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Constraints on the modeled vertical
distribution of smoke during the 2020
western US wildfires from satellite data

Check for updates
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Jordan L. Schnell5,6, Ravan Ahmadov6, Xi Chen7, Jun Wang7 & Oscar A. Neyra-Nazarrett2,3

As wildfires increase in frequency and intensity, accurately representing the vertical distribution of
smoke in numericalmodels is critical for assessing impacts to air quality, but remains highly uncertain.
In this study, we leverage satellite retrievals of total column carbon monoxide (CO) and aerosol layer
height (ALH) to evaluate two state-of-the-art regionals and global models, one using a plume rise
parameterization to estimate smoke injection height (RAP-Chem) and another placing smoke at the
surface (MOMO-Chem). We introduce a novel metric that utilizes the differing vertical sensitivities of
two satellite sensors observing CO (TROPOMI and CrIS) to infer the vertical distribution of wildfire
smoke using a joint CO column ratio. We find that RAP-Chem better captures the distribution of CO
and ALH related to the 2020 western US megafire event than MOMO-Chem. However, RAP-Chem
underestimates surface CO concentrations, revealing that current plume rise parameterizations are
limited in their ability to partition smoke correctly in the vertical column. These results show that
synergistic use of satellite data canprovide additional constraints on the vertical distribution of smoke,
thus providing insights into the strengths and limitations of current plume rise parameterizations and a
pathway to improvement.

Wildfires are becomingmore frequent and extreme1,2 due to climate change
andweather extremes3, poor forestmanagement, expansionof thewildland-
urban interface, and increased anthropogenic ignitions4. This trend is
projected to continue globally5,6 and the effects will extend far beyond the
region burned. As wildfires grow larger andmore intense, they create more
extensive smokeplumes that rise higher in the atmosphere7, andaffect larger
areas and populations. Here, we will consider “smoke” in a broad sense to
include all wildfire emissions including aerosols and trace gasses8. Climate
effects of wildfire smoke include atmospheric temperature anomalies9,
increased loads of black carbon aerosols and trace gases10, altered radiative
budgets11, altered albedo12, and implications for hydrologic cycles13. Smoke
that reaches the lower stratosphere via convective pyrocumulonimbus
clouds can induce climate effects similar to that of a moderate volcanic
eruption14–16.Wildfire smoke also poses a health hazard and has been linked
to increased respiratory and cardiovascular disease8,17. During the summer
of 2020, a series of large wildfires burned over 10.2 million acres in the

Western United States, resulting in 3720 exceedances of the National
Ambient Air Quality Standards for fine particulate matter (PM2.5)

18. The
resulting smoke plumes were transported across the United States and
reached Europe by mid September19.

Wildfire plume rise, caused by combustion heat-flux driven buoyancy,
influences the altitudewhere aerosols andgasses are emittedbywildfires and
injected into the atmosphere. The plume injection height plays amajor role
in determining the transport pathways and extent of smoke plumes.
Injections within the planetary boundary layer (PBL) will result in more
local air quality effects20. In contrast, injections above the PBL can result in
regional or even continental transport. Subsequent boundary layer
entrainment can significantly affect near surface air quality hundreds of
kilometers away21,22. Plume injection height is driven by a complex com-
binationoffire size,fireheatflux, andatmospheric conditions23. Intensefires
tend to result in higher plumeheights20,24. However, ambientmeteorological
conditions, including atmospheric stability20, horizontal winds25, and moist
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convection20, also strongly influence the plume dynamics and eventual
plume height.

It is critically important to be able to accurately simulate and predict
smoke transport in order to understand and mitigate the effects. However,
wildfire plume rise remains difficult to represent in atmosphericmodels due
topersistent uncertainties and complexphysical interactions takingplace on
small scales that can’t be explicitly resolved in regional and global models
due to large vertical and horizontal grid spacing. An analysis of twelve state-
of-the-art models showed substantial discrepancies in simulated plume
heights (up to 5 km) for the same fire event26. Consequently, air quality
forecasts vary between different models and parameterizations. For exam-
ple, three widely used plume rise parameterizations have shown up to
20–30% difference in near-source aerosol optical depth (AOD) and PM2.5

concentrations and 5% difference downwind27.
Verification and improvements to plume rise parameterizations are

made difficult due in part to the limited spatial and temporal scale of
observations of smoke vertical distribution. Observations of wildfire smoke
have been obtained through a range of platforms, including in situ and
remote sensing surface sensors, aircraft campaigns, and satellite instru-
ments. AOD or surface particulate matter (PM) measurements are com-
monly used to verify wildfire smoke concentrations, however, these
measurements alone don’t provide information on the vertical distribution
of smoke and are not sufficient to verify plume height. In addition to
aerosols, carbon monoxide (CO) is frequently employed as a tracer for
wildfire smoke28–31 due to its associationwith incomplete combustion31, long
lifetime in the atmosphere32, and insolubility33. CO and biomass burning
aerosols are correlated butCOalso offers several advantages overAODas its
concentrations do not saturate at high concentrations34. Furthermore,AOD
is an optical property and the assumptions that need to be made to convert
to mass concentration can change substantially with smoke age35, and
cannot currently be reproduced in models. The most detailed information
about the vertical profile can be retrieved using Lidar, but these instruments
have various limitations. Spaceborne Lidars have a very fine vertical reso-
lution but a very narrow ground track which greatly limits the number of
fires with data available27,36,37. Furthermore, some of these lidars are no
longer operational36,38. Airborne Lidar measurements have been used to
evaluate smoke plume height but are even more limited in temporal and
spatial scale26,39,40. Satellite-derived aerosol layer height (ALH) retrievals
have a higher spatial coverage than Lidar, but a more limited vertical
resolution as they only retrieve the top or centroid height of an aerosol
plume. ALH retrievals measured using stereoscopic techniques from
instruments such as theMulti-angle Imaging SpectroRadiometer (MISR)41,
have been used to evaluate modeled plume heights20,27,42–44. However, peak
fire activity tends to occur in the late afternoon45,46, soMISR,with amorning
overpass time, tends to have a bias to low altitude plumes20. The TROPO-
sphericMonitoring Instrument (TROPOMI)47, which utilizes spectroscopic
techniques based on oxygen bands to retrieve the aerosol optical central
height (AOCH), has a daily early afternoon overpass time and shows pro-
mise to verify plume heights. Retrievals of CO total column andCO vertical
profiles using optimal estimation from the TRopospheric Ozone and its
Precursors from Earth System Sounding (TROPESS) Cross-track Infrared
Sounder (CrIS) are another valuable resource to evaluate smoke vertical
distribution.

This study uses remote sensing retrievals of CO and ALH to verify the
modeled spatial and vertical distribution of wildfire smoke during the 2020
WesternU.S. wildfires.We use CO total column retrievals fromTROPOMI
and CrIS to evaluate smoke transport and introduce a novel joint satellite
ratio to extract additional information about the vertical distribution of
smoke. We also use high-resolution TROPOMI AOCH retrievals, which
provide the central height of the aerosol layer, to evaluate plume height.We
use these datasets to evaluate the performance of twomodeling systems: (1)
NOAA’s experimental Rapid Refresh with Chemistry (RAP-Chem)model,
which incorporates the Freitas plume rise parameterization, and (2)NASA’s
Multi-mOdel Multi-cOnstituent Chemical data assimilation (MOMO-
Chem) system, which does not include a plume rise parameterization.

We present model-observation comparisons for CO total column, surface
CO, ALH, and the joint CrIS/TROPOMI ratio. In particular, we explore the
synergistic effects of analysis using ALH and the CrIS/TROPOMI ratio to
understand the vertical distribution of smoke. Finally, we discuss pathways
to improve model depiction of the vertical distribution of smoke.

Results
Comparison of CO total column
First, we compared the CO total column retrieved from TROPOMI against
the model derived CO total column. Figure 1 shows the visual smoke from
Visible Infrared Imaging Radiometer Suite (VIIRS) retrievals and spatial
plots of theCO total column forTROPOMIandbothmodels for a relatively
low fire activity day (September 6th, 2020), a high fire activity day with
transport over the Pacific Ocean (September 12th, 2020), and a strong
eastward transport day (September 15th, 2020). It is visually evident from
Fig. 1 that RAP-Chem captures the observed high CO plumes in all cases
better than MOMO-Chem. RAP-Chem captures the observed spatial pat-
terns, depicting both the westward plume over the Pacific Ocean and the
subsequent eastward transport across the country, with the spatial corre-
lation R2 of 0.26 with TROPOMI and a R2 of 0.19 with CrIS (spatial plots
shown in Supplementary Fig. S1). This behavior indicates the strength of
this plume rise parameterization in placing the plume in the vertical column
accurately enough to capture the general pattern of transport, but the weak
correlations indicate remainingbiases likely associatedwith smoke emission
uncertainties, and errors in the vertical distribution and transport of smoke.
While RAP-Chem captures the spatial distribution well, it does tend to
overestimate the CO total column in some regions by nearly a factor of 2,
particularly near regions of high intensity fire activity such as over Oregon
on September 12th. It should be noted that because RAP-Chem is a forecast
model, the fire emissions are based on the satellite observations of fires for
the previous day and therefore we would expect inconsistencies in the
emissions.

In contrast, MOMO-Chem performs with lower skill, particularly in
the high fire activity days. In every day analyzed with significant fire activity
and/or smoke transport, MOMO-Chem underestimated both the spatial
extent ofCOand the emissions due towildfire activity, resulting inR2 values
below 0.07 between the TROPOMI CO total column and the MOMO-
Chem CO total column. The underestimation of up to 2 × 1019 molecules/
cm2 occurs during periods of high fire activity. This behavior is likely a
combination of underestimated emissions and/or observational constraints,
the coarser resolution in their global analysis, and the lack of plume rise
parameterization. This analysis shows that even a high-quality global rea-
nalysis model underperforms in extreme fire events because it was not
designed to resolve these events. RAP-Chem’s much better performance
highlights the importance of including plume rise parameterizations when
modeling wildfire emissions in order to accurately depict the horizontal
transport.

Comparison of vertical profile metrics
Figure 2 shows the spatial plots of ALH on Sept. 6th, 12th, and 15th. The
TROPOMIAOCH shows lower heights (2–4.5 km) in the regions closest to
thefires and higherplumeheights (7–9 km) in cases of long-range transport
away from the fires. The RAP-Chem ALH shows similar general trends as
the TROPOMI AOCH and appears to be reproducing elevated and lower
plumes. However, RAP-Chem also appears to underestimate the height of
extremely elevated plumes (8–9 km), such as over the Pacific Ocean just off
the coast of Canada on Sept. 12th, and overestimate shallower plumes
(1–3 km), such as over Oregon and Washington on Sept.12th. This can be
seen more clearly in Fig. 3a. This agrees with previous studies with models
using the Freitas plume rise scheme24,26,39. Figure 3a also shows a clear
difference between theRAP-ChemandMOMO-Chemaerosol layerheight.
While theRAP-ChemALHis correlatedwithTROPOMIAOCHwithanR2

value of 0.54, MOMO-Chem shows low correlation (R2 of 0.14) with the
observational dataset with all MOMO-Chem values being below 4 km.
This result is expected given the highly convective nature of this wildfire
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Fig. 1 | Maps of visible imagery and the modeled and observed CO total column.
a-c Visible Infrared Imaging Radiometer Suite (VIIRS) Visual Images, (d-f) TRO-
POMI CO total column, (g-i) RAP-Chem CO total column with TROPOMI aver-
aging kernel applied, and (j-l) MOMO-Chem CO total column with TROPOMI

averaging kernel applied on September 6, 12, and 15, 2020. Units are molecules/cm2.
The VIIRS Visual Images are NASA Worldview snapshots (https://wvs.earthdata.
nasa.gov).

Fig. 2 | Maps of the modeled and observed aerosol layer height. a-c TROPOMI aerosol optical central height, (d-f) RAP-Chem aerosol layer height, and (g-i) MOMO-
Chem aerosol layer height on September 6, 12, and 15, 2020. Data is masked by smoke using a CO total column threshold of 3 × 1018 molecules/cm2.
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event andMOMO-Chemnot includingplume rise, and thus, explainsmuch
of the differences in CO transport42. RAP-ChemALHhas amean bias error
of 0.32 km compared with the observations which is within the reported
uncertainty range of TROPOMI AOCH (0.5 km). RAP-Chem’s plume rise
parameterization allows it to better capture the aerosol layer height over the
time period observed. While this metric is useful to determine the
approximate height of an aerosol layer, it does not provide any information
on the vertical distribution of the plume.

The upper panels in Fig. 4 show spatial plots of the CrIS/TROPOMI
ratio on Sept 6th, 12th, and 15th. The ratio describes the percentage of the
CO total column at the altitudes where the CrIS vertical sensitivity (calcu-
lated using Eq. (6)) peaks, which can give information about the altitude of
smoke. There tends to be lower ratios in regions with lower aerosol layer
height. This iswhatwewould expect as theCrIS averaging kernel tends to be
more sensitive at altitudes between 6 and9 km(Supplementary Fig. S2). The
models tend to underestimate the ratio (Fig. 3b) implying inconsistencies
with the placement and distribution of the plume. RAP-Chem CrIS/
TROPOMI ratio has a R2 value of 0.37 and shows a better correlation with
the observations than the MOMO-Chem ratio does. This is lower than the
correlation for the RAP-Chem ALH but higher than the R2 correlation for
the CO total column comparison with TROPOMI. Some of this difference
could be due to errors in distribution despite accurate plume placement and
some due to downwind effects of inaccurate plume placement. Despite
releasing all biomass burning emissions at the surface,MOMO-Chemhas a
higher ratio than expected in many cases. This is because MOMO-Chem
surface CO enhancements due to smoke are low compared to the free-
tropospheric background concentration; and thus, there isn’t a large dif-
ference between the total column when the TROPOMI or CrIS averaging
kernel is applied, resulting in a relatively high ratio.

Time series of the average CO total column and surface CO con-
centrations formodels and observations in different regions is shown in Fig.
5. Various masks are applied in the different columns. “Full domain” takes
the average over the entire regions, both smoky and non-smoky areas. The
“smoke” mask was determined by setting a CO threshold of 3 × 1018

molecules/cm2. This is above regular background CO levels, so the average
only includes regions strongly affected by wildfire smoke. The “surface
stations”mask takes the average overmodelpoints collocated to the location

Fig. 3 | Comparison of the modeled and observed ALH and CrIS/
TROPOMI ratio. a Correlation between the TROPOMI aerosol optical central
height (km) and the model aerosol layer height. b Correlation between the CrIS/
TROPOMI ratio and the model equivalent CrIS/TROPOMI ratio. RAP-Chem and
MOMO-Chem are shown in orange and red respectively. Data is masked by smoke
using a CO total column threshold of 3 × 1018 molecules/cm2. The solid color lines
show the linear least squares correlation between the observed andmodeled variable.

Fig. 4 | Maps of the modeled and observed CrIS/TROPOMI ratio. a-c CrIS/TROPOMI ratio, (d-f) RAP-Chem CrIS/TROPOMI ratio, and (g-i) MOMO-Chem CrIS/
TROPOMI ratio on September 6, 12, and 15, 2020. Data is masked by smoke using a CO total column threshold of 3 × 1018 molecules/cm2.
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of surface CO stations to allow for direct comparison with the observations.
The regions are defined according to Fig. 5o. When averaged over the full
domain (Fig. 5a–d), RAP-Chemaccurately captures the CO total column in
the Pacific region and tends to overestimate the total column in the West,
Central and East. The peak of the total column is on September 12th in the
Pacific region and shifts a day later in each subsequent region as the smoke is
transportedeastward.Whenaveragedover smoky regions (Fig. 5e–h),RAP-
Chem tends to underestimate the initial peak in CO and overestimate the
later peak in the Pacific andWest regions. This lag may be related to RAP-

Chem being a forecast model. There is only one RAP-Chem initialization
per day, and the emissions are based on the persistence method using FRP
from the previous 24 h. Although the observations are more sparse, RAP-
Chem shows similar performance for the CO total columnwhen co-located
to surface stations (Fig. 5i–k). However, despite this overestimation of the
total column, RAP-Chem tends to underestimate the surface concentration
of CO (Fig. 5l–n), which is more pronounced after Sept. 9 when the CO
columns are overpredicted. In contrast, MOMO-Chem underestimates the
CO total columnover all regions andmasks butwhen compared against the

Fig. 5 | Daily average timeseries of modeled and observed CO total column and
surface concentration grouped by region. Daily average CO total column in
molecules/cm2 for TROPOMI, RAP-Chem and MOMO-Chem averaged over the
full regional domain (a–d), masked by smoke (e–h), and masked by smoke and
surface CO stations (i–k). Daily average CO Surface Concentration for surface CO

stations, RAP-Chem and MOMO-Chem (l–n). Model CO total columns have the
TROPOMI averaging kernel applied. Smoke mask is defined by a CO total column
threshold of 3 × 1018 molecules/cm2. Regions are defined as followed and shown in
(o)): Pacific (150W–125W), West (125W–105W), Central (105W–85W), East
(85W–60W).
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observed surface CO, MOMO-Chem has a lower mean bias error (−0.19)
than RAP-Chem (−0.36). MOMO-Chem does not have enough CO in the
total columnbut because all the emissions are placed right at the surface, the
model better realizes surface concentrations. Similar results were found for
time series comparisons with CrIS (Supplementary Fig. S3).

Additionally, in the West region when masked by “smoke+surface
stations”, the observed surface COpeakswhen the observedCO column is at
aminimumonSept. 13–15.As the surface stations tend tobe located inurban
areas that are primarily affected by transported smoke, this implies that
during periods of peak fire activity when the CO column is the highest, the
transported smoke is lofted and has less of an effect on surface air quality a
distance from the fire. The elevated surface CO from Sept. 13–15 exceed 1.6
ppm and coincides with observed CO columns that are within the lowest
during this period with minimum values of 3.7 × 1018 molecules/cm2, indi-
cating that periodsof lowerbiomassburningemissions could result inweaker
smoke plumes that remain confined to the boundary layer and have a greater
impact on regional surface air quality. As stated earlier, RAP-Chem is likely
overpredicting the injectionheightduring thisperiodand injecting the smoke
above the boundary layer where it has less of an effect on surface air quality.

Additional analysis was performed to determine if RAP-Chem’s
inconsistency in capturing the surface CO concentration is due to incorrect
vertical placement of the plume. We only considered RAP-Chem in this
analysis due to MOMO-Chem’s underestimated CO total column and
ALH. Figure 6 shows a time series of RAP-Chem’s average vertical profile of
CO over the smoky region overlaid with the original aerosol layer height.
Additionally, a recalculated aerosol layer height is displayed, calculated after
scaling the surface concentrations of RAP-Chem to the observations. As
RAP-Chem tends to underpredict surface concentrations, the scaled ALH
tends to be lower than the original ALH. The R2 value between TROPOMI
AOCH and RAP-Chem ALH increases from 0.38 to 0.39 when the model
surface concentrations are scaled to observations but the mean bias error
increases in magnitude from −0.43 to −0.82. The correlation shows very
little improvement and the bias in the model compared to the observations

increases which suggests that the model biases in surface concentration are
unrelated to biases in themodelALH.Anotherway to interpret these results
is that assimilation of ALH would likely not result in significant improve-
ment of surface concentration for this type of event.

RAP-Chem demonstrates the limitations of current plume rise para-
meterizations and the reasons many models don’t include them. A model
can get close to the total column amount of CO and place the plume at
approximately the correct height but still get the surface concentrations
incorrect. This implies that the RAP-Chem’s inconsistent surface CO
concentrations are less dependent on the injection height of the plume rise
parameterizationandmoredependenton other factors, such as thepartition
of emissions between the injection height and the surface40. While the
partition used by RAP-Chem is a fixed number (90% spread between the
lower and upper bounds of injection height) that is similar to those con-
strainedwith airborne observations40, it’s likely that the partition varies with
conditions and future work should explore developing parameterizations
for this partition.

Synergy between ALH and CrIS/TROPOMI Ratio
Aerosol layer height and the CrIS/TROPOMI ratio are useful metrics for
verifying smoke plumeheight individually, butwhen analyzed together they
have the potential to provide additional information about the vertical
profile. ALH retrieves a single height that showswhere in the vertical profile
the plume is, however, it doesn’t give a detailed vertical profile. With this
metric alone, we have no way of knowing if the plume is concentrated in a
shallow layer or spread vertically over several km. Additionally as ALH acts
similar to a weighted average, it performs poorly in cases where there are
multiple plumes at different altitudes48. The CrIS/TROPOMI ratio retrieves
the fraction of the column within a certain altitude range which provides
information about plume distribution. Depending on the location of the
plume and CrIS sensitivity, the usefulness of this ratio varies on a case-by-
case basis. These metrics are measurements of two different quantities (CO
and aerosols), but as they are co-emitted fromwildfires, they are related (R2

Fig. 6 | Daily average modeled vertical profiles and comparison of modeled and
observed ALH. Daily average RAP-Chem CO vertical profiles in units of ppm
averaged over regional domains. The circles in the lowest level depict the daily
average CO concentrations retrieved from observational surface stations. The daily
average RAP-ChemALH andTROPOMIAOCHare overlayed on top of the vertical

profiles. The scaled RAP-Chem line is the ALH calculated after scaling the RAP-
Chem surface CO concentration to the observational surface CO concentrations. All
data is masked by smoke defined as above a CO total column threshold of 3e18
molecules/cm2 and colocated to the location of the surface CO stations (a-f). The
lower row is also masked by TROPOMI AOCH to account for the gaps in data (d-f).
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value of 0.31, Fig. 7). Low total columns tend to have consistently high ratios
due to increased influence of the background concentration (Fig. 7). This
will affect the CrIS/TROPOMI ratio more than the ALH because CO has a
higher relative background concentration than aerosols. Combining the
ALHand the ratio provides information on both the height and distribution
of the plume and can be a powerful verification tool.

The synergy between ALH and the CrIS/TROPOMI ratio can be seen
in a case study of vertical profiles. Figure 8a shows an elevated plumewhere
RAP-Chem is underpredicting both the ALH (by ~2 km) and the CrIS/
TROPOMI ratio (0.17 modeled vs. 0.36 observed). The lower model ALH
suggests that themodel is putting the plume too low and that the bulk of the
plume needs to be moved to a higher altitude to match the observations. In
addition, the lower CrIS/TROPOMI model ratio implies that CO needs to
be increased at the altitudes where CrIS is most sensitive (5–7 km for this
case, see definition in Methods). This profile is an example of the simplest
case where one adjustment to the plume (move it higher) would improve
consistency with both the ALH and the CrIS/TROPOMI ratio simulta-
neously. However, many profiles are not this simple. Figure 8b shows an
elevated plume where the model is overpredicting the ALH and CrIS/
TROPOMI ratio. The difference in ALH implies that the observed plume is
lower than the modeled plume. However, as RAP-Chem has a higher ratio
than theobservations, this implies that there is toomuchCO in the areaCrIS
is more sensitive (6–10 km). Simply shifting the model plume lower to
match the ALH would not eliminate the bias as the ratio suggests that the
concentration of CO at higher altitudes also needs to be lowered. For this
profile, two separate actions (see twoarrows inFig. 8b) related tobothplume
height and relative concentrations need to be taken to improve the con-
sistency with TROPOMI AOCH and CrIS/TROPOMI ratio.

Figure 8c shows a seemingly simple modeled plume structure that
peaks at an altitude of 6.5 kmwith themodel underpredicting both theALH
and the CrIS/TROPOMI ratio. The modeled plume would need to be
moved upwards to improve consistency with TROPOMI AOCH, however,
to improve consistency with the CrIS/TROPOMI ratio, more of the mod-
eled plume would need to be moved downward to the altitudes that CrIS is
most sensitive (1–3 km). To reconcile these seemingly contradicting
changes and improve both the ALH and ratio, the main plume would need
to be moved higher to match TROPOMI AOCH and the concentration of
CO from1 to3 kmwouldneed to be increased.Thiswould result in adouble
plume structure with one elevated and one located near the surface. In this
profile, the model plume is inconsistent with the observations in multiple
ways. The elevatedplume is too low in altitude (implying anunderestimated
injection height at the source) and the surface plume is too low in con-
centration (implying that toomuch COwas injected).When used together,

the ALH andCrIS/TROPOMI ratio providemuchmore information about
this profile than either could individually. It should benoted thatmaking the
adjustments listed above to this plume would likely also improve surface
concentrations and reduce the bias found in the model for this profile (see
circle markers at the bottom of the panel). Cases like this where CrIS is the
most sensitive close to the surface are the minority (Supplementary Fig.
S2b); and thus, inmost cases, the surface concentration would likely remain
unaffected by adjusting the location of an elevated plume tomatch both the
AOCH and the ratio. Improvement of the bias would require other stra-
tegies, such as modifications to plume rise parameterization itself or
assimilation of surface observations.

Finally, Fig. 8d shows a more complicated case with a modeled double
plume structure. This profile is fromSouthernCalifornia on Sept 10thwhen
there was smoke from a fire burning locally and transported smoke from
fires burning elsewhere in the state. The model and observational ALH are
only 1 km apart, but the ratios show a difference of 0.45. The two model
plumes are above andbelow the altitudeswhereCrIS ismost sensitivewhich
contributes to the model having a much lower ratio than observed. Joining
those plumes into one plume centered near 8 kmwould drastically improve
the ratio and raise themodel ALH as well. However, it should be noted that
profiles with more complicated plume structure make the analysis more
uncertain. TROPOMI AOCH has been found to perform worse when
plumes are present at multiple altitudes and the limited information from
the CrIS/TROPOMI ratio makes it difficult to pinpoint the actual height of
the plume or plumes.

Discussion
As extreme wildfires increase in frequency, accurate modeling of wildfire
smoke events grows more important in order to understand and predict
effects on climate, ecosystems, and human health. This study evaluates the
performance of two state of the art models (RAP-Chem and MOMO-
Chem) against surface CO observations, satellite derived CO total column
and aerosol layer height retrievals during the 2020WestCoastwildfire event
to evaluate the spatial and vertical distribution of wildfire smoke.

RAP-Chem performs with higher skill than MOMO-Chem resolving
the CO total column, aerosol layer height, andCrIS/TROPOMI ratio. RAP-
Chem overestimates the CO total column but better captures the spatial
coverage of smoke while MOMO-Chem shows low correlation and
underestimates both the emissions and spatial extent of smoke. When
averaged by day, RAP-Chem overestimates the CO total column during
most periods of fire activity across all regions whereasMOMO-Chem tends
to underestimate during periods of fire activity and misses the peak in CO
duringperiods of extremefire activity. RAP-Chemhas aR2 value of 0.54 and

Fig. 7 | Comparison of the CrIS/TROPOMI ratio
and TROPOMI AOCH. Correlation between the
CrIS/TROPOMI ratio and the TROPOMI AOCH
(km). The black line shows the linear least-squares
fit. The colors show the TROPOMICO total column
in units of molecules/cm2. Data is masked by smoke
using a CO total column threshold of 3 × 1018

molecules/cm2.
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0.37 against theALHandCrIS/TROPOMIratio respectivelywhileMOMO-
Chem shows low correlation with either metric.

Despite this, MOMO-Chem outperforms RAP-Chem in resolving the
surface concentration ofCO,however, this analysis is limitedby the number
of observation sites and their proximity to fires. While both models
underestimate the highest CO concentrations over the West region,
MOMO-Chem has a lower bias than RAP-Chem because all the emissions
are placed at the surface. Scaling the RAP-ChemsurfaceCO to the observed

concentrations only marginally affects the ALH and increases the bias
against the observed AOCH, indicating that the assimilation of observed
AOCH likely would not significantly improve surface concentrations of CO
for this event. Current “operational” regional air quality models don’t
include chemical data assimilation but are working towards that function-
ality. Assimilation of AOCH can be further tested in these systems to
determine the overall effect. This analysis reveals the limitations of current
plume rise parameterizations and how a model can resolve wildfire

Fig. 8 | Verification ofmodeled vertical profiles using aerosol layer height and the
CrIS/TROPOMI ratio. Vertical profiles of the RAP-Chem CO (black), TROPOMI
AOCH (blue), RAP-Chem ALH (orange) and relative CrIS sensitivity (green) for
four different cases (a-d). Green shaded region depicts the altitudes of CrIS highest
sensitivity calculated using Eq. (5). Pink arrows depict how the RAP-Chem vertical

profile could be changed to increase consistency with TROPOMI AOCH and the
CrIS/TROPOMI ratio simultaneously. The orange and blue circles at ground level
are the RAP-Chem and the observed surface CO concentration respectively. The
orange and blue numbers show the CO total column and the CrIS/TROPOMI ratios
for RAP-Chem and TROPOMI respectively.
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emissions and injection height well but underestimate the surface con-
centrations. This has negative implications for surface air quality forecasts
and modeling the effects of high concentrations of surface smoke.

The joint use of satellite derived aerosol layer height products and the
CrIS/TROPOMI CO ratio can provide information about the height of the
plume and relative concentrations at certain altitudes. In the case studies
shown, model verification analysis utilizing both metrics can improve the
model derived vertical distribution of smoke. Due to the complicated nature
ofmanyplume structures, there is aneed for amore algorithmic approach to
estimating a plume that satisfies both ALH and the CrIS/TROPOMI ratio.
This has the potential to also improve surface concentrations in select cases;
however, widespread improvement of surface concentrations will require
improvements to the plume rise parameterization itself, top-down emis-
sions estimates or assimilation of surface observations. These methods for
evaluation of smoke vertical distribution can also be applied to models that
explicitly resolve the fire heat flux and convective plume rise.

Wildfires are becomingmore frequent and intense which increases the
motivation to improve plume rise parameterization to show consistency
with observations of plume height, and surface concentrations. This study
has focused on vertical smoke distribution in the free troposphere, but
stratospheric injection of smoke is also an important component of smoke
vertical distribution. Future studies are needed to use measurements of
smoke particles in the lower stratosphere to evaluate model performance49.
The fraction of emissions that are placed at the injection height vs those that
remain at the surface could be another area of improvement. RAP-Chem
treats this as a fixed value for all fires (10% at the surface, 90% injected) but
more variability may be needed. This fraction has been estimated based on
limited data available fromfield campaigns40 andmaynot be indicative of all
wildfire behavior. Currently a comprehensive set of measurements to
constrain all physical quantities is lacking though there may be some
methods for improvement. For example, a satellite derived fire modified
combustion efficiency50 or amodelderivedwildfire index such as theHourly
Wildfire Potential (HWP)51 could be used to modify this fraction as a
function of combustion phase (i.e., smoldering vs. flaming). Regional
meteorology and topography may also influence the fraction of smoke
injected. Additional sources of observational data including weather radar52

maybeused to improve theplume injectionheight and fractionof emissions
injected. Another strategy involves trying to fully resolve smoke injection by
adding a wildfire heat flux53,54. The verification techniques utilized in this
study also provide a valuable resource for model verification of the vertical
distribution of smoke.

Methods
Observation data
TROPOMI, aboard the Copernicus Sentinel-5 Precursor satellite, is a
spaceborne nadir-viewing imaging spectrometer that measures back-
scattered and reflected sunlight from the Earth with a push-broom
configuration55. It covers wavelength bands between the shortwave
infrared (SWIR) and the ultraviolet (UV) with a swath 2600 km wide.
The horizontal resolution is typically 7 × 7 km2 for SWIR bands though
this is dependent on the orbital position and spectral interval. The
Sentinel-5P satellite is on a sun-synchronous orbit, crossing the Equator
at 13:30. These characteristics give TROPOMI daily global coverage at
high resolutions. TROPOMI’s observation of reflected SWIR solar
radiation yields atmospheric carbon monoxide measurements that have
high sensitivity at all levels of the atmosphere, including the planetary
boundary layer56. TROPOMI passes over the Western United States in
the early afternoon which is just before the typical time for the most
intense fire behavior45,46. TROPOMI has been validated against aircraft-
based vertical profiles57,58, satellite58, and ground based measurements59

and shown good agreement with biases ranging from 1 to 3.73%. When
validated during the 2020 Western Wildfire event, TROPOMI had
normalized mean biases typically below 24% demonstrating the ability
of this retrieval to capture the majority of the CO column60. We have
used the reprocessed TROPOMI Level 2 data for September 2020.

CrIS, aboard the Suomi NPP satellite61, is a Fourier transform spec-
trometer operating in three spectral bands from 650 to 1095 cm−1, 1210 to
1750 cm−1, and 2155 to 2550 cm−1. The diameter of the ground pixels is
14 km at nadir. The Suomi NPP satellite is also on a near-polar, sun syn-
chronous orbit, crossing the Equator in a similar orbit and only a few
minutes after Sentinel-5P. Thus, CrIS also has daily global coverage with
retrievals at nearly the same time as TROPOMI. CrIS CO profiles are
retrieved using optimal estimation62,63 as part of the TRopospheric Ozone
and Its Precursors from Earth System Sounding (TROPESS; https://tes.jpl.
nasa.gov/tropess) and have been validated extensively against independent
data64 with biases substantially less than 1%. Diagnostic information pro-
vided by TROPESS was used to construct observation operators for com-
parison with the models65,66. These data have been used to understand fires
similar to the Western US fires67.

TROPOMI Aerosol Optical Central Height (AOCH) is a product
developed by Chen et al.47 that uses the spectral signature of light absorbed
byO2 in theA andBbands in TROPOMI retrievals to estimate aerosol layer
height over dark targets. AOCH is defined as the peak height assuming
aerosol extinction following a quasi-Gaussian distribution and tends to be
close to the center height of an aerosol layer. In comparison to the opera-
tional TROPOMI ALH product using just the O2 A band68, this two-band
retrieval algorithm shows betterperformance retrieving the central height of
the aerosol layer when compared with spaceborne lidarmeasurements with
a bias of ~0.5 km over land and ocean. We utilized the highest quality
operational data, with cloudy pixels filtered out using the slope of the
spectral reflectance, the UV aerosol index ≥ 1, and AOD> 0.2.

Surface CO concentrations were obtained from state air quality agency
monitoring stations made available through the US EPA Air Quality Sys-
tem. Files containing hourly CO concentrations from 234 stations located
across the country were downloaded for September 2020. We only con-
sidered measurements taken during the same hour as the satellite overpass
to avoid differences due to temporal variability. Data availability posed a
challenge as the monitoring stations are not evenly distributed across the
country, and there are few stations in the regions most heavily impacted by
smoke. This data is considered of the highest quality and has passed several
quality control tests.

Modeling systems
The Rapid Refresh with Chemistry (RAP-Chem) is an experimental air
quality forecast model operating at NOAA Global Sciences Laboratory
(GSL). It combines the physics and dynamics of the Rapid Refresh Forecast
model69 with the Weather Research and Forecasting model coupled with
Chemistry (WRF-Chem)70,71. RAP-Chem uses Fire Radiative Power (FRP)
measurements detected within the previous 24 h to estimate wildfire
emissions using the same methodology as High Resolution Rapid Refresh
with Smoke (HRRR-Smoke)72. Emission factors for gasses and aerosols
(including CO) are from Andreae (2019)73. As in HRRR-Smoke, both the
averaged FRP and emissions have a climatological diurnal cycle applied on
the biomass burning emissions from the previous 24 h (i.e., persistence).
RAP-Chemuses the Freitas plume rise parameterization to simulate smoke
injection height, a one-dimensional cloud resolving model that is generally
embedded in a 3D host model74. Fires are represented as surface buoyancy
fluxes that are dependenton fuel type,fire size, and total sensible heatflux. In
the model, 10% of emissions are released at the surface with the remaining
90% released into the column as predicted by the plume rise para-
meterization. Freitas shows better diurnal variation in plume height75 and
tends to outperform other parameterizations that assign fire emissions to
fixed vertical distribution or a single altitude42,76. However, Freitas also tends
to underestimate the range of plume heights and overpredict injections into
the free troposphere24,26. Anthropogenic emissions are designed to reflect
COVID-19 reductions: the fuel-based oil and gas (FOG) inventory77 is used
for oil and gas nitrogen oxides (NOx) and volatile organic compounds
(VOC) emissions; Areal VCP emissions are modified based on the volatile
chemical product (VCP) emission inventory for 201878. Where possible for
point sources,we use theContinuousEmissionMonitoring System (CEMS)
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and rely on the National Emissions Inventory 2017 v1 baseline for those
sources not reported by CEMS. Outside of the contiguous United States,
RAP-Chem uses the Community Emissions Data System 2017 inventory79.
The emissions have a diurnal profile and are delineated by weekday,
Saturday, or Sunday.

The MOMO-Chem framework is a global chemical data assimilation
system that integrates multiple satellite observations to constrain atmo-
spheric composition80,81. In this study, we used the second version of the
Tropospheric Chemistry Reanalysis (TCR-2)80, which was produced using
the MOMO-Chem framework81. TCR-2 employs a state-of-the-art data
assimilation approach to integrate information obtained from satellite
observations of CO, O₃, NO₂, SO₂, and HNO₃. It simultaneously estimates
both atmospheric concentrations of trace gases and surface emissions of key
precursors, including CO. The TCR-2 products have been extensively
validated against independentobservations, suchasozonesondeandaircraft
measurements, and have demonstrated good performance in reproducing
global distributions of major tropospheric trace gases, including CO and
ozone80. These products have been used to investigate the impacts of
changing anthropogenic and natural activities on tropospheric
composition82–84. For CO emission estimation, TCR-2 assimilates Mea-
surements of Pollution In The Troposphere (MOPITT) CO data, using a
priori emissions taken from the Global Fire Emissions Database (GFED)
inventory. However, the limited vertical sensitivity of MOPITT near the
surface, combined with retrieval uncertainties and spatial sampling con-
straints, poses challenges in capturing rapid temporal and spatial variations
in CO emissions. Note that none of the observations used for model eva-
luation in this work are assimilated in this version of MOMO-Chem. The
spatial resolution of the global model used in TCR-2 (~1.125° × 1.125°)
limits its ability to resolve localized fire events and associated plume
structures. Moreover, MOMO-Chem does not include a plume rise para-
meterization and all biomass burning emissions are placed at the surface
level, as in many other global chemical transport models. This limits the
system’s ability to accurately represent the vertical transport and dynamics
of fire plumes, which can influence the simulation of near-source con-
centrations and long-range smoke transport.

CO column calculation
In order to compare the satellite CO total column retrievals with the model
output, a column averaging kernel needs to be applied. The column aver-
aging kernel describes the sensitivity the satellite instrument has to CO at
each time, location andpressure level and canbe applied tomodeled vertical
profiles to estimate what the satellite would retrieve under those conditions.
Both instruments used in this study retrieve CO in the infrared so there will
be a minimal effect on the averaging kernels from a layer of smoke aerosols
in the column.We estimated theCO total column from theRAP-Chemand
MOMO-Chem data by co-locating the model data to the satellite grid and

applying the CrIS and TROPOMI averaging kernels. The TROPOMI
averaging kernel is derived from a first-order Tikhonov–Phillips regular-
ization on a logarithmic scale85,86 and is applied with the following equation:

x̂m;T ¼ xmATROPOMI ð1Þ

where xm is a vector containing the regridded and vertically interpolated
model CO profile in molecules/m3, ATROPOMI is the unitless TROPOMI
averaging kernel matrix, and x̂m;T is the model CO profile transformed by
the TROPOMI averaging kernel. The total column in molecules/m2 is cal-
culated by multiplying x̂m;T by the TROPOMI vertical grid spacing
(1000m) and summing over all vertical levels.

The CrIS averaging kernel is derived from Optimal Estimation as the
logarithm of the volumemixing ratio that takes the vertical sensitivity of the
instrument into account and results in a smooth profile64:

x̂m;C ¼ xa þ ACrIS xm � xa
� � ð2Þ

where xa is the vector containing the a priori profile used in the TROPESS
retrieval as the logarithm of the volume mixing ratio, xm is a vector con-
taining the regridded and vertically interpolated model CO profile as the
logarithm of the volume mixing ratio, ACrIS is the CrIS averaging kernel
matrix, and x̂m;C is the model CO profile vector transformed by the CrIS
averaging kernel as the logarithm of the volume mixing ratio. The model
data was regridded to the satellite grids using the xESMF Python library’s87

conservative normalized regridding method.
The resulting model datasets with each satellite averaging kernel

applied were converted to consistent units of CO columns (molecules/cm2)
and all datasets were regridded to a consistent resolution of 1.125 degrees
matching the MOMO-Chem grid. These calculations allowed for a direct
comparison with the satellite data by creating the same metric from a
“virtual retrieval”, i.e., what CrIS or TROPOMI would provide if the world
followed RAP-Chem or MOMO-Chem. Surface CO from the model was
collocated to the location of surfaceCOstations using the closest grid cell for
direct comparison.

Aerosol layer height calculation
Amodel equivalent ALH value was calculated to compare the satellite ALH
retrieval with model output. As the TROPOMI AOCH retrieval gives the
approximate middle of the aerosol layer, the model equivalent ALH values
were calculated by taking a vertical weighted average of aerosols:

ALHm ¼
Xn
i¼1

aihi=
Xn
i¼1

ai ð3Þ

where ALHm is the model equivalent ALH, hi is the middle height of each
grid cell, and ai is the aerosol profile. Due to data availability, the weighted
average was calculated using the extinction coefficient at 550 nm for RAP-
Chem (assuming volume averaging in the Mie calculations88) and PM2.5

concentration for MOMO-Chem. Finally, all datasets were regridded to a
consistent resolution of 1.125 degrees.

Ratio of CO columns
A new metric was developed to gain more information about the vertical
distribution of CO (Fig. 9). We took the ratio between the CrIS CO total
column retrieval (TCC) and theTROPOMICO total column retrieval (TCT)
both in units of molecules/cm2.

r ¼ TCC

TCT
ð4Þ

The CrIS/TROPOMI ratio (r) gives the approximate fraction of CO
within the altitudes that CrIS is most sensitive to, which was highlighted in
previous work as a potentially useful synergistic product between these two

Fig. 9 | Sensitivity of TROPOMI and CrIS to the troposphere. Schematic of the
general sensitivity of TROPOMI and CrIS to the troposphere. TROPOMI has
sensitivity to the entire tropospheric column while CrIS is sensitive to a variable
range of altitudes in the free troposphere. Taking the ratio between the total CO
columns from these instruments give the fraction of the total CO column in the
altitudes where CrIS is sensitive.
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sensors60.The closely timed overpasses of CrIS and TROPOMI make the
retrievals comparable, but their differences in sensitivity is what makes the
comparison valuable.Thismetric provides additional information about the
height and vertical distribution of CO. An equivalent calculation was per-
formed for the RAP-Chem andMOMO-Chem outputs with the respective
averaging kernels applied for model comparison.

CrIS vertical sensitivity
We developed a metric to assess the vertical range where CrIS was
more sensitive. The CrIS relative sensitivity to different altitudes was
calculated by creating a profile with an artificial CO plume centered
over three consecutive vertical levels of the model and negligible
concentrations otherwise:

xp;i ¼
0:01 ppm 1≤ h≤ i� 1

8 ppm i� 1≤ h≤ iþ 1

0:01 ppm iþ 1≤ h≤ nCrIS

8><
>:

for 2≤ i≤ nCrIS � 1 ð5Þ

where xp,i is the artificial profile and nCrIS is the number of vertical pressure
levels ranging from 1211 hPa to 0.1 hPa. The artificial CO plume was over
two consecutive levels for the topmost and bottommost levels. The CrIS
averaging kernel was applied to this artificial profile using Eq. (2). CrIS’s
relative sensitivity to each altitude (si) was calculated by taking the ratio of
the CO total column of the artificial profile after the averaging kernel was
applied (TCA,i, see Eq. (2)) and the CO total column of the artificial profile
before the averaging kernel was applied (TCi):

si ¼
TCA;i

TCi
for1≤ i ≤ nCrIS ð6Þ

This method was repeated by shifting the artificial plume to the
other vertical levels to create profiles of the CrIS relative sensitivity to
different altitudes at each location referred to as the CrIS vertical
sensitivity (s). We will use this metric as a tool to interpret the CrIS/
TROPOMI ratio. The altitudes where this profile peaks are the alti-
tudes where CrIS has the highest sensitivity; and thus, the CrIS/
TROPOMI ratio will provide the fraction of the column in the region
where the CrIS vertical sensitivity peaks.

Data availability
The surface CO observations are available from the US EPA Air Quality
Systemathttps://www.epa.gov/outdoor-air-quality-data. TROPESSCOCrIS
at the Goddard Earth Sciences Data and Information Services Center at
https://disc.gsfc.nasa.gov/datasets/TRPSYL2COCRSRS_1/summary. TRO-
POMI CO data was obtained from the Copernicus Data Space Ecosystem at
https://dataspace.copernicus.eu/. The Tropospheric Chemical Reanalysis
(TCR-2) data are available at https://tes.jpl.nasa.gov/tes/chemical-reanalysis/.
The TROPOMI AOCH data is available upon request from Xi Chen
(xi-chen-4@uiowa.edu) and JunWang(jun-wang-1@uiowa.edu). The RAP-
Chem output is available upon request from Jordan
Schnell(jordan.schnell@noaa.gov).

Code availability
Custom code for this manuscript was written to generate all figures pre-
sented. Code was written in Python and is available upon request from
Mackenzie Arnold (mmarnold7@g.ucla.edu).
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