately 0.0050
and 3.71%, respectively, whereas increasing k to 5 slightly reduces these errors to 0.0042 and
2.94%. By comprehensively considering the spectral shape and reconstruction performance
in the visible range, we selected k = 4 for surface reflectance reconstruction.
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3.3. Surface Reflectance Reconstruciton

Using the extracted non-negative matrix W, composed by a few basis column vectors,
any spectral vector r can be reconstructed as a linear combination of these basis vectors [35,74]:

r ≈ Wh, (10)

where the details are expressed as
rλ1

...
rλn

 =


w1,1 · · · w1,k

...
. . .

...
wn,1 · · · wn,k




h1
...

hk

. (11)

This can also be written as

rλi = ∑k
j=1 hj·wi,j, i = 1, · · · , n, (12)

where h is the mixing coefficient vector and rλi represents the surface reflectance at the
wavelength λi.

Once the basis matrix W is determined, the surface reflectance spectra can be recon-
structed if the mixing coefficient vector h is known. Based on Equations (10)–(12), we have

∼
r ≈

∼
W h, (13)

where 
rd1
...

rdl

 =


wd1,1 · · · wd1,k

...
. . .

...
wdl ,1 · · · wdl ,k




h1
...

hk

, (k ≤ l), (14)
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where
∼
r represents a subset of r,

∼
W is the corresponding subset of W with the same number

of columns, and d1, · · · , and dl denote a selected sequence of wavelength bands. The
mixing coefficients vector h can be approximately using a least-squares solution:

h ≈
∼
W

+∼
r , (15)

where
∼
W

+
is a generalized inverse of

∼
W. If k = l,

∼
W

+
=

∼
W

−1
.

After obtaining h, the isotropic coefficients spectral vector krec
iso is reconstructed as

krec
iso ≈ Wh, (16)

where krec
iso =

[
krec

iso(λ1), · · · , krec
iso(λn)

]T , and the superscript “rec” denote reconstructed
results and T means the transpose of a vector. Finally, the reconstructed BRDF ρrec

s at any
wavelength can be expressed as

ρrec
s (θ0, θv, φ, λi) = krec

iso(λi)
[
1 + kgeom fgeom(θ0, θv, φ) +

kvol fvol(θ0, θv, φ)], (i = 1, · · · , n).
(17)

The reconstructed isotropic coefficients and corresponding BRDF results will be discussed
the next section.

4. Results
4.1. Reconstructed Spatial Distribution and Error Histogram

This section analyzes the spatial distribution and reconstruction accuracy of the BRDF
isotropic coefficient at corresponding wavelengths using the monthly GRASP TROPOMI BRDF
over North America for August and March 2020, respectively. Figures 3–6 display the spatial
maps of the GRASP isotropic coefficient, reconstructed isotropic coefficient, and their corre-
sponding absolute and relative reconstruction errors at 416 nm and 772 nm. The reconstructions
at 416 nm are based on five other wavelength bands (440, 494, 670, 747, and 772 nm) while the
reconstruction at 772 nm is similarly based on five different wavelength bands (416, 440, 494,
670, and 747 nm). These figures demonstrate the performance of the reconstructed method in
capturing the spatial distribution of surface BRDF isotropic coefficients.

Figures 7 and 8 present histograms of absolute and relative errors for the six wave-
lengths during the same months, illustrating the statistical characteristics of reconstruction’s
accuracy. In this analysis, the isotropic coefficient reconstructions at the designated wave-
length band are derived using five other wavelength bands through NMF, ensuring that
the specified wavelength is excluded from the spectral reconstruction process. Table 2
shows that the reconstruction errors at 494 nm and 670 nm are notably higher compared to
other wavelengths, both in terms of absolute and relative errors. For example, the relative
error’s standard deviation at 494 nm in August 2020 reaches 123.35%, and at 670 nm, it
is 54.91%, emphasizing the critical importance of these wavelengths for accurate recon-
struction. These wavelengths capture key spectral features: 494 nm is associated with
chlorophyll absorption and water content in vegetation, while 670 nm highlights red chloro-
phyll absorption. Both are essential for characterizing vegetation and surface properties.
The exclusion of these wavelengths significantly increases reconstruction errors, thereby
degrading accuracy in surface reflectance modeling. Consequently, 494 nm and 670 nm
are indispensable for reliable surface reflectance reconstruction in this study, especially for
vegetation and surface property studies. This does not, however, diminish the importance
of other bands. Instead, it underscores the necessity of incorporating at least five bands
of valid information. Attempts to perform surface reflectance reconstruction using only



Remote Sens. 2025, 17, 1053 10 of 24

the first four bands (416, 440, 494, and 670 nm) or the last four bands (494, 670, 747, and
772 nm) still fall short of producing satisfactory reconstruction results.

Remote Sens. 2025, 17, x FOR PEER REVIEW 9 of 25 
 

 

where 𝒓 represents a subset of 𝒓, 𝑾෪ is the corresponding subset of 𝑾 with the same 
number of columns, and 𝑑ଵ, ⋯ , and 𝑑 denote a selected sequence of wavelength bands. 
The mixing coefficients vector 𝒉 can be approximately using a least-squares solution: 𝒉 ≈ 𝑾෪ା𝒓, (15)

where 𝑾෪ା is a generalized inverse of 𝑾෪. If 𝑘 = 𝑙, 𝑾෪ା = 𝑾෪ିଵ. 
After obtaining 𝒉, the isotropic coefficients spectral vector 𝒌𝐢𝐬𝐨𝐫𝐞𝐜 is reconstructed as 𝒌𝐢𝐬𝐨𝐫𝐞𝐜 ≈ 𝑾𝒉, (16)

where 𝒌𝐢𝐬𝐨𝐫𝐞𝐜 = ሾ𝑘୧ୱ୭୰ୣୡ(𝜆ଵ), ⋯ , 𝑘୧ୱ୭୰ୣୡ(𝜆)ሿ், and the superscript “rec” denote reconstructed re-
sults and 𝑇 means the transpose of a vector. Finally, the reconstructed BRDF 𝜌௦୰ୣୡ at any 
wavelength can be expressed as 𝜌௦୰ୣୡ(𝜃, 𝜃௩, 𝜑, 𝜆) = 𝑘୧ୱ୭୰ୣୡ(𝜆) ൣ1 + 𝑘ୣ୭୫𝑓ୣ୭୫(𝜃, 𝜃௩, 𝜑) +𝑘୴୭୪𝑓୴୭୪(𝜃, 𝜃௩, 𝜑)൧, (𝑖 = 1, ⋯ , 𝑛). 

(17)

The reconstructed isotropic coefficients and corresponding BRDF results will be discussed 
the next section. 

4. Results 
4.1. Reconstructed Spatial Distribution and Error Histogram 

This section analyzes the spatial distribution and reconstruction accuracy of the 
BRDF isotropic coefficient at corresponding wavelengths using the monthly GRASP TRO-
POMI BRDF over North America for August and March 2020, respectively. Figures 3–6 
display the spatial maps of the GRASP isotropic coefficient, reconstructed isotropic coef-
ficient, and their corresponding absolute and relative reconstruction errors at 416 nm and 
772 nm. The reconstructions at 416 nm are based on five other wavelength bands (440, 494, 
670, 747, and 772 nm) while the reconstruction at 772 nm is similarly based on five differ-
ent wavelength bands (416, 440, 494, 670, and 747 nm). These figures demonstrate the per-
formance of the reconstructed method in capturing the spatial distribution of surface 
BRDF isotropic coefficients. 

 
Figure 3. Spatial distributions of the GRASP BRDF isotropic coefficient (a), reconstructed isotropic
coefficient (b), reconstructed absolute error (c), and reconstructed relative error (d) at a wavelength of
416 nm over North America, based on the average monthly BRDF product for August 2020.

Remote Sens. 2025, 17, x FOR PEER REVIEW 10 of 25 
 

 

Figure 3. Spatial distributions of the GRASP BRDF isotropic coefficient (a), reconstructed isotropic 
coefficient (b), reconstructed absolute error (c), and reconstructed relative error (d) at a wavelength 
of 416 nm over North America, based on the average monthly BRDF product for August 2020. 

 

Figure 4. Similar to Figure 3 but showing the isotropic coefficient results at 772 nm, derived from 
the average monthly BRDF product for August 2020. (a) GRASP BRDF isotropic coefficient, (b) re-
constructed isotropic coefficient, (c) reconstructed absolute error, (d) reconstructed relative error. 

 

Figure 4. Similar to Figure 3 but showing the isotropic coefficient results at 772 nm, derived
from the average monthly BRDF product for August 2020. (a) GRASP BRDF isotropic coefficient,
(b) reconstructed isotropic coefficient, (c) reconstructed absolute error, (d) reconstructed relative error.



Remote Sens. 2025, 17, 1053 11 of 24

Remote Sens. 2025, 17, x FOR PEER REVIEW 10 of 25 
 

 

Figure 3. Spatial distributions of the GRASP BRDF isotropic coefficient (a), reconstructed isotropic 
coefficient (b), reconstructed absolute error (c), and reconstructed relative error (d) at a wavelength 
of 416 nm over North America, based on the average monthly BRDF product for August 2020. 

 

Figure 4. Similar to Figure 3 but showing the isotropic coefficient results at 772 nm, derived from 
the average monthly BRDF product for August 2020. (a) GRASP BRDF isotropic coefficient, (b) re-
constructed isotropic coefficient, (c) reconstructed absolute error, (d) reconstructed relative error. 

 
Figure 5. Similar to Figure 3 but presenting the isotropic coefficient results at 416 nm from the average
monthly BRDF product for March 2020. (a) GRASP BRDF isotropic coefficient, (b) reconstructed
isotropic coefficient, (c) reconstructed absolute error, (d) reconstructed relative error.

Remote Sens. 2025, 17, x FOR PEER REVIEW 11 of 25 
 

 

Figure 5. Similar to Figure 3 but presenting the isotropic coefficient results at 416 nm from the aver-
age monthly BRDF product for March 2020. (a) GRASP BRDF isotropic coefficient, (b) reconstructed 
isotropic coefficient, (c) reconstructed absolute error, (d) reconstructed relative error. 

 

Figure 6. Similar to Figure 3 but depicting the isotropic coefficient results at 772 nm, based on the 
average monthly BRDF product in March 2020. (a) GRASP BRDF isotropic coefficient, (b) recon-
structed isotropic coefficient, (c) reconstructed absolute error, (d) reconstructed relative error. 

Figures 7 and 8 present histograms of absolute and relative errors for the six wave-
lengths during the same months, illustrating the statistical characteristics of reconstruc-
tion’s accuracy. In this analysis, the isotropic coefficient reconstructions at the designated 
wavelength band are derived using five other wavelength bands through NMF, ensuring 
that the specified wavelength is excluded from the spectral reconstruction process. Table 
2 shows that the reconstruction errors at 494 nm and 670 nm are notably higher compared 
to other wavelengths, both in terms of absolute and relative errors. For example, the rela-
tive error’s standard deviation at 494 nm in August 2020 reaches 123.35%, and at 670 nm, 
it is 54.91%, emphasizing the critical importance of these wavelengths for accurate recon-
struction. These wavelengths capture key spectral features: 494 nm is associated with chlo-
rophyll absorption and water content in vegetation, while 670 nm highlights red chloro-
phyll absorption. Both are essential for characterizing vegetation and surface properties. 
The exclusion of these wavelengths significantly increases reconstruction errors, thereby 
degrading accuracy in surface reflectance modeling. Consequently, 494 nm and 670 nm 
are indispensable for reliable surface reflectance reconstruction in this study, especially 
for vegetation and surface property studies. This does not, however, diminish the im-
portance of other bands. Instead, it underscores the necessity of incorporating at least five 
bands of valid information. Attempts to perform surface reflectance reconstruction using 
only the first four bands (416, 440, 494, and 670 nm) or the last four bands (494, 670, 747, 
and 772 nm) still fall short of producing satisfactory reconstruction results. 

Figure 6. Similar to Figure 3 but depicting the isotropic coefficient results at 772 nm, based on the
average monthly BRDF product in March 2020. (a) GRASP BRDF isotropic coefficient, (b) reconstructed
isotropic coefficient, (c) reconstructed absolute error, (d) reconstructed relative error.



Remote Sens. 2025, 17, 1053 12 of 24
Remote Sens. 2025, 17, x FOR PEER REVIEW 12 of 25 
 

 

 

Figure 7. Histogram distribution of absolute errors and relative errors over North America using 
the BRDF isotropic coefficient data for August 2020. Panels (a–c,g–i) show reconstructed absolute 
error while panels (d–f,j–l) depict reconstructed relative error. 

 

Figure 8. Similar to Figure 7 but for the BRDF isotropic coefficient data from March 2020. (a–c,g–i) 
reconstructed absolute error, (d–f,j–l) reconstructed relative error from 416 nm to 772 nm. 

Figure 7. Histogram distribution of absolute errors and relative errors over North America using the
BRDF isotropic coefficient data for August 2020. Panels (a–c,g–i) show reconstructed absolute error
while panels (d–f,j–l) depict reconstructed relative error.

Remote Sens. 2025, 17, x FOR PEER REVIEW 12 of 25 
 

 

 

Figure 7. Histogram distribution of absolute errors and relative errors over North America using 
the BRDF isotropic coefficient data for August 2020. Panels (a–c,g–i) show reconstructed absolute 
error while panels (d–f,j–l) depict reconstructed relative error. 

 

Figure 8. Similar to Figure 7 but for the BRDF isotropic coefficient data from March 2020. (a–c,g–i) 
reconstructed absolute error, (d–f,j–l) reconstructed relative error from 416 nm to 772 nm. 
Figure 8. Similar to Figure 7 but for the BRDF isotropic coefficient data from March 2020. (a–c,g–i)
reconstructed absolute error, (d–f,j–l) reconstructed relative error from 416 nm to 772 nm.



Remote Sens. 2025, 17, 1053 13 of 24

Table 2. Mean and standard deviation (Std. Dev.) of reconstructed absolute error and relative errors
for the BRDF isotropic coefficients.

Data Date Wavelength Reconstructed Absolute Error Reconstructed Relative Error
Mean Std. Dev. Mean Std. Dev.

August
2020

416 nm −0.0080 0.0036 −16.62% 8.27%
440 nm 0.0083 0.0037 18.04% 9.65%
494 nm −0.0039 0.0492 −4.45% 123.35%
670 nm 0.0020 0.0273 16.39% 54.91%
747 nm 0.0001 0.0057 −0.20% 1.94%
772 nm −0.0002 0.0065 0.20% 1.96%

March
2020

416 nm −0.0065 0.0038 −10.22% 6.22%
440 nm 0.0067 0.0040 10.47% 6.85%
494 nm −0.0141 0.0385 −21.96% 38.17%
670 nm −0.0092 0.0321 −4.93% 24.05%
747 nm 0.0005 0.0042 0.33% 1.44%
772 nm −0.0007 0.0048 −0.38% 1.55%

4.2. Reconstructed Spectral Features in the 400–800 nm Range

Figure 9 shows the monthly average spatial distribution of the reconstructed BRDF
isotropic coefficient at 550 nm from January to December. The data from January to
November are derived from the monthly average BRDF products of the corresponding
months in 2020. For December, the monthly average BRDF product from December 2019
is used, as data for December 2020 are unavailable. These results derived using spectral
reconstruction based on five wavelength bands (440, 494, 670, 747, and 772 nm) demonstrate
the effectiveness of the NMF-based method across varying seasonal and spatial conditions.
Due to the stringent quality control of the GRASP BRDF data, including the exclusion of
pixels contaminated by snow, ice, and cloud, certain regions show missing data in different
months, leading to spatial gaps in the reconstructed maps.

The reconstructed spatial distribution at 550 nm effectively reflects seasonal changes in
isotropic coefficients across North America. Given that reflectance in the visible spectrum
typically decreases as chlorophyll content increases [75], lower isotropic coefficients are
observed during summer months (e.g., July–September) in vegetated areas, corresponding
to decreased reflectance from active vegetation. Conversely, higher coefficients are seen in
winter months (e.g., December–March), corresponding to reduced vegetation activity and
potential snow cover. To further investigate spectral characteristics, six valid locations with
consistent monthly data throughout the year are randomly selected for detailed analysis.
This ensures representative results across varying seasons, highlighting the robustness of
the reconstruction method.

Figure 10 illustrates the monthly spectral variations of the isotropic coefficient as a
function of wavelength (400–800 nm) for six selected locations along 35.48◦N, ranging from
west to east. Panels (a) through (f) provide insights into monthly and seasonal variations
across three key spectral regions: 550 nm (green band), 670 nm (red band), and the red-edge
region (670–760 nm). These regions are critical for understanding vegetation dynamics.
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Figure 9. Monthly average spatial distribution of the reconstructed BRDF isotropic coefficient at
550 nm from January to December. The rigorous quality control applied to the GRASP BRDF data,
which excludes pixels contaminated by snow, ice, and clouds, results in missing data for certain
regions during different months. This leads to spatial gaps in the reconstructed maps. Monthly
variations: (a) January, (b) February, (c) March, (d) April, (e) May, (f) June, (g) July, (h) August,
(i) September, (j) October, (k) November, (l) December.
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Figure 10. Monthly spectral variations of reconstructed BRDF isotropic coefficient as a function of
wavelength (400–800 nm), labeled from January to December, for six randomly selected locations with
relatively uniform spacing from west to east along 35.48◦N. The cross symbols represent the isotropic
coefficient at six wavelength bands from the GRASP BRDF product. (a) 120.10◦W, 35.48◦N; (b) 112.91◦W,
35.48◦N; (c) 105.45◦W, 35.48◦N; (d) 99.24◦W, 35.48◦N; (e) 90.88◦W, 35.48◦N; (f) 78.11◦W, 35.48◦N.
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At 550 nm, a prominent peak is observed in most panels, indicative of vegetation
reflectance. Reflectance around 550 nm is relatively low in summer (e.g., June to Septem-
ber) across most panels, reflecting the peak growing season and increased chlorophyll
content [75]. During fall and winter months (e.g., October to February), the reflectance
increases due to reduced chlorophyll concentration and vegetation senescence.

At 670 nm, strong seasonal variations are evident. Reflectance is lowest in summer
(e.g., June to August), corresponding to high chlorophyll absorption and active photo-
synthesis. In winter (e.g., December to February), reflectance increases due to reduced
chlorophyll activity, indicating dormant vegetation or sparse canopy cover.

In the red-edge region (670–760 nm), reflectance increases sharply from red to NIR
wavelengths, a phenomenon associated with vegetation’s cell structure and chlorophyll
absorption. During summer, the red edge shifts toward longer wavelengths (e.g., closer to
750 nm), indicating high vegetation activity. In winter, the red edge shifts toward shorter
wavelengths (e.g., around 700 nm), reflecting reduced vegetation activity. The red-edge
slope, steepest in summer, signifies healthy vegetation with a high leaf area index (LAI) [76].

These seasonal and monthly variations reveal critical insights into vegetation phenology,
including growth cycles, health, and stress detection. Patterns in these spectral regions can
be used to compute vegetation indices such as NDVI, EVI, green NDVI (GNDVI), and the
triangular vegetation index (TVI) for applications in agriculture, forestry, and environmental
monitoring [68,77–79]. Thus, analyzing the 550 nm, 670 nm, and red-edge region provides a
robust framework for understanding vegetation dynamics across temporal scales.

Figure 11 presents the spectral variations of reconstructed BRDF across different
observation geometries at a selected location (90.88◦W, 35.48◦N) for 12 months, assum-
ing 9:00 AM local time as an example. The BRDF is calculated using a combination of
five view zenith angles (θv = 0◦, 20◦, 40◦, 60◦, and 80◦) and four relative azimuth angles
(ϕ = 0◦, 60◦, 120◦, and 180◦), while the solar zenith angle (θ0) is predetermined based on
the selected date, time, and geographical coordinates. Observation geometries significantly
influence BRDF values. Higher view zenith angles (θv = 60◦, 80◦) result in greater BRDF
values, particularly in the near-infrared region. Relative azimuth angles (ϕ) modulate
the reflectance values, with backscattering generally yielding higher BRDF compared to
forward scattering.

4.3. Reconstructed Spectral Features in the 400–2400 nm Range

To further demonstrate the general applicability and robustness of this proposed
surface reflectance reconstruction method based on NMF, we incorporated BRDF data at
the 2313 nm wavelength, extending the reconstructed spectral range from 400–800 nm to
400–2400 nm. Since the GRASP TROPOMI BRDF product provides only a single band in
the SWIR (2313 nm), we do not evaluate the reconstruction accuracy of the BRDF isotropic
coefficient parameters in this broader spectral range as in the earlier sections. Instead, we
focus on showcasing the reconstructed spectral features.

Figure 12 illustrates the monthly spectral variations of the reconstructed BRDF
isotropic coefficients across the spectral range of 400–2400 nm for the same six randomly
selected locations listed in Figure 10. In the NIR (700–1400 nm), there is a sharp increase
in reflectance, consistent with vegetation scattering properties, followed by distinct wa-
ter absorption bands around 980 nm and 1200 nm [76,80]. In the SWIR spectral range
(1400–2400 nm), multiple absorption features are present, influenced by water content, soil
composition, and mineralogical characteristics [81–83]. The variation in depth and width
of these absorption features suggests that the isotropic coefficients are sensitive to changes
in biophysical and biochemical parameters, including leaf water content, surface moisture,
and mineral abundance.
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Figure 11. Spectral variations of reconstructed BRDF for different observation geometries obtained,
combining five viewing zenith angles (θv = 0◦, 20◦, 40◦, 60◦, and 80◦) and four relative azimuth
angles (ϕ = 0◦, 60◦, 120◦, and 180◦) at the selected location (90.88◦W, 35.48◦N). The analysis assumes
a 9:00 AM local time on the 15th of each month from January to December. The solar zenith angle
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varying observation geometries. Solid line represents the BRDF results calculated using Equation (17),
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krec

iso(λ) derived from surface reflectance reconstruction. The cross symbols represent the calculated
BRDF results at six wavelength bands, obtained using the corresponding coefficients from the GRASP
BRDF product. Monthly variations: (a) January, (b) February, (c) March, (d) April, (e) May, (f) June,
(g) July, (h) August, (i) September, (j) October, (k) November, (l) December.

Figure 13 plots the spectral variations of the reconstructed BRDF across the spectral
range of 400–2400 nm for different observation geometries. These results underline the
robustness of the reconstructed BRDF, emphasizing the importance of incorporating de-
tailed observation geometries and spectral characteristics for addressing spectral resolution
gaps of surface reflectance. Notably, the results demonstrate effectiveness not only within
the 400–800 nm but also across the broader spectral range of 400–2400 nm. The agree-
ment between the reconstructed results and GRASP-derived values (cross symbols) further
validates the effectiveness of the reconstruction approach.

To better interpret the spatial and spectral variations displayed in the figures above, it is
essential to consider land cover types, topography, and seasonal changes as key influencing
parameters. The reconstructed results, derived from the GRASP TROPOMI BRDF product,
provide approximate spectral BRDF information, which facilitates the analysis of surface
reflectance across diverse land cover types. However, to fully understand the spatial and
temporal variations in surface reflectance, it is crucial to compare them with reference
datasets, such as land cover classifications, digital elevation models (DEM), and seasonal
vegetation indices (e.g., NDVI and EVI).
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Figures 14 and 15 depict the monthly average spatial distributions of NDVI and
EVI across North America, derived from GRASP TROPOMI BRDF and the correspond-
ing spectral reconstructions. Both indices exhibit a clear seasonal cycle, with lower values
(blue regions) during winter months due to minimal vegetation activity and higher values
(red regions) in summer, reflecting peak vegetation growth. During the transition months
(e.g., April–May and September–October), vegetation indices gradually increase and decrease,
capturing seasonal greening and senescence. The highest NDVI and EVI values are observed
in the eastern U.S., central North America, and boreal forests of Canada, whereas arid and
semiarid regions, such as the southwestern U.S. and northern Mexico, consistently show
lower values. Compared to NDVI, EVI is more sensitive to variations in vegetation structure
and density, particularly in sparsely vegetated areas, due to its reduced sensitivity to soil
background and atmospheric effects [69,84]. These seasonal and spatial trends emphasize the
importance of incorporating vegetation indices as key comparison parameters when analyzing
BRDF variations, as they provide valuable insights into surface characteristics.
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5. Discussion
The reconstruction of hyperspectral-like surface reflectance from multispectral datasets

using NMF provides a complementary approach to address some challenges in remote
sensing applications. One of the primary advantages lies in its ability to enhance the spectral
reflectance information in specific bands, especially those impacted by strong atmospheric
absorption or high atmospheric correction errors. By utilizing advanced reconstruction
techniques, multispectral data with limited spectral resolution can be augmented to recover
additional spectral information, thereby filling critical gaps in data coverage and improving
surface feature differentiation [8,10,11,14,85,86].

It is essential to emphasize that this reconstruction approach is not intended to replace
hyperspectral missions. Instead, it provides a cost-effective means to leverage the extensive
spatial and temporal coverage offered by existing multispectral datasets, complementing
hyperspectral observations. While hyperspectral sensors provide unparalleled spectral detail
and accuracy, their high costs and computational demands limit their availability for large-
scale and long-term monitoring [87,88]. Reconstruction methods using NMF offer a scalable
alternative for augmenting multispectral data, particularly for applications requiring broader
temporal coverage or in regions where hyperspectral data are unavailable.

Despite these advantages, several challenges and limitations require attention to
ensure reliable application of spectral reconstruction. First, the quality of reconstruction
is highly dependent on the accuracy and representativeness of the spectral libraries and
prior knowledge. Fine spectral details that characterize hyperspectral data, such as subtle
variations in absorption features, may not be fully recoverable, especially for complex
surface compositions [11]. Refining spectral libraries and optimizing the extraction of
spectral basis vectors through NMF are essential to enhance reconstruction performance.
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Second, the generalizability of reconstruction models across diverse scenarios remains
a key limitation. While NMF and other machine-learning-based methods provide flexibility
in reconstructing spectral data, they may face difficulties when applied to heterogeneous
surface conditions or spectral mixtures. Further optimization of these models, particularly
through domain-specific constraints and adaptive algorithms, is crucial for expanding their
applicability to diverse surface and atmospheric conditions [10,13].

Another critical challenge is the potential for noise and error propagation during the
reconstruction process. Uncertainties or inaccuracies in the original multispectral data
can be amplified, affecting the fidelity of the reconstructed reflectance. Effective quality
control mechanisms, including the careful selection and preprocessing of high-quality
multispectral datasets, are necessary to minimize such errors and improve the robustness
of the results [8,9].

In short, the spectral reconstruction of land surface reflectance using NMF offers a promis-
ing avenue for augmenting spectral information in multispectral datasets. This approach is
particularly valuable for addressing limitations in certain spectral bands and for scenarios
where high-resolution hyperspectral observations are impractical or unavailable. Continued
advancements in spectral library refinement, modeling techniques, and data quality assur-
ance are expected to further enhance the reliability and applicability of surface reflectance
reconstruction methods, ensuring their role as a complementary tool in remote sensing.

6. Conclusions
This study presents an approach for enhancing multispectral surface reflectance

data by reconstructing additional spectral information, focusing on the spectral range of
400–800 nm using the GRASP TROPOMI BRDF product. Using non-negative matrix fac-
torization (NMF), spectral basis vectors were extracted from reference spectral libraries,
enabling the reconstruction of key spectral features with a few limited wavelength bands.
The results demonstrate the effectiveness of this approach in complementing multispectral
data by enhancing spectral information at specific wavelengths, particularly those affected
by strong atmospheric absorption or significant atmospheric correction errors.

The analysis draws attention to the critical role of specific wavelengths, such as 494 nm
and 670 nm, in reconstructing spectral features due to their sensitivity to vegetation reflectance
and chlorophyll absorption, emphasizing that at least five bands of valid information are
necessary for relative reliable results in the spectral range of 400–800 nm. Moreover, by incorpo-
rating BRDF data at 2313 nm, the method extends its applicability across the broader spectral
range of 400–2400 nm, effectively bridging spectral resolution gaps of multispectral surface
reflectance. The reconstructed BRDF results not only closely agree with the GRASP BRDF
product but also demonstrate the robustness and reliability of this approach for applications
requiring comprehensive and reliable surface reflectance information.

This framework demonstrates the potential to enhance multispectral datasets by
filling critical spectral gaps, offering a cost-effective and scalable solution for large-scale
remote sensing applications. However, it is not intended to replace hyperspectral data but
rather to supplement existing multispectral observations, particularly in scenarios where
hyperspectral missions are impractical or unavailable.

In conclusion, this study contributes to advancing spectral reconstruction methods for
land surface analysis. Future research will focus on refining spectral libraries, improving
reconstruction accuracy, and extending applications across broader spectral ranges from
UV to SWIR. These efforts aim to further enhance the reliability and applicability of this
approach, supporting more accurate and comprehensive surface characterization.
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